A Methodology for Test Selection

J.A.N. Lee
Xudong He

TR 88-29

HODOLOGY FOR TEST
SELECTION

September 2, 1988

J.A.N. Lee
Xudong He

Department of Computer Science
Virginia Tech

Blacksburg VA 24061

(703) 961-5780

Abstract!

JAN Lee and Xudong He

Department of Computer Science
Virginia Tech
Blacksburg, VA 24060

Software creation requires not only testing during the development cycle by the development staff,
but also independent testing following the completion of the implementation. However in the latter
case, the amount of testing that can be carded out is often lmited by time and resources. At the
- very most, independent testing can be expected to provide 100% test coverage of the test
requirements (or specifications) associated with the software element with the minimum of effort.
This paper describes a methodology employing Integer Programming by which the amount of
testing required to provide the maximum possible test coverage of the test requirements {for the
given test set) is assured while at the same time minimizing the total number of tests to be included
in a test sute. A collateral procedure provides recommendations on which tests might be
eliminated if less than 100% test coverage of the test requirements is permitted. This latter

. .

procedure will be useful in determining the risk of not running the minimum set of tests for 100%

Categories and Subject Descriptors: 1.2.5 [Software Engineering]: Testing and Debugging. D.2.10
[Seftware Engineeringj: Design - Methodologies. G.1.6 [Numerical Analysis]: Optimization - Integer
Programming,

General Terms: Testing, Regression Testing, Test Data Selection, Tests Selection, Test
Requirements, Test Matrix, Test Coverage.

! The research described herein was partially developed under contract for the Naval Surface Weapons
Center, Dahlgren VA, Division N44 under the supervision of Mrs. Penny Selph. Contract No.
N60921-84-D-A127, Southeastern Center for Electrical Engineering Fducation (SCEEE), §t. Cloud, FL.

A Methodology for Test Selection ' i

A Methodology for Test Selection

1. Introduction

Testing is a fundamental part of the development and maintenance phases in the life cycle of any
software system from the very small to the enormous, although the intensity of testing probably
increases exponentially with the size of the intended product and its required reliability level.
Unfortunately although the degree of testing needs to increase exponentially, the time provided for
acceptance testing [3] is commonly limited to lnear increases. Many of the projects with which
we have been involved had the time period available for acceptance testing set up to 5-8 years
previously. The cumulative slips in the timing of the delivery of components or integrated systems
were subtracted from the final testing period so as to maintain the promised delivery date. While
we do not condone such poor management, it is important to develop a test plan which minimizes
the number of tests which need to be applied while still satisfying the project requirements by
eXamining every lest requirement [10]. A methodology employing integer programming formulation
is developed hercin by which a minimal set of tests can be selected.

The acceptance testing of a software system proceeds in three steps:

1. The development of a test suite of activities composed of programs and/or procedures (which
may be manual or administrative), with the objective that every test requirement in the system
is to be examined,

2. The verification of the adequacy? of that collection of activities with respect to the test coverage
of the test requirements, and the reduction of the test suite to remove any redundancies, and

3. The application of these activities to the targeted system and the formal documentation of the
comparison of the expected versus the actual results.

This paper deals with the second of these activities, i.e. for a given test suite and a set of test
requirements developed in the first activity , to find a minimum set of tests to be conducted while
maintaining the maximum possible test coverage. '

In some instances we have also been faced with the possibility of not being able to conduct a
complete set of acceptance tests in the remaining time available and thus were required to provide
a recommendation as to which subset of tests would provide the greatest test coverage of the test
requirements in the time allotted. A methodology for accomplishing this test selection is presented
herein.

Comiplete test requirements coverage is not required when testing a system during the maintenance
period and following the modification of certain functionalities. Two conditions can exist in this
situation: : '

1. The modification corrects an error and the original test requircments have not been altered,
or '

2. New features have been added to the system together with new test requirements which now
require examination.

In either situation it is not necessary that the complete test suite be applied to the system; instead,
only those test requirements which are affected. by the modification need to be tested. The
methodology developed herein also selects the appropriate tests for such regressive testing.

While test selection tells how to use existing tests during the acceptance testing phase, test data
selection deals with how to construct tests at design, implementation and testing phases. Integer
programming formulation has the potential to reduce test data redundancies, to minimize test costs

2 We will assume that adequacy has different meanings depending on the context -~ 100% (but minimat)
test coverage during acceptance testing, less than 100% in the maintenance phase or in special cases of
"random” independent testing.

and to avoid exhaustive testing, The implication for applying integer programming techniques to
test data selection is discussed later.

2. The Method for Test Selection

2.1, The Construction of the Test Matrix

There are a number of different methods for acquiring an adequate test suite. Clearly the suite
should contain tests which, for each requirement, (1) are typical of the applications of the system,
and (2) test the Himits of the domain of application.? These tests may be developed as a part of the
implernentation process itself by the system development group or, more appropriately, are created
independently by the testing organization. Where a system is to be placed in an already existing
environment with an existing library of applications (data scts or procedures), that Library is a
candidate for the basis for the test suite. For example, in the case of the introduction of a new
compiler into an environment which already contains a library of programs written in that langnage,
or a library that can be readily converted to that language by mechanical means, there is a
ready-made test suite of typical programs.

Whatever the source of the test suite, the individual tests need to be placed under configuration
management in the same manner as the modules of the system under test are controlled. In fact,
links between the modules and their tests are highly appropriate to resolving the test requirement.
As the system is maintained, any modifications to the modules can be validated by the linked tests,
or if the test requirements are changed, the tests must be updated to accommodate the
functionalities of the new module. It is possible to construct a binary fest matrix in which the
entries cross-reference test requirements and tests, in much the same manner as a similar matrix can
cross-reference test requirements and fulfilling modules. Let us propose that the test matrix is row
indexed by the test requirements, and column indexed by the identifiers of each test. A test
requirement is test covered by some test if and only if the corresponding row is not a zero row.
The complete or 100% test coverage of the test requirements is defined as the state in which every
test requirement is test covered.

Prather [12] provides an example of a program which classifies triangles, which is required to
conform to the following test requirements:

Input: Three positive integers, a < b < ¢.
Output: An indication as to whether the input are:

1. not the sides of a triangle,

2. the sides of an equilateral triangle,

3. the sides of an isosceles triangle,

4. the sides of a scalene right triangle,

5. the sides of a scalene obtuse triangle,
6. the sides of a scalene acute triangle.

From these initial test requirements Prather distinguishes eight functionalitics to be tested; dividing
the first indicator into two cases representing the invalid and valid cases (which we shall designate
as li and lv respectively), and by noting that there are two distinct conditions for identifying
isosceles triangles (3a and 3b) provide two additional cases. Prather then provides eight data triples
t1 ... 18 each of which examine an individual test requirement output, resulting in the following test
matrix:

3 Goodenough and Gerhart [4] suggest that there are five conditions which must be met by a fest suite; in
this study we consider that these conditions are part of the test requirements to be met,

Test Identifjier

Test Requirements

Identifier tl 2 3 t4 t5 s t7 t8
11 1 0 o 0 o o 0 0
1v 0 1 1 1 1 1 1 1
2 0 o0 1 0 0 o0 o0 o
3a 6 0 ¢ 1 0 0 o0 o
3b 0 0 o0 o 1 0 0 o
4 0 0 0o o o 1 0 o0
3 0 0 0 o0 o0 ¢ 1 0
6 0 0 0 0 o g 0 1

From this matrix it is obvious that a special test for test requirement 1v (that is, test 12) is
unnecessary since that same test requirement is incidentally examined in other tests.

A second (and third) level of test development can be envisaged in which pairs (and triples) of test
Tequirements are examined in combination. Pairings would result in squaring the size of the matrix
[9], and sequences of pairs (A befors B, A after B) would result in a further doubling of the matrix
dimensions. Many combinations and sequences are likely to be impossible or highly unlikely, and
thus may be eliminated from consideration. However any test suite which considers patrings of test
tequirements, also provides for tests of individual test requirements. Consequently, it is possible
. that tests related to individual test requirements may be eliminated from the test suite, provided that

those same test requirements are “covered” by the pairings related tests,

During the construction of the test suite, each test should be analyzed to determine the test
requirements which it covers. That is, while a test may be designed to cover a specific test
requirement, other test requirements may be covered incidentally. TFor example, most tests will
involve input or output, even though the test does not have the specific objective of testing those
facilities. The results of this analysis should be incorporated into the test matrix. Following such
an analysis, new tests should be acquired (or planned) to remove any deficiencies in the test
coverage of the test requirements. At this stage it is not necessary to eliminate any tests from the
test suite as the result of any recognizable redundancy of test coverage. At the unit {(or module)
level, it is better to utilize a test specfically designed 1o cover the corresponding test requirement(s)
than a test which incidentally provides the sarme test coverage. In some cases it may not be possible
to test the module using a more comprehensive test since the matching modules are not yet
available and the provision of drivers or stubs is inappropriate to the stage of integration.

At the stage of acceptance testing, the test matrix for the complete suite of tests should be created
and analyzed for redundancy. The coverage method described in the next section performs such
an analysis and produces a reduced test suite which still provides 100% test coverage of the test
requirements. The choice of tests js determined on the basis of the cumulative priorities of the test
requirements as defined by the user and the complexity of the tests as defined by the test designers.
That is, the priority or importance of a test is the sum of the priorities of the test requirements it
covers. In terms of the algorithms for test requirements coverage, the product of the complexity
and the inverse of this cumulative priority is used as the cost of the test. Thus the coverage
algorithm selects that set of tests which has the minimum cost.

In our experience in working with several mission critical systems, the consumers were able to
provide a priority ordering to the test requirement and some quantitative measure of the importance
of each requirement. We were able to easily use this information in preparing test matrix data.
Similarly, the cost of testing was readily available in terms of time and manpower required to
accomplish similar tests at the unjt level or in prior implementations.

2.2. Formalizing The Problem

The set covering problem is not uncommon, having been applied previously to such problems as
scheduling (air-line crew, truck), political tedistricting, switching theory, line balancing, information
retrieval, and capital investment [11]. Mathematically the set covering problem can be expressed
as:

subject to BExze
and X =0o0r! (= 1.n

where B = (€;) is an m by n matrix, row indexed by test requirements and column indexed by tests,
the entries ¢, (1 or 0} reflect whether test requirement i is being examined by test j or not, ¢ is a
cost vector representing the cost of conducting each test and which is to be minimized.4 ¥ is & binary
vector which identifies the tests to be conducted, and ¢ is a unit vector.

The method for solving this type of problem is integer prograrming (5], but, to our knowledge it
has not been applied to the problem of choosing the set of tests to be conducted in the software
development process though linear programming technique was mentioned in 113] to be used in
selecting an optimal set of fest tools for implementation.

2.3. Integer Programming -- Implicit Enuineration Method

There are three major methods in solving 0-1 integer programming problems, especially the set
covering problem, They are Gomory Cutting Plane [2], Branch and Bound [7], and Implicit
Enumeration [1).

The Gomory cutting plane method is not very reliable in solving 0-1 integer programming problems
due to machine round-off errors, and a random change of the constraints may increase the number
of iterations required significantly. Only the first fow cuts progress towards the optimal solution
rapidly, then the solution process tends to remain constant for many iterations. The branch and
bound method is too general so that large problems would require unacceptably long execution
times. The implicit enumeration method is the best out of the three major ones in solving -1
integer programming problems due to its simple principles and freedom from machine round-off
errors; so far it is most widely applied in solving -1 integer programming problems [11].

The implicit enumeration method was discovered by Balas | I] in solving 0-1 integer programming
problems. Later, improvements were made by others [14], In implicit enumeration method, only
a small subset of all possible combinations of search space is explicitly enumerated. Though the
method can be considered as a special case of branch and bound method, a different approach is
taken to obtain efficient solutions to 0-1 integer programiing problems.

The heart of the implicit enumeration algorithm is a Point Algotithm which keeps track of the
vatiables already fixed at 0 or 1 and the remaining free variables, The remaining free variables and
the associated constraints constitute subproblems which are of the same type as the original (-1
integer problem. Variables are fixed at 1 at a forward step and are cancelled to (0 when they are
revisited in a backward step. Many techniques have been developed to speed up fixing variables,
such as the ceiling test, the nonnegative cost test, the infeasibility test, the cancellation zero test, the
cancellation one test, linear programming, post optimization, and surrogate constraints [14].

4 The cost vector was computed in the implementation associated with the sponsoring project, as the
product of the complexity of each test and the inverse of the sum of the priorities of the test requirements
covered by each test.

A test requirements coverage analysis algorithm using implicit enumeration method and linear
programming technique is developed and implemented on both IBM 3090 and IBM PC (in
PASCAL). A sketch of the basic implicit enumeration algorithm is presented in the appendix.

The results of the analysis are simply a listing of the tests which should be applied to the system
under test in order to assure that 100% of the test requirements specified in the system
documentation are covered. Where there is a choice between subsets of tests which would satisfy
the test requirements coverage, the subset which provides the same test coverage with the minimum
(cumulative) cost is selected. The minimal test set is that set which, while providing complete test
coverage of the test requirements, also minimizes the cost of testing,

2.4, The Application of the Coverage Algorithm

The following example (modified from [8]) illustrates the application of the coverage algorithm:

Suppose a software system has 15 test requirements to be examined and 32 tests that have been
designed independently to test the system and with the following complexities :
(LLL1LL,1,1,3,4,4,4,4,2,4,4 6, 6, 9,15, 12, 12, 12, 20, 30, 25, 25, 24, 24, 18, 49, 64, 90);
the relationship between the test requirements and tests is represented in the following matrix E:

Test Tests (32 total)
Reqts
5 10 15 20 25 30
1 100000001000000 0001001001001 000 1
-2 0100000000010010 0010101000101 11 1
3 001000000100000 0001000010100010 1
4 000100000000000 000001000G6100100 01
5 0000100000100 00 1 00000110001 00010Q
6 0C0000100060000000 000100010 16006101
7 000000110001 00 00100000001 0000 1 10
8 0000000100000 000 1001001100100001
9 000000O010Q0 0001100000000000 10061110
10 0000000001000 0 0000001000100000 11
11 0000000000000 1 1001000011001 00 io1
12 0 0000000000000 0001100101010010 10
13 0000000000100 0000001000010 0 10101
14 000000000CGO0O0O0 0001001000100000 001290
15 0000000010000 0000100000101 010 011

Assume the priority for each test requirement isl ;J.njformly 1, the cost vector ¢ associated with the
32 tests is calculated (costfi] = complexityli] / (3 priority[f] x ETij1) as:
J=1

(11111111222222233334444555666789)

(1) The optimal lincar programing solution representing the vector which defines the choice of tests
to be utihzed is: '

5 The values are chosen in order to develop a simple solution and as an illustration of the application of the
coverage algorithm. The values stand for the relative complexity of conduciing each of the tests; in an
actual application, the complexity of each test could be calculated based on several criteria: the length of
a test (space), the running time of a test and the ptiority of a test,

x=(0,0,0,060, 1,04, 0.8, 0, 0.4,0.6,0,0,0,0,0,0, 0.8, 0.6,0,0,0, 020,04, 0,0, 0, 0,0,02,
0)

32
with a minimum cost >l x x[{] = 134 obviously, the only appropriate values for selection are
0%s and 1’s, thus =1

(2) an integer solution ¥ is obtained by setting the non-zero entries of the optimal solution x to 1’s:

y=(0,0,0,1,0,1,1, 1,0, 1, 1, 0, 0, 0,0,0,0,1,1,0,0,1,0,1,0,0, 0, 0,0,1,0)

) 32
The cost associated with the solution y 18 3e[i] x p[#] = 31 which is much worse than the optimal
cost 13.4; i=1

(3) The sub-subproblem is then formed by retaining exactly the columns corresponding to the unit
entries in the solution y, except those already fixed at 1 in the optimal solution x (here test 6, which
has been selected and will not be considered anymore) and retaining all the rows except those
corresponding to the 1's in the optimal solution x {here test requirement 6):

Test Numbers

Test Reqts

4 7 8 10 11 18 19 23 25 31
1 0 00 0 00 10 1 0
2 0 ¢ 0 0 0 0 1 1 0 1
3 00 01 0010 0 o0
4 1.0 0 0 090 0 0 1 0
3 00 0 0190 0 1 0 1
7 0 1 0 0 0 0 0 0 1 1
8 G 01 0 0 0 0 1 0 0
9 0 01 0 0 0 90 0 ¢ 1
10 0 001 00 090 1 1
11 0 6 0 0 0 1 0 1 0 0
12 0 0 0 0 0 1 1 0 0 1
13 000 01 0090 1 0
14 0 0 0 00011 0 1
15 0 000 06 1 090 ¢ 1

(4 The overall optimal integer solution Vapimat 15 acquired by merging the optimal integer solution
of this sub-subproblem to the rest already fixed selections:

yoptiman’ =(O: 03 0’ 1: O) I’ 1; 11 O; 1: 1; 0) O, 0: 0: 0, 0: 1: I; 0: O: O» 0: O) 01 O: O: Or O, 0’ O)

32
with the cost 3'c[7] x Voptimal 1] = 14 which is the closest integer value to the optimal cost 13.4,
i=1
That is, the tests 4, 6, 7, 8, 10, 11, 18 and 19 have been selected for examining the test requirements.

3. Subsequent Processing

In many cases, the time available for acceptance testing is not sufficient to allow for 100% test
coverage of all the test requirements. On the assumption that unit and pre-formal testing has
provided 100% test coverage of the first-level test requirements, an acceptance test may need to

following the installation of changes to the system which affect only certain test requirements. This
new test matrix may be further reduced using the coverage algorithm, and thus may be generated
initially either from the original (unreduced) test matrix, or that matrix generated from the test
coverage analysis procedure.

The reduced test matrix is most useful in acceptance stage of testing since it relies to a great extent
on the authenticity of the tests which are applied incidently during a test associated with some other
primary objective. It is possible to alter the weighting of an element of a test vector in the original
matrix by using other values than zero (0) or one (1) thus influencing the cost of the test. Provided
that the implementation of the coverage algorithm uses only the existance of a non-zero value (as
contrasted with the use of the actual value), emphasis can be given to the objective of the test by
increasing its associated value in the test vector, while maintaining the values associated with the
incidental tests at a lower value.

3.1. Regression Testing
The selection of a submatrix for regression testing is accomplished in two stages:

1. Given the set of test requirements to be examined that is, the test requirements which are
affected by the the changes which have been implemented), sclect the set of tests from the
(original or reduced) test matrix which cover these test requirements. This set of tests to be
administered is simply the or of the rows of i corresponding to the modified test requirements.
This process reduces the columns in the matrix to those applicable. For example, in the above
case, if test requirement 5 were modified, tests 11, 23, and 31 would be selected.

2. From this column-reduced matrix, the incidently tested requirements can be deduced, and if
necessary the matrix can be further reduced to include only those rows which apply to the test
requirements covered. '

Consider the following example and sequence of reductions from an original test matrix:

Test Test Identifier
Requirements
tl t2 t3 t4& t5 té t7 t8
1 1 1 0 0O g 0 0 1
2 0 1 0 1 0 1 e 0
3 1 0 1 0 1 0 0 0
4 g 0 0 1 0 0 1 0
5 0 0 I 0 1 0 g 0
6 0 o 0 1 0 1 0 0
7 0 1 6 0 c 0 1 0
8 1 0 0 o 1 0 0 1

Assuming that the priorities of the test requirements and the complexities of tests are uniform , the
coverage algorithn reduces the test suite to three tests -- test numbers 2, 4 and 5. The resultant test
matrix is:

Test Test Identifier

Requirements

t2 t4 5
1 1 0 0
2 1 1 0
3 0 0 1
& 0 1 0
5 0 0 1
6 0 1 0
7 1 0 0
8 0 0 1

This reduced test matrix, containing only three tests, obviously has the same complete test coverage
as the original matrix. The costs of all the tests are cqual, each test covering three test requirements,
However, if test 12 were omitted from the suite, then two test requirements would not be covered
by the remaining tests (test requirements I and 7). Similarly the omission of test t4 would leave test
requirernents 4 and 6 uncovered. The omission of test t5 however would not provide test coverage
for three test requirements (3, Sand 8). 'Thus the preferred order of omission should place test t5
as the least likely to be omitted; the other two having equal cost, they could be omitted in any
order,

If regression testing were to be conducted from this test suite with the need to examine (say) test
requirements 2 and 6 then only tests t2 and 14 need to be used, since the corresponding rows used
t0 select the tests show that test t5 is not applicable to this requirement:

Test Test Identifier
Requirements
t2 t4 5
2 1 1 0
6 0 1 90

However, during the regression test, test requirements 1, 4, and 7 are examined incidently, which
probably implies an interdependence of test requirements, and resulting in the test matrix:

Test Test Identifier
Requirements
t2 t4

O i O

1
1
0
0
1

ot B+ N R Y

This regression test matrix already provides minimal test coverage and does not need to be further
analyzed for test coverage. The same regression test matrix would have been achieved by selecting
the regression test matrix from the original test suite before test coverage analysis and reduction,
that is reversing the order of the test coverage analysis and the regression analysis phases.

3.2. Recommendations for Less than 100% Test Coverage

In order to provide guidance on the set of tests which should be applied when less than 100% test
coverage of the test requirements is permissible, a listing of the tests in ascending cost (or descending

priority) order can be created. The tests in the first part of this list are then those with the lowest
cost and which should be included in 2 less than complete test coverage test suite. The portion of
the list to be used should be the subvector of tests in cost order which includes the test with the
lowest cost. Ifit is ficeessary to ascertain which test requirements are not covered in this subvector,
then the regression analysis method can be used to create a reduced test matrix and consequently
a reduced test requirements coverage list,

3.3. Test Matrix Partitions

while it to be expected that most system tests will involve input and output as incidental activities,
it may be preferable to partition the test suite so that tests with the specific objectives of testing the
input/output requirements are individualized and are not pre-empted by tests which cover the same
test requirements incidently, as was seen in g prior example.

Where such partitioning is preferred, or where the test matrix must be partitioned for the purposes
of processing, the matrix should be partitioned by columns (tests) which are interrclated. It is
unlikely that any of these partitions will have 100% test coverage of the test requirements in the
whole system, and thus to analyze the partition for test coverage will require the elimination of the
non-applicable test requirements. Once the partitions have been reduced individually, each
partition may then be treated ag a single test, the test condensed vector being the sum of the
individual test coverages. The partitions may then be reassembled into a new test matrix in which

each column represents a partition. This matrix may then be further reduced if necessary,

Consider the following matrix, which has been divided into three partitions (columns 1-4, 5-10, and
11-15):

Partition Number
1 2 3

1010 000000 000OQ
0011 000110 01000
0000 100100 00111
1001 000001 00000
0000 100101 10011
1100 010101 01010
1010 101101 00000

which collapses to the matrix below by ORing the columns in each partition so that each new

column represents the test coverage of the partition of the original test suite:
Partition Number

123

o O O i
e e
QD D

which can be reduced to include only partitions 1 and 3 while still providing the necessary test
coverage. Thus independent of the possible reduced form of partition 2, all of its test COVerage can
be provided in the other two partitions,

3.4. The Implications of the Method for Test Data Selection

The method developed for tests selection has the potential to help designing better test data (test
predicates) in the following aspects:

1. to reduce redundancy of test data (overlap of test predicates),
2. to minimize the test costs, and '

3. to avoid exhaustive testing,

The adaption of the method to test data selection can be achieved in the following way:

I. construct a functionality - test data matrix where functionalities of a program {module) are
regarded as row indices and test data are treated as column indices. Techniques of [6] can be
used for identifying functionalitics, and

2. build a cost vector by calculating the cost of each test datum in terms of its complexity and

significance

However, further study is needed to make this application feasible and practical,

4. Discussion

The design of a test set for a software system can evolve in a number of manners. On the one hand
an in-house development activity can merely collect the tests used by individual programmers and
assimilate these into a collection which is later used in regression testing and during maintenance.
Alternatively a test plan may be developed which maiches tests to test requirements independently
of the top level development design specifications. In either case there is a need of ensure 100%
test coverage of some chosen set of facilities. In the former case this may be based on test coverage
of system features (culled from the design specification) while in the latter the system characteristics
are best exemplified by the original system requirements document. A fest plan should then require
the management of a test matrix which records the incidence of tests and facilities tested.

However as a part of the development of individual tests it is often
features (and thus examine certain test tequirements) in order to injtialize the System in preparation
for examining a specific feature or test requirernent, I[n fact, most tests are designed with specific
objectives in mind, though other facilities are utilized. It is most likely that given a set of tests and
their primary objective features or test requirements that close to 100% test coverage (that is, not
involving a high degree of redundancy) is achieved. However, if the incidental uses of features or
test requirements is taken into account considerable overlap and redundancy is present in the test
set, this is especially true when the test matrix is dense.

This test coverage analysis package will be most useful in the latter case, enabling the test manager
to reduce the test set to only that set of tests which are essential to provide the desirable test
coverage. Initially the system can be used to confirm 100% test coverage, secondly to reduce the
number of tests to a minimum and thirdly to provide direction on providing a test set which
provides less than 100% test coverage.

It must be expected that pre-formal testing of any system provides 100% test coverage, but that
acceptance testing may be limited (both by time and resources) to some smaller percentage., By
providing realistic priorities to test requirements (for example giving higher priorities to test
requirements which are close to the highest level of the system) the most important test
requirements can be tested in an acceptance test. The same strategy can be applied to regression
testing and maintenance activities. In either of the latter cases the adjustment of the priorities of
the test requirements to emphasize those which are under suspicion (such as by the installation of

10

new versions of specific modules) a test order can be chosen o provide less than 100% test coverage
while still concentrating on the locale of the changes.

This set of procedures may be considered to be the initial entries into a test environment which
eventually would include other tools. Candidates for inclusion in such an environment might
include a test configuration management system and test requirements tracking tables.

Il

References
[1] Balas, E.: “An Additive Algorithm for Solving Linear Programs with Zero-One Variables”,
Operations Research, Vol.13, 1965, pp.517-546.

{2] Gomory, R.E.: “Outline of An Algorithm for Integer Solution to Linear Programs”, Bulletin of
the American Mathematical Society, Vol.64, 1958, pp.275-278.

[3] Goodenough, I.B.: “A Survey of Program Testing Issues”, in Research Directions in Software
Technology (ed. P. Wegner), The MIT Press, 1979, pp.316-342,

[4] Goodenough, J.B. and S.L. Gerhart: “Toward a Theory of Test Set Selection”, IEEE Trans. on
Soft. Eng,, SE-1, No.2, June 1975, pp.157-173.

[5] Holzman, A.G.: “Mathematical Programming - for Operations Researchers and Computer
Scientists”, Marcel Dekker, 1981.

(6] Howden, W.E.: “A Functional Approach to Program Testing and Analysis”, IEEE Trans. on
SE, Vol.SE-12, No.10, Oct. 1986, pp.997-1005.

|7} Land, A.H., and A. Doig: “An Automatic Method of Solving Discrete Programming Problems”,
Econometrica, Vol.28, 1960, pp.497-520,

(8] Lemke, C.E., H.M. Salkin and K. Spielberg: “Set Covering by Single Branch Enumeration with
Linear-Programming Subproblems”, Operations Research 19(4), 1971, pp.998-1022.

{91 Mandl, R.: “Orthogonal Latin Squares: An Application of Experiment Design to Compiler
Testing”, Comnm. of ACM, Vol.28, No.10, Oct. 1985, pp.1054-1058.

[10] McGowan, C.L. and R.C. McHenry: “Software Management”, in Research Directions in
Software Technology (ed. P. Wegner), The MIT Press, 1879, pp.207-253.

{11] Ozan, T.M. “Applied Mathematical Programming for Production and Engineering
Management”, Prentice-Hall, 1986.

[12] Prather, R.E., “Theory of Program Testing -- An Overview”, The Bell Systern Tech. Jour.,
Vol.62, No.10, Part 2, December 1983, pp.3073-3105,

[13] Ramamoorthy, C.V. and S.F. Ho: “Testing Large Software with Automated Software
Evaluation Systems”, IEEE Trans. on SE, Vol.SE-1, No.1, March 1975, pp.46-38.

[14] Salkin, HM.: “Integer Programming”, Addison-Wesley Publishing, 1975.

Appendix

The Coverage Algorithm
The test requirements coverage analysis algorithm is based on the work of Lemke et al [8] which

+ uses implicit enumeration with linear programming method. The heart of the algorithm is the Point
Algorithm which keeps track of the variables already fixed at 1, those cancelled (fixed at 0), and
the remaining free variables which form the subproblem at next level.

Several techniques are used in the algorithm to speed up the searching process:
. Linear programming;:

The Dual Simplex method is repeatedly used in solving the subproblems at different level,
starting with the original proble . 80 that several variables may be fixed at the same time
instead of one at a time, Hence searching time is considerably reduced.

2. Ceiling Test:

12

The ceiling test is used in several places in the algorithm. Two ceilings are kept throughout the
searching process; one is the optimal (minimal) cost for the corresponding linear programming
problem of the initial coverage problem. The optimal cost is fixed once it is obtained from
solving the linear programming problem and is a lower bound of the original integer
programming problem. This ceiling is used to Judge whether the cutrent integer solution is
optimal or not. The second ceiling s the cost associated with the best integer solution found
so far; it may be replaced once a better integer solution is found and is used to fathom
(terminate) those branches of the searching tree which yield costs worse than it. Thus, the
search space is greatly reduced.

Extreme point checking:

When a feasible integer solution y is not an extreme point (i.e. the columns of E corresponding
to ;=1 and the extended columns corresponding to positive slack variables’ form a linear
dependent set) the solution can be reduced to an extreme point of the corresponding lnear
problem with a better cost so that a tighter ceiling can be obtained and thus speed up the
fathoming process.

Extracting and solving the sub-subproblem:

'The sub-subproblem consists of only those columns of the binary matrix E associated with the
positive fractional variables and the rows corresponding to the constraints they satisfy. By
rounding an extreme point to an integer solution, some variables may violate the constraints,
A better integer solution can be obtained by deleting those variables which violate the
constraints.

5

Stack variables are temporary variables introduced to transform the initial inequality problem:
Ex = e into equality problem EX - Is = e, where I is the unit matrix, they do not affect the optimal

solution of the initial problem and will be eliminated in the final optimal solution,

13

Dr. “JAN” Lee is currently Professor of Computer Science in the Department of Computer
Science at Virginia Tech, on release to serve as the Director of the Institute of Information
Technology for the Commonwealth of Virginia.

He has been involved with the administration of Computer related activities since 1959 when he
was appointed the Director of Computing at Queen’s University at Kingston Ontario.
Subsequently he served as the Associate Director of Computing and Head of the Computer Science
Program at the University of Massachusetts, and as Deputy Head and then Head of the Department
of Computer Science at Virginia Tech. Since 1960 Dr. Lee has been principal or co-principal
investigator on grants and contracts totalling more than $16,500,000.

Since 1966, Dr. Lee has served in several capacities within the Accredited Standards Committee
X3 (Information Processing Systems), receiving a Certificate of Appreciation for his significant
services to the industry from the Business Equipment. Manufacturers Association in 1971. Dr. Lee
served as-the Secretary of the US Delegation to the International Standards Organization 1981-87.

As a member of the Association of Computing Machinery, Dr. Lee has represented the interests
of the Association in the Standards Development processes since 1968 and testified on behalf of the
Association in Federal Trade Commission hearings on proposed rules on Standards and
Certification. In 1980, 1985 and 1986 he received the ACM Certificates of Recognition and was
given the ACM Outstanding Contribution Award for 1981, He was elected as a Member-at-Large
to the ACM Council in 1982, and as Vice President in 1984,

Dr. Lee has served on the Editorial Board of the Annals of the History of Computing since 1980,
being appointed as the Editor of the Meetings in Retrospect department in 1984 and as
Editor-in-Chief in 1987.

Dr. Lee is the author of The Anatomy of a Compiler, Numerical Analysis for Computers,
Computer Semantics, and rmany other technical papers including four American National
Standards.

Mr. Xudong He received his B.S. and M.S. degrees in Computer Science from Nanjing University,
China, in 1982 and 1984 respectively. He is now a Ph.D candidate in the Department of Computer
Science at Virginia Tech. His current research interests are Prograruming Languages, Formal
Sermantics, Software Engineering and A, He is a co-author for several papers in these fields.

Mr. He is a student member of ACM and IEEE Computer Society.

i4

