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ABSTRACT

The standard interpretation of the logical operators in a Boolean retrieval system
is in general too strict. A standard Boolean query rarely comes close to retrieving all and
only those documents which are relevant to the user. An AND query is often too narrow
and an OR query is often too broad. The choice of the AND results in retrieving on the
left end of a typical average recall-precision graph, while the choice of the OR results in
retrieving on the right end, implying a tradeoff between precision and recall. This study
basically examines various proposed schemes, the P-norm, Classical Fuzzy-Set, M MM,
Paice and TIRS, which provide means to soften the Interpretation of the logical
Operators, and thus to attain both high precision and high recall search performance.

Each of the above schemes has shown great improvement over the standard
Boolean scheme in terms of retrieval effectiveness. ~ The differences in retrieval
effectiveness between P-norm, Paice and MMM are shown to be relatively small,
However, related performance results obtained gives evidence of the ranking: P-norm,
Paice, MMM and then TIRS.

The P-norm scherne, being a distance-based approach, has greater intuitive appeal
than the Paice or MMM scheme. However, in terms of computational overhead
required of each scheme, both the Paice and MMM are superior to P-norm. The Paice
and MMM schemes are essentially variations of the classical fuzzy-set scheme, Both
perform much better than the classical fuzzy-set scheme in terms of retrieval

CR Categories and Subject Descriptors:  H.3.1 Unformation Storage and Retrieval);
Content Analysis and Indexing, H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieva] -- Query Formulation, Retrieval Models, Search Process, H.3.6
[Information Storage and Retrievall: Library Automation.

General terms; algorithms, experimentation, design, performance

Additional Keywords and Phrases: Boolean retrieval, logical operators, P-norm, Paice,
MMM, TIRS, Fuzzy-set, effectiveness

il




Table of Contents

ftroduction. |
Limitations of Standard Boolean Reteval ... o 1
Altemative Approaches ... K)
Retrieval Models ..o 6
Standard Boolean Refrieval ... 6
Pmorm Retrieval ... 10
Furzy Set Rettieal ... 17
Classical Fuzzy-Set Approach ... 17
MMM Approach ... 18
Palee Approach ... 20
fopologieal Model ... 22
Retrieval Expertments ... 26
IR Test Collections ... 26
Method of Experiments ... 27
Similasity Computations ... ... 30
Pomorm Similaity ... 30
MMM Similarity ... 31
Paee Similarity ..o 31
IRS Similarity . 32
A Note On Boolean Query DNF Conversion ..................... ... 34

Table of Cantents iv




Complexity of Computations ... 36

Characteristics of Queries oo 39
pertormanee Results ... 42
Experimental Analysis on CIST Collection ...................... . 42
PmommRUS 42
Poiee Rums oo 48
MMM Runs o 54
HRSRums o 59
Prediction Models . 60
DBSSON 67
HheBmeasures 73
Experimental Analysis on CACM and INSPEC Collections— e 78
CACM 78
Colleted Results o 78
Prediction Models ... 90
Diseussion ... T 96
INSPEC e, 104
Colleted Results oo 104
PIsSUSion 109
Fomeluslons e it
Bbllography oo 115

Table of Contents v




List of Mustrations

Figure 1.
Figure 2.
Figure 3.
Figure 4,
Figure 3,
Figure 6.

Figure 7a.

Figure 7b.

Figure 7c.

Figure 8a.

Figure 8b.

Figure 8c.

Figure 9a,

Figure 9b.

Figure 9¢,

Figure 10,
Figure 11,

Matrix Representation for Document Collection .....cvvvvveemrers 7
Typical Average Recall-Precision Graph .................................. 9
Retrieved Document Sets:. Ranked vs. Unranked \....ooovoono 12
P-norm Similarity Computétions and Equi-similarity Contours .......... 14
The Generalized P-norm Formulation «.ov..vvovvone .16
Sample Document and Query from CIS] Collection ..., 28

The P-norm Scheme on CISI: Surface Plot
Average Precision vs, Coeff, v and COY ok ereirmnnmennsrrrrvecernenmo 45

The P-norm Scheme on CISI:
Average Precision vs, Coeffap for Various Levels of Coeffpprerenennnnnn, 46

The P-norm Scheme on CISL -
Average Precision vs, Coeffor for Various Levels Of Coeff yperennmnnn., 47

The Paice Scheme on CISJ: Surface Plot
Average Precision vs, Coeff,yp and O 51

The Paice Scheme on CISI:
Average Precision vs, Coeffynp for Various Levels of Coeffprenannnnnnn., 52

The Paice Scheme on CISI:
Average Precision vs, Coeffyx for Various Levels of Coeffuprermevirnnn.. 53

The MMM Scheme on CISI: Surface Plot
Average Precision vs, Coeff, ., and N 56

‘The MMM Scheme on CIST:

Average Precision vs, Coeffywy for Various Levels of Coeffpmnecnnnn.. 57

The MMM Scheme on CISI: :
Average Precision vs, Coeff,, for Various Levels of Coeff prinannn....58

Document 385 from CISI COlECtON wvovvvvvvsrrsesrsss 70
Document 375 from CISI COUCCHON. v 71

vi




Figure 12.

Figure 13a.
Figure 13b.
Figure 13c.
Figure 14a.
Figure 14b.
Figure 14c,
Figure I5a,
Figure 15b,

Figure 15c,

Figure 16.
Figure 17.
Figure 18.

Document 286 from CISI COeCtion .vv.ewvevsvvmeesrsooo 72

The P-norm Scheme on CACM: Surface Plot

Average Precision vs. Coeff,yp and COEffon vvreriinesrernsronesiess e 81
The P-norm Scheme on CACM:

Average Precision vs, Coeffyns for Various Levels of Coeffonemnennnnn.. 82
The P-norm Scheme on CACM:

Average Precision vs, Coeff,x for Various Levels of Coeffyumarvmnnnn.. 83
The Paice Scheme on CACM: Surface Plot

Average Precision v, Coeff, ., and COEfoR vrerernrceerseresnrenererios s 84
The Paice Scheme on CACM:

Average Precision vs, Coeff oy for Various Levels of Coeffppmnnninrannnnn, 85
The Paice Scheme on CACM: _

Average Precision vs, Coeffon for Various Levels of Coefl i, 86
The MMM Scheme on CACM: Surface Plot

Average Precision vs. Coeff,yp and COEffor cvmvnrmrvnnevnrinnenereseose oo 87
The MMM Scheme on CACM:

Average Precision vs. Coeffyyy for Various Levels of Coeffppareann. e 88
The MMM Scheme on CACM:

Average Precision vs, Coeffox for Various Levels of Coefliampnnrncnnnnn, 89
Query 24 from CACM O 99
Document 1696 from CACM COIECHON vvvennvnrvvrrirveeersersso 99
Document 749 from CACM Collection ......uvcveessovveveosssoosoooooo 99

vii




List of Tables

Table 1a,
Table 1b.
Table 2.

Table 3.
Table 4,
Table 3.
Table 6a.

Table 6b.

Table 7a,

Table 7b.

Table 8.

Table 9.
Table 10,

Table 11a.
Table 11b.
Table 11c,
Table 12a.

Distributions of #Terms and #Min-terms in CISI Query Set .ouveannnnn... 40
Distributions of #Terms and #Min-terms in CACM Query Set............ 41
Average Precision Values with P-norm Scheme on CISI

for the set of coefficients: 1, 6, 12 and 50............ Bt e e reesenia 44
Average Precision Values with P-norm Scheme on CISI......,.voooo 43
Average Precision Values with Paice Scheme on CIST ..o 51
Average Precision Values with M MM Scheme on CISI .., 56

Stepwise Regression Results on CISI Collectidn
Summary of SAS Forward Selection Procedure ... 63

Selected Prediction Models of Average Precisions on CIS]
Best 3, 4, and 5-variable Models Obtained by MAXR...ocvunrro . 64

Stepwise Regression Results on CISI Collection
(With Boundary Values Omitted)
Summary of SAS Forward Selection Procedure... .o 65

Selected Prediction Models of Average Precisions on CISI
(With Boundary Values Omitted)

Best 3, 4, and 5-variable Models Obtained by MAXR ..o, 66
Relative Ranks of Schemes

by Average Precision and E-measure on CISI......ooovvcommomnrrooo 67
Ten Top-ranked Documents Retrieved with Query 35 on CISI............ 69
Relative Ranks of Schemes _

by E-measure at f-levels 0.5, 1.0 and 2.0 on CISI.vvvveevennrrrereoo 73
E-measures with P-norm Scheme on CISI at B-level = 0.5, o 75
E-measures with Paice Scheme on CISI at f-level = 0.5...cooovii 75
E-measures with MMM Scheme on CISI at g-level = 0.5...vvivi) 75

E-measures with P-norm Scheme on CISI at -level= 1.0..ovovvonn. 76

Yili




Table 12b,
Table 12c.
Table 13a.
Table 13b.
Table 13c.

Table 14.

Table 15.
Table 16.
Table 17.

Table 18a.

Table 18b.

Table 19a.

Table 19b.

Table 20,

Table 21.
Table 22,

Table 23a,
Table 23b.
Table 23c.
Table 24a.
Table 24b.

E-measures with Paice Scheme on CISI at f-level= 1.0,
E-measures with MMM Scheme on CISI at f-level= 1,0...covvovvon..
E-measures with P-norm Scheme on CISI at -level = 2.0............
E-measures with Paice Scheme on CISI at f-level = 2.0,

E-measures with MMM Scheme on CISI at B-level = 2.0...........

Avei'age Precision Values with P-norm Scheme on CACM

for the set of coefficients: 1,6, 12 and S0.....uvurevvevmrsmmroso
Averag'e Precision Values with P-norm Scheme on CACM................

Average Precision Values with Paice Scheme on CACM...............

Stepwise Regression Results on CACM Collection

Summary of SAS Forward Selection Procedure.........uvvvonn.

Selected Prediction Models of Average Precisions on CACM

Best 3, 4, and 5-variable Models Obtained by MAXR....cer,

Stepwise Regression Results on CACM Collection
(With Boundary Values Omitted)

Summary of SAS Forward Selection Procedure..........omvnonnnnnon,

Selected Prediction Models of Average Precisions on CACM
(With Boundary Values Omitted)

Best 3, 4, and S-variable Models Obtained by MAXR...covovoovon

Relative Ranks of Schemes

by Average Precision and E-measure on CACM ...coremrrerrer

Relative Ranks of Schemes

by E-measure at §-levels 0.5, 1.0 and 2.0 on CACM.vvvemrvvero
E-measures with P-norm Scheme on CACM at B-level = 0.5,
E-measures with Paice Scheme on CACM at B-level = 0.5 v
E-measures with MMM Scheme on CACM at B-level = 0.5................101
E-measures with P-norm Scheme on CACM at f-level= 1.0.........

E-measures with Paice Scheme on CACM at f-level= 1.0.............

....... 76

76
77
77
77

80

.. 81

84
87

92

93

94

95

96
98

100
101
101

102
102



Table 24c.
Table 25a.
Table 25b.
Table 25¢.

Table 26a
Table 26b
Table 26b
Table 27a
Table 27b
Table 27¢
Table 28a
Table 28b
Table 28¢
Table 29a
Table 29b
Table 29¢
Table 30

Table 31

E-measures with MMM Scheme on CACM at f-level= 1.0vcvurvnne.. 102

E-measures with P-norm Scheme on CACM at S-level = 2.0...viv.. 103
E-measures with Paice Scheme on CACM at f-level = 2.0 .cccvvinironn, 103
E-measures with MMM Scheme on CACM at g-level = 2.0................103
Average Precision Values on INSPEC: P-norm SCheme v..vvevveerereean. 105
Average Precision Values on INSPEC: Paice Scheme .oovuevereeisiorienns.. 105
Average Precision Values on INSPEC: MMM Scheme .oveveeveeeevnnnoon. 105
E-measures at B =0.5 on INSPEC: P-normScheme ........ccovvevvveonerninns 106
E-measures at £ = 0.5 on INSPEC: Paice SCheme...oouvvvmreeeveveernseeisnssons 106
E-measures at § = 0.5 on INSPEC: MMM SCheme..voreveeeeeeeeeeosiessons 106
E-measures at § = 1.0 on INSPEC: P-norm Scheme ..oooveveverieresssrenns 107
E-measures at f = 1.0 on INSPEC: Paice SCheme.....covvveriierereerensrsons 107
E-measures at § = 1.0 on INSPEC: MMM SCheme .c.oeeeerrroreeensssenann, 107
E-measures at § = 2.0 on INSPEC: P-norm Scheme.........oovvvivsrenvonne. 108
E-measures at § = 2.0 on INSPEC: Paice SCheme. . mnneveisesenn. 108
E-measures at §=2.0 on INSPEC: MMM Scheme...oooevvevereevreeerenns 108

Relative Ranks of Schemes :
by Average Precision and E-measure on INSPEC..u..ooeeeronveisssnonoon, 109

Relative Ranks of Schemes -
by E-measure at §-levels 0.5 and 2.0 o1 INSPEC ..o.vcorveeeeereeeesrsens 109




Chapter 1

Introduction

Limitations of Standard Boolean Retrieval

The limitations of traditional Boolean retrieval systems are well-known. Among

the most critical limitations are those annotated by Bookstein [BOOKS 85}

* Boolean logic may produce counterintuitive results that are technically correct but
are often disturbing to many users. For cxample, consider a request (A or B or C
. or Z). A Boolean retrieval system responds identically to a document indexed by
a single one of these terms as it does to a document indexed by all terms. Similarly,
for a request (A and B and C ... and 7Z), a document indexed by all but one of the

query terms is deemed just as useless as a document not indexed by any of them.
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® There is no provision for assigning importance factors or weights to index terms for
both the documents and the queries; each index term is thus considered as important
as any other index terms. In parallel with this limitation is the unavailability of a
ranking mechanism for the retrieved documents according to the degree of relevance

to the query, though such is believed by many to be desirable.

® The conceptual model that underlies Boolean retrieval does not in theory recognize
uncertainty and incompleteness often intrinsic to both indexing and retrieval. There
is no systematic scheme for a user to modify a request in a subsequent search
attempt in response to feedback about the quality of the initial set of items retrieved.
Also, index terms that describe a collection of documents are generally fixed; they

cannot be updated easily in response to feedback on how well they are performing.

o It s difficult for a general user to formulate a near-optimal, if not perfectly optimal,
Boolean query. Depending upon the assignment frequency of the query terms and
the actual term combinations used in the formulation, too many or too few of the
documents in the collection may be retrieved. Also, the correct Boolean format for
many scarches of user interest is usually lengthy or awkward; a clear example is the

formulation in a search for documents indexed by, say, any three of ten given terms.
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Alternative Approaches

As an alternative to the standard Boolean model, Salton, Fox and Wu [SALT 83a]
proposed the P-norm model which allows weighted terms to be incorporated into both
the documents and the queries, and also retrieved documents to be ranked in strict
similarity rule with the input query. Extensi&e experiments have demqnstrated the
capability of such an approach in improving retrieval effectiveness. Other schemes such
as that of Paice [PAICE 84], Cater & Kraft [CATER 87, and Tong & Shapiro [TONG
85], which subsequently appeared in the literature, have also been suggested as being
useful in remedying some of the limitations of the standard Boolean model. Since these
methods have not been carefully éompared with one another, it is important here to
consider how they relate and to identify key theoretical and performance characteristics

of each.

In similar vein to Salton et al., Paice argued strongly in favor of the use of "soft’
logical operators, While the P-norm approach is distance-based, Paice’s method
expands on fuzzy versions of the conventional set operations. Another scheme similar
to that of Paice and classical fuzzy-sets, which we called Mixed Max and Min (MMM),
is also considered in this study. Tong and others, hoWever, investigated the effects of
different representations of uncertainty in RUBRIC, én interactive rule-based expert
 retrieval system whose implementation draws heavily upon fuzzy-set theory. F uzzy-set
schemes or the like have been shown to give significantly better retrieval performance
over traditional Boolean retrieval scheme, since they allow users to construct descriptors

of documents that reflect more specific needs and interests.
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In his doctoral work, Cater [CATER 86} attempted to come up with a unifying
model of information retrieval (IR) which will encompass all the standard models -- the
Boolean, vector space, fuzzy-set theoretic, probabilistic, and hierarchical models. He
and Kraft constructed the TI RS model based on the topological paradigm. He claimed
that the P-norm scheme of similarity computation  is inadequate, and that their
topological model is able to retain all of the advantages of the P-norm model, while not
sharing its other apparent weaknesses. However, his criticisms and claims are subject

to debate,

This paper reports a comparative study of the different approaches faken by the
above rescarch teams. An outline of each of these approaches is first provided, and then
experimental results are collected for comparing their retrieval effectiveness. The
complexity and computational overhead of these approaches are also considered, For
details of each scheme, however, the reader is referred to the publications of the

individual authors.

Fox and Sharan [FOXE 86] performed a preliminary study of the P-norm and
MMM schemes for soft Boolean operator interpretations in information retrievel on a
test collection. The findings of Fox and Sharan suggest that fuzzy set membership
functions are very valuable for the construction of information retrieval systems, the
logical interpretations of AND and OR are too strict for Boolean queries, and also that
the P-norm retrieval scheme is generally more effective than the MMM scheme. The
current work provides a more complete study of various schemes for softening logical
interpretations of Boolean queries, including the P-norm, Paice, MMM and TI RS. The

earlier findings are confirmed and new insights are obtained to give a better
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understanding of how standard Boolean retrieval method can be improved upon for high

performance searches.
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Chapter 2

Retrieval Models

Standard Boolean Retrieval

Consider a standard Boolean retrieval system with a collection of N documents.
A user wishes to select a subset of the documents relevant to a query Q. Let us denote
such a subset by D& In the case that iV is large, one cannot avoid the use of a computer
to autemate such a process. To allow automatic matching on the computer, the
collection must be represented in some form that essentially captures data in a structure,
such as the N by M matrix shown in Figure 1. Here, M is the number of index terms

chosen to characterize the ¥ documents.
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Index Terms

T 7T, .. Ty
- -
Dy L dy diy oo diy

dy dyy v dyy
Documents

Dy | dyidy o dyng

Figure 1. Matrix Representation for a Document Collection

The ith document denoted by D, can thus be viewed as a vector (dy, dyy ... , d,y), each
of whose elements () takes a value of 0 or 1, depending on whether the corresponding
Jth term is assigned to the document or not. Boolean queries can easily be understood
in the context of this representation. For simplicity, consider queries with only two

terms as follows:

Quna = (T, AND Tp)

Qoo = (T, OR Tp)

The standard Boolean interpretations for the above queries are respectively the
logical AND and OR of the two vectors T, and T,, the first of which gives their
intersection and the second, their union, as the retrieved set of documents. Formally,

the retrieved set of documents are represented as follows:
Do = {dil dyndy}
DY = {dldyvdig)

=0
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For high precision! retrieval, especially in the case where N is large, an AND query

is recommended since often

| DG < min (| T 1, F750).

However, for casual or high recal? search, an OR query is advised. This is
particularly so when the terms 7. and T, are nearly synonymous or very closely related,

since

mazx (| T,1, 1 Tpl) < 1032 < IT,| + |7,

and if the two terms co-occur frequently, the size of the retrieved set is close to the lower

bound,

It is important to note that a Boolean query rarely comes close to retrieving all and
only those documents which are relevant, An AND query is often too narrow, and
conversely, an OR query is often too broad. As indicated by many previous
experimental studies [SALT 83b], a typical average recall-precision graph is of the form
in Figure 2, for which there is, on average, a trade-off between the two measures of

retrieval effectiveness.

orecision = the number of relevant.remeved documents
the number of retrieved documents

2 the number of relevant retrieved documents
Recall =
the number of relevant documents
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Because of the strictness of the standard Boolean retrigval, it is almost impossible
for a typical user to construct optimal queries which will provide both high precision and
high recall searches, resulting in a higher average recall-precision curve. Modern
advanced retrieval techniques based on P-norm or fuzzy-set concepts, to some extent,
enable the user to shift the recall-precision curve upward by letting the computer

interpret the query with a better ‘understanding” of what the user means by it.

L
Narrow, specific
1.0} query formulation
08
o
=]
B 06}
[£]
&
@
0.4 Broad, generai
query formulation
02}
i 1 1 | | —
0 02 04 s 08 1.0

Figure 2. Typical Average Recall-Precision Graph
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P-norm Retrieval

The P-norm approach is based on a distance measure. It includes the following

assumptions:

© Indexing is a fuzzy process, and one should allow each term weight, d, to vary

between 0 and 1.

® A query should define a fuzzy set so that documents can he presented to users in

order of decreased degree of relevance.

e Strict logical interpretation of AND and OR is inappropriate, since linguistic

relationships frequently do not correspond to statistical reality for retrieval.

In this model, non-binary term weights can be used to reflect relative term
importance for terms assigned to documents and queries.  Several weighting schemes
have been proposedl; a key consideration, however, is that terms which occur often in a
document are more likely to characterize it than terms that occur less often. The use
of non-binary weighting schemes is also important from another perspective. Paice in
his study [PAICE 84] pointed out that one limiting function in IR systems relates to the
more or less tentative nature of the choice of terms to denote particular concepts, which

results from

* the existence and possible use of alternative terms that can lead to potential loss of

recall, and
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® the possible use of a particular term with other meanings in other contexts that can

lead to a potential loss of precision,

Thesauri have commonly been used to control the assigment of index terms to
documents. However, linguistic research is now underway for means to allow users to
formulate more “precise’ Queries. Incorporating unsuitable scarch terms into the queries
will often lead to low retrieval performance. A non-binary weighting scheme, in some
manner, enables us to register the tentativeness of a term relative to other terms in the
document collection without risk of much performance degradation but with the hope

of significant performance improvement.

Experimental studies [SALT 83b] have shown that a weighting technique such as
that using ‘term frequency” and ‘inverse document frequency’, with the jth term in the ith

document being given the weight

can lead to better retrieval than the ordinary binary scheme,

In this study, we have adopted the following weighting scheme:

tfy log(N/f)
max_if 7 * log(~)

dy = (0.5+0.5x

where
N = the total number of documents in the collection
max_if = the freq. of the most widely occurring term in the document
Yf; = the number of occurrences of term j in document i

Ji = the number of documents containing term j.
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Note that d, is set to ¢ if' 1f;, is equal to 0.

Regarding the issue of having a ranked Versus an unranked set of retrieved
documents (as shown in Figure 3), it is not difficult to see that there are two clear
advantages in the first. In an interactive environment, documents can be displayed in
rank order, so that the "best’ retrieved item is seen before others by the user. In a batch
environment, the ranked output list can be cut off at g certain level of query-document

similarity, thus controlling the amount of output.

A. Fuzzy Set B. Boolean Set

Document Similarity Document Similarity
1D00] 0989 ] 1D0O] 1.0
1D742 0.843 : :
ID2353 0.632 ID223 1.0

: : ID104 0.0
I1D004 0.104 1D105 0.0
ID106 0.632 : 2
1D695 0.104 1D997 0.0
Figure 3. Retrieved Document Sets: Ranked vs, Unranked

Another problem with the conventional Boolean model is that it is much too strict,

With respect to the Boolean query

FIND A AND B AND C AND D ANDE,

a document is retrieved if and only if it contains a match with each of the search terms,
A through E.. As Paice [PAICE 84, p. 36] explicitly puts it, "irrespective of the user’s

view of the correctness of this search formulation, however, the vagaries of index-term
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assignment and of search-term selection are such that many relevant items might contain
only three or four of the stated terms.” The P-norm model associates a parameter with
the logical operators in a query formulation so as to soften their interpretation, and thus
avoid missing out too many relevant items in a search like the above. As the p value
changes from oo to 1, the logical operators are interpreted more and more loosely.
When p=oco, in the case where both the document and query terms carry binary
weights, the P-norm model essentially reduces to the standard Boolean model. When
p =1, the P-norm model becomes a version of the vector processing model, in which
there is no distinction between compulsory phrase bonding (using AND) and alternative

synonym specification (using OR).

Figure 4 shows the P-norm similarity computations and the equi-similarity
contours for the two-term queries (4 OR B) and (4 AND B), with respect to a document
0 which has d, and d, as the term weights for the two search terms. The axes indicate
the membership function values for the document for term A and term B. The contours
X, Y, Z are defined for constant p values at levels 1, 2 and oo, respectively, to connect

documents with equal levels of similarity.
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&+ db -
SIM (4 OR? B, D):{_ﬁi__a;}:ipzz ””IDI,,

2
. ~ AorR?g
B 1 p::l
=2
— \
) T i,

SIM (4 AND? B, D) ="1 -{ U= dff + (1= dpf }”"z 1-27"%[1-p],

2

B A AND? 3
1 =2 peos
p=1
N
o T Ya

Figure 4. P-norm Similarity Computations and Equi-similarity Contours

For OR queries, similarity follows the intuition that one would like to be as far as
. possible from having no terms present in any document retrieved. Thus, similarity is a
* normalized distance from the origin, (0,0), in the subspace defined by the query terms.
For AND queries, however, the point (1,1) represents the situation when both terms are
fully present in a document, and is thus the most desirable location. Retrieved

documents should therefore be ranked in order of increasing distance from it.
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It is noted that when P=o0 and all the query terms carry equal weights, the

P-norm similarity computations {SALT 83a, p. 1024] in theory simplify to the classical

fuzzy-set formula as shown below:
SIM (A OR"™ B, D) = max (dy, dp)

SIM (4 AND"=% B, D) = min (dy, dp)

Furthermore, P-norm Operators can be generalized to handle many terms in a

clause instead of just two, and to handle user specified relative weights on cach of the

query clauses or terms. To complete the definition of the P-norm model, the similarity

computation for a NOT query is given as

SIM(NOT <expression>, D) = | — SIM(<expression>,D)

A more elaborate example which involves more than two query terms will be given

in a later section, The generalized P-norm formulation is given in Figure 5, and a

discussion of the classical fuzzy-set formulation is found in the following section.
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Consider a set of index terms Ay, Ay oy A, and et d, represent the weight
of term 4, in some document ) — {d,,, d,

s Ay ), Where 0 < dy, < 1
The generalized Boolean OR and AND queries are written as

Qor,p= (41, @) OR” (4,,a,) OR? ... OR? (A ay)

Qanp, p = (4, a;) AND? (A,, @) AND? ... AND? (A )
.

The similarities betwe

en the document D and Qor,p» Qanp,, are then
defined as

a{’dﬂl + afdf;z + -+ a,fdfjn 1jp
SIM (QOR,ps D) = K P,
ai +ay + -+ o

SIM(Q D=1 af(1~ dAl)p'l‘ (1 — dAz)p+ e ag(l —dy ¥ Vi
ANDpr ZI af +af + o

Figure 5. The Generalized P-norm Formulation
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Fuzzy Set Retrieval

Classical Fuzzy-Set Approach

Zadeh [ZADEH 65] developed the concept of a fuzzy set to allow for partial set
membership. Within the context of information retrieval, a fuzzy set of documents is
associated with each index term.  As in the P-norm model, for each given term, a
membership function is defined that indicates to what degree each document is
characterized by that term. In fuzzy-set systems, the retrieved set of documents is itself
a fuzzy set, whose membership function is derived from membership functions associated

with the index terms by means of a set of manipulation rules on fuzzy sets.

The most fundamental set of manipulation rules on fuzzy sets is given below. Ifa
document D is in the set A to a degree d, and is in the set B to a degree d,, then the

membership functions for the union, intersection and complement are defined as follows:
Aayzy = max (d,, )
Aang) = min (d,, )

dzzl‘—'dA

Consider a simple example with documents Dy and D, indexed as follows by term
T, and term Ty Dy = {(T,,0.5), (7,,0.8)}; D, = {(T.,0.9),(T, 0.1)}. It then follows
that, associated with the index terms are the sets: T, = {(D,,0.5),(D, 0.9)} and

T, = {(D,0.8), (D, 0.1)}. The set of documents retrieved by the query, (T.AND T), is
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{(D,,0.5),(D,, 0.1)}, since 0.5 i the minimum of 0.5 and 0.8 and since 0.1 is the

minimum of 0.9 and 0.1,

Critics of such an approach argue that an appropriate scheme for ranking of the
output for multiterm clauses should be sensitive to all of the terms in the query. As in
the example above, the document D, belongs to the fuzzy set associated with (T.N T,
to a degree 0.1; this intersection membership value would not have been different, had
the degree to which the document is in the set associated with 7, been changed from
0.9 to 0.2, A similar phenomenon applies to unions. Nonetheless, the appeal of the
above definitions for fuzzy-set operations lies in the fact that they retain most of the
usual axioms of conventional set theory. Alternative definitions [YAGER 80] have been
considered by many researchers in various applications. It is our intention not to
expound on each of them, but to present several which may have practical applications

in IR systems.

MMM Approach

We now consider the Mixed Max and Min (M MM) approach [FOXE 86]. For the

two queries below
Qor = (I)ORT,0OR ... OR T

Canp = (L AND Ty AND ... AND T}

the similarities with respect to a document D, which has (dyd,y ..., d) indicating the

corresponding term weights, are computed as follows:
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SIM(Q.,, D) = Coeffor 1 X max (dl,dz, oy dy) + Coe;fj‘;r’z X min(d, d, .., dy)
SIM(Qand, D) = C'oeffand,l X min (dl,dz, vy dy) + Coeﬁand’z X max(dy, d,, ..., dy)

Usually, it would be desirable that Coeff,,, > Coeff,., , and Coeffyn, > Coeff,as , since
OR should be more similar to max than to min, and AND should be more similar to

min than to max. For simplicity, the following settings arc suggested:

Coeﬁ‘;r’z =] - Coej_”f(',r‘l

Coefj‘;nd,2 = 1= Coeﬁmd,l

In this study. the above suggestion is taken. Thus, it is noted that when the first
coeflicients of both AND and OR are set to 1, the MMM approach becomes the classical

fuzzy-set approach.

What about the negation operation? Though the NOT formula & =1-4d is
generally reasonable for most purposes, it is important to observe that the use of NOT
has two different implications, One form of NOT serves to positively identify objects
that can fall into one of several categories but not a single specific category, much as a
request for ‘foreign’ books is expressed as a request for books that are ‘NOT English’,

The second form, as in the request ‘Information Retrieval but NOT fuzzy’, is more

commonly used to re-scan and subsequently narrow down the set of items already

reirieved.
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Paice Approach

For the Paice approach [PAICE 84], we have

L4
-1
Z” 4 Q= Qop, descending order of d's

SIM(Q, D) = £

Zri—l

=]

Q=0Q4np, ascending order of d;'s

Depending upon whether the query ¢ is an OR query or an AND query, the above
similarity computation is carried out with descending or ascending order of the term
weights, d/s. It is noted that each subsequent term weight receives a weighting factor
which is a fixed ratio r (between 0 and 1) of the preceeding weighting factor. In this
study, this scheme is so implemented that when r=0, only the max in the sum is
considered for an OR-query, and only the min in the sum is considered for an
AND-query, Thus, with r set to 0, the Paice scheme behaves exactly as the classical

fuzzy-set scheme,

To illustrate the Paice approach, we consider the case with 7= 2. Suppose that a
document D has d, and d, as the corresponding weights for the terms T, and T, used in

the following two queries.
Qor = (T; OR 5)

Qanp = (T AND T)
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Using the Paice scheme with » = 1/4, we have

d, dy) + 1/4 min (d,, d
SIM(Q,,, D) = 7% (4 zi+ 1// 4”””“ 2 415 max (dhs o)+ 1/5 miin (d, ;)

i (dy, dy) + 1/4 max (4, @ _
SIM(Q,g, D) = L% 2)1 T 1/ ; 4’““( %) _ 415 min (e, &) + 1/5 macx (d), )

Incidentally, with 7 = 2 the Paice approach is just the same as the MMM approach.

As in the P-norm model, neither the MMM nor the Paice approach conform to the

distributive property of conventional Boolean logic. Under all these approaches, it ig

generally not the case that the'following two logically equivalent Boolean queries

FIND 4 AND (B OR ()
FIND (4 AND B) OR (4 AND ¢)

would lead to the same retrieval result. Ag demonstrated in [PAICE 84], discrepancies

tend to appear in terms of the rank orders for the two forms of queries. We will explore

later ways to determine which ranking more closely approximates user desires,
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Topological Model

The Topological mode] [CATER 871 has been proposed as a generalization of the
P-norm model, Cater and Krafi constructed the TIRS System based upon the foIIowing-

topological paradigm:

® The document Space is a metric Space, in which it ig possible to find the distance

between any pair of points,

available an infinite byt countable collection of attribute terms,

® Each attribyte term is weighted with an appropriate totally ordered set, Real-vaiue

weights within the interval [0,1] suffice for Our purpose here,
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A document D will be a point in DS; D can have only a finite number of non-zero terms.
An arbitrary point in DS can be denoted as D = (4, dy .. 1 d, 0, ...) where {d}r, are

elements of [0,1], with d, being the last non-zero clement,

As mentioned, a query is treated as a finite set of document descriptions. The
evaluation of the query proceeds by first constructing the projection space with only the
coordinates (attribute terms) given in the query and then finding the documents closest

to the query with the metric of the defined document space.

Cater & Kraft have identified different forms of queries that TI RS can handle when
supplied by users with various levels of experience. The simplest form is that of a query
consisting of a single point in DS, Such a query can be interpreted either as a vector
Space model query, or as a Boolean query containing only AND operators. For a given
query of this type denoted by 0 = (qu 4, ..., 9. 90,..) and a clause weight w, all

documents that are of distance w or less away from Q are retrieved:
- nTIRS .
Do™ = (x| dist (Q, x) < w}
The second form is that of a query set containing j>1 elements as in

0 = {_Qi, QO ..., 0}, where each @ = (Gu, Gy - , ¢, 0, ... } is of the previous form. If

w; 18 the weight of the query point Q, then the retrieved set of documents is given by

DG = (x|3iGie ... j) dist (Qh %) < wy

A document is retrieved if it is sufficiently close to some query point. The documents
retrieved can thus be ranked in order of their overall distances from the closest query

points. Equivalent to this type of query is the Boolean query using AND and OR which
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is expressed in disjunctive normal form (DNF), with weights associated with each

disjunct.

For a “traditionally experienced” user who is familiar with standard Boolean
queries, the input query would often be one with a collection of weighted attribute terms
connected by the binary Boolean operators AND and OR, as well as the unary Boolean
operator NOT. As long as the input query is non-contradictory, there exists an
equivalent disjunctive normal form (DNF) suitable for TIRS. The TIRS retrieval
process then begins after each atom of the form NOT(A, weight) within the DNF query
is replaced by the atom (4, 1 — weighs). A DNF query can be easily converted into a set
of points in the document space, each formed from a clause in that representation of the
query.  Associated with ith point obtained from the query is a relevance ball, whose
radius essentially corresponds to the clause weight, w. Once the balls have been

assigned, points within the balls are simply retrieved as the output documents.

The TIRS scheme allows the experienced user to adjust the relevance ball radii, or
clause weights, so as to maximize the recall-precision product. Consider a simple query

as below:

{<information, 0.8> 4ND < retrieval, 0.8>)
OR

(<information, 0.8> AND < science, 0.4> )

Assuming again that the attribute terms given are in the first few in DS, we have

the following associated query points:
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(<08,0.8,0.0,00,..> 25
(<0.8,0.0,04,00,..> 1.0

The first point corresponding to the clause ‘information retrieval’ has g clause
weight of 2.5, and the second corresponding to the clause “information science’ has a
clause weight of 1.0. The document points will then be retrieved accordingly, with each
retrieved point ranked by its distance from its closest query point in the DS, Ttisnoted
that a user requesting documents on ‘information retrieval’, and much less on
‘information science’ should set the clayse weight for the first to be relatively larger than
that for the second, since the first clause describes the user’s need more appropriately

than the second.

Note that in the representation above a term weight of zero is assigned to each
term not present in the original DNF clause. In our mmplementation of TIRS, however,
We treat a term being absent as g "don’t care” (j.e, any value would do, including 0 and

I} and so add disjuncts with value 0 and with value 1 for all combinations of don’t cares.
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Chapter 3

Retrieval Experiments

IR Test Collections

unnecessarily influenced by the characteristics of a particular data set. These IR test

collections [SALT 83a] are CISI, CACM and INSPEC. The CIS] collection contains

has 12684 articles from Computer ang Control Abstracts which are basically concerned

with electrical engineering and computer science.

Each article in the collections is considered as a document, and s given an

identification number. A sample document and a sample query taken from CISI are
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shown in Figure 6. The document is divided into several fields described by a set of
concept types. The beginning of a document is marked by a line which contains the
document ID. For example, document 18 in that figure has four fields -- namely, the
TITLE, the AUTHOR, the DATE and the WORDS. The WORDS and TITLE fields

are described by a single concept type which we will simply call WORD.

A typical query is given in prefix notation Boolean form, and the query terms are
essentially of concept type WORD unless they are otherwise specified. Each query term
can also be given a weight. In this study, the document terms are weighted with suitable
real numbers, and query terms are only allowed to have binary weights (hereafter, are
unweighted). The Boolean connectors 4ND and OR in the query have associated
parameter values, the adjustment of which forms an important part of our experimental

study.

Method of Experiments

The SMART retrieval program [FOXE 83b and BUCK 85] has been extended by
this author so as to be able to run experiments using the P-norm, MMM, Paice and
TIRS schemes. Each IR test collection above contains its own set of Boolean queries
and their corresponding relevance judgements. Relevance judgements were established
by experts who had examined individual documents in the coilection and decided which
document is relevant to which query, For CISI, full relevance information is available,

but for the other two collections, it is only approximated.
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The document D' is as follows:

J18

.T

Selective Dissemination of Information

A

Mauerhoff, G. R.

B

1974

W
The present contribution does not duplicate previous studies but

complements the earlier publications and closes the few gaps that

exist in the literature prior to 1966 and after 1971, Additionally,

it is a bold aitempt to evaluate critically and objectively the history

of the mechanized sclective dissemination of information (SDI) as

reflected in the literature, from the initial description by Luhn

(1958, 1961b, ¢) to the post-1970 period when the SDI boom began losing

ground to the more popular on-line interactive systems. The review

therefore questions and interprets the concept of SDI, its implementation,

and iis evolution in the light of work performed by many companies,

government agencies, universities, societies, and libraries during the

last fourteen years.

The query 0% is as follows:

Q35 = (AND (<government, 1.0>, OR (<information, 1.0> ,
< dissemination, 1.0 >, < agencies, 1.0>, < projects, 1.0>)))

Note that each of the terms in the query is given a weight 1.0.

The corresponding terms are highlighted in the document above, and
the weights of the terms are given below. Since the term ‘projects’

is not found in this document, it is assigned a zero document weight.

d overnment = 0.28904 _
information = 0.09098
ddissemination =0.35416
dagencies =0,38384
== (0,00000

projects

Figure 6. Sample Document and Query from CISI Collection

With relevance judgements, the SMART system is able to compute definitive recall
and precision measures for each query and for each level of recall. The recall represents
the proportion of relevant documents retrieved, whereas the precision represents the
proportion of retrieved documents that are actually relevant., Here, we arc essentially
concerned with the average precision [SALT 83b] for the set retrieved by each query over

the set of all queries and at three standard recall levels, 0.25, 0.50 and 0.75. Since there
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are weaknesses in the use of average precision as the sole measure of retrieval

effectivencss, the E-measure is also taken into consideration in this study.

The E-measure, which was first introduced by [SWETS 691, is thoroughly discussed
in [RIJSB 79, pp. 174-175].. The E-measure is a weighted combination of precision and
recall.  The lower the E-measure, the greater is the retrieval effectiveness. The
E-measure is computed based on a given f-level and a set of retrieved documents, The
B-level is used to reflect the emphasis on recall or precision. Setting £ to 1 implies
attaching equal importance to both recall and precision, while setting £ to 0.5 or 2
implies attaching half or twice as much importance to recall as to precision. The set
of retrieved documents is defined by establishing a cutoff point in the document ranking,
To effect a realistic comparison, we compute -the E-measures using the top 30

documents.

The parameter values or coefficients associated with the Boolean connectors,
AND and OR, are regarded as independent variables in this experimental study. The
dependent variable can be either the average precision or the E-measure. The
parameters are varied from one experimental run to another, and both average
precisions and E-measures are obtained for each retrieval scheme for the purpose of

comparing their effectiveness.

In order to provide a better understanding of how the changes in the parameter
values on the Boolean operators affect the retrieval performance, Multiple Linear
Regression techniques will be used in identifying possible prediction models for average

precisions,
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Similarity Computations

The following subsections present further details of similarity computations for
each of the schemes that are being considered. An example of similarity computation
for each scheme is carried out based upon the sample document and the sample query

given in Figure 6.

P-norm Similarity

For the OR clause (with p,; = 1.5), we have

35421% + 09101 + 3838 4 0'° Y115
SIMORJ-Sz{ 1+1+1+1

_{ 2108 4+ .0274 + .2378 + 0 }1/1.5
B 4

{4760 Y1rs
=1 4

=.2419

For the AND clause {(with p,,, = 1.5), we have

(1—.2419)"° + (1 — .2890)"° Y115
SIMAND,I.S =] — 1+1
{ L6601 + .5995 }m.s
=l-17 =

=1-.6208""% = 2653

Hence, the P-norm similarity between the document, D® and the query, Q% for
Paxp= 1.5 and p,p, = 1.5 is given by

SIMp yorm (QF, D'*) = 0.2653
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MMM Similarity

For the OR clause (with Coeff,, = 0.6), we have

SIMorps =6 x max {.3542,.0910,.3838, 0} + (1 —.6) x min {.3542, .0910, .3838, 0}
=.6x.3838+.4x0 = .2303

For the AND clause (with Coeff,,, = 0.5}, we have

SIMyxpos =5 x min {2890,.2303} + (1 —.5) x max {.2890, 2303}
=.5%.2303 +.5x.2890 = 2596

Hence, the MMM similarity between the document, D' and the query, Q% for
Coeffany = 0.5 and Coeff,, = 0.6 is given by

SIMyaa (Q°°, D' = 0.2596

Paice Similarity

For the OR clause (with 7, = 0.6), we have

(:6” x .3838) + (.6' x .3542) + (.6 x .0910) + (.6° x 0)
SIMop6 = 0 1 2 3
6+ .6+ .62+ .6
_ 3838+ 2125+ .0328 + 0

2.176
_ 6291
= s = 2891

For the AND clause (with 7,,, = 1.0), we have

(1° % .2891) + (1" x .2891)
1"+

SIMAND,I.O =

=.2891]
Hence, the PAICE similarity between the document, D® and the query, 0% for
Fanp = 1.0 and vo, = 0.6 is given by
SIMpg1c (QF, D'®) = 0.2891
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TIRS Similarity

For the given sample query in Figure 6, a disjunctive representation is

QOpve = OR( AND(< government, 1.0> , < information, 1.0>)),
(AND (<government, 1.0>, < dissemination, 1.0>)),
(AND (< government, 1.0>, <agencies, 1.0>)),

(AND (<government, 1.0>, < projects, 0.0>))

Note that there are altogether five terms or literals in the given Boolean query. A
min-term is a conjunction of the literals where each appears exactly once and is either
complemented or uncomplemented. Thus, with five Iiferals, the given Boolean query has
up to 2 min-terms. In this experimental study, we first obtain the set of associated
min-terms, and then select each one that satisfies the given query (i.e. find all min-terms
for which the original given query evaluates to ‘true’). Assuming that the attribute terms
are stored in lexicographic order (agencies, dissemination, government, information,
project) and that the terms in the query are the first few in the attribute list, the vectors

corresponding to the set of associated rmin-terms obtained are as follows:

<0.0, 0.0, 1.0, 1.0, 0.0, 0.0, ... >,
<0.0, 1.0, 1.0, 0.0, 0.0, 0.0, ...>,
<1.0, 0.0, 1.0, 0.0, 0.0, 0.0, ... >,
<0.0, 0.0, 1.0, 0.0, 1.0, 0.0, ...>,
< 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, ...>,
<10, 0.0, 1.0, 1.0, 0.0, 0.0, ... >,
<1.0, 0.0, 1.0, 0.0, 1.0, 0.0, ...>,
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<0.0, 1.0, 1.0, 1.0, 0.0, 0.0, ...>,
<0.0, 1.0, 1.0, 0.0, 1.0, 0.0, ...>,
<0.0,0.0, 1.0, 1.0, 1.0, 0.0, ...>,
<10, 1.0, 1.0, 1.0, 0.0, 0.0, ... >,
<10, 1.0, 1.0, 0.0, 1.9, 0.0, ... >,
<00, 1.0, 1.0, 1.0, 1.0, 0.0, ...>,
<1.0,00, 1.0, 1.0, 1.0, 0.0, ... >,
<1.0, 1.0, 1.0, 1.0, 1.0, 0.0, ... >

Each of the above associated min-terms forms a query point in the document space,
One then assigns relevance balls to each of the query points and retrieves all the
documents that are within these balls in ranked order of increasing distance. In this
study, we take the relevance ball radius to be in all cases arbitrarily large, and we match
cach of the query points against the document using the INNER PRODUCT similarity
function, returning the highest as the overall similarity between the query and the

document.

The INNER PRODUCT similarity between two points X=(x,..,x) and

Y=(,...,») is defined as follows:
n
INNER PRODUCT (X, ¥) = Y xy,
i=1

Using this method of computation, the overall highest similarity taken as the TIRS

similarity between the document, D®* and the query, 0% is

SIMps (0%, D' = 1.1180
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A Note On Boolean Query DNF Conversion

To run the TIRS scheme, all the input queries must be in Disjunctiye Normal Form
(DNF). Note that only non-contradictory Boolean queries possess DNF forms.
Converting a non-contradictory Boolean query into its most complete DNF form
essentially comes down to building a set of minimal disjuncts or min-terms each of which
satisfying it. But theoretically, such is in general an NP-complete problem. In practice,
finding the set of associated min-terms each of which satisfying a non-contradictory
Boolean query is a very tedious process, especially when the given Boolean query is
somewhat lengthy. And, when conversions are to be performed on a large number of
Boolean querics, a scheme for automating such a process is desirable. A procedure used
in this study for finding the set of associated min-terms for each Boolean query is

described below.,

® Take all the terms in the given Boolean query and form the set of different
combinations. For a query of » terms, there will be (2" —1) combinations, not

including the one with no query terms.

¢ Each combination is taken as a single document vector. Then, evaluate the original

query against each of the vectors formed from the set of all combinations.

¢ The set of min-terms satisfying the original query includes all of the vectors for

which the Boolean query evaluates to ‘true’,
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Consider a simple query QF!l = A AND (B OR C). The possible combinations of

the query terms are:

3. C
A, B
A, C
B,C
A, B C

R AN S B

Taking each of the above combinations as a single document vector, we then proceed
to evaluate the query Q% against it. Here, the query evaluates to ‘true’ only for the set
of vectors <A, B> , <A, C> and <A, B, C>, Thhs, in this case, the query above has

three associated min-terms, and logically it can be expressed as follows:

QP ~ AB+ C= ABC + ABC + ABT.
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Complexity of Computations

As we have seen, each of the above retrieval schemes takes a different approach to
similarity computation. We now want to consider the computational overhead required
in each of these schemes. In doing so, we first classify the computational steps, based
on their relative costs, into the following four categories (beginning with the category

of highest cost):

CAT 1: Exponentiation

CAT 2: Multiplication and Division
CAT 3: Addition and Subtraction
CAT 4: Comparison

Based on the computational steps we have performed on document 18 and query
35, we provide the following summary of overhead involved in each scheme. Note that
initialization steps that need to be carried out only one time for each query prior to
actually computing its similarity with respect to the each of the documents in the
collection are not considered. For P-norm, we are using p = 1.5 and so have a good deal
of expensive exponentiation computations. Clearly using p =1 would lead to much
lower overall cost. For the MMM scheme, there is a need for finding the max and min
of a set of term weights each time an AND or OR clause is considered. With the
recursive MAXMIN (divide-and-conquer) algorithm found in [AHO 74, p. 61], the
number of comparisons required for a set of two elements is 1, and that required of a
set of # elements, where # is a power of 2, is given by 3/2x» —2. Thus for a set of 4

elements, there will be a total 3/2x 4 —2 (ie., 4) comparisons in finding the max and -
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min. For Paice, the term weights have to be sorted in ascending or descending order,
depending on whether an 4AND clause or an OR is being considered. As indicated by
[AHO 76], with an nlog(r) sorting algorithm, we possibly require only § comparison
steps for arranging a set of 4 real numbers in ascending or descending order. Also, in
the Paice similarity computation, the coefficients for the terms in the sum of the
numerator are obtained by incremental multiplications rather than by exponentiations.
For TIRS, there are altogether 15 associated query points, Using INNER PRODUCT
for similarity computation with each query point, we need altogether 43 multiplications
and 28 additions. But, since all the query terms are unweighted, the multiplications can
be omitted. Also, finding the maximum of the similarities computed for all query points

takes 14 comparisons.

We summarize the computational costs as below, using ‘a simple assignment of
costs to the four categories of operations. The relative unit cost assumed for a
computation of category 1 or 2 is 1.5, and that of a computation of category 3 or 4 is

1.0,

Computational Overheads Based on Document 18 and Query 35

Retrieval Schemes
Category  Unit Cost - P-norm MMM  Paice TIRS

1 1.5 8 0 0 0
2 1.5 2 4 6 0
3 1.0 7 2 4 28
4 1.0 0 5 5 14
Total Cost - 22 13 i8 42

From the total cost provided in the summary for each retrieval scheme, we clearly

se¢ that the TIRS scheme is more computationally intensive than any of the other
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schemes. The MMM scheme is the most efficient scheme, followed by Paice, P-norm

and finally TIRS.

It is, however, noted that when p=1 is used, the exponentiation steps can be
omitted. This will result in an overall cost of only 10 (i.e., with 2 divisions and 7
additions) for the P-norm scheme. Thus with such a setting for p, the P-norm scheme

in fact turns out to be less costly than any of the other schemes.
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Characteristics of Queries

The computational cost for the TIRS scheme is excessive when the DNF form of
a query contains a large number of min-terms. Hence, queries with too many min-terms
ih the CACM collection are omitted for the TIRS experimental runs. When there is an
abundance of min-terms in the query set, the TIRS runs have to be carried out in
subdivided batches of queries, from which the final results are combined, and an
evaluation of overall retrieval effectiveness is then made. Tables 1(a) and 1{b) show the
distributions of query length and the corresponding number of min-terms in the CISI

and CACM query sets, respectively.

All queries in CISI are used in all experimental runs. Of the 35 queries in CISI,
19 (greater than 50 percent) have more than 40 min-terms, and 13 (about 30 percent)
have more than 100 min-terms. Of the 64 queries in CACM, only the 52 not marked
with " are used for P-norm, MMM, and Paice runs. Only queries not marked with **"
or ‘@ (i.e., a total of 50 out of the 62 CACM queries) are used in TIRS runs. The
queries marked wiht ‘@’ are omitted because they contain terms not of the relevant
concept types being considered in the TIRS runs. Of the 64 CACM queries, 9 (about
14 percent) have 40 or more min-terms. As can be seen from t.he tables, the distribution
of the number of min-terms in the CACM query set is more skewed than that of the
CISI. This may be explained by the fact that the CACM query set contains mostly

‘homogeneous” queries, which are either strictly AND or strictly OR.
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Qid #Terms #Min-terms Qid #Terms #Min-terms
3 3 3 23 7 45
14 3 3 12 6 49
20 4 7 16 6 49
22 4 7 4 7 94
28 4 7 11 7 165
30 4 9 13 7 105
31 4 9 19 7 105
10 5 15 2 9 375
21 5 15 9 9 381
25 5 15 24 10 675
26 5 15 17 10 735
35 5 15 15 10 795
8 5 21 18 10 961
27 5 21 1 11 1023
29 5 25 32 11 1917
34 5 25 5 12 3255
6 6 45 7 12 3825
33 6 45

Table 1(a). Distributions of #Terms and #Min-terms in CISI Query Set
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Qid #Terms #Min-terms Qid #Terms #Min-terms
3 3 1 36 4 3
10 2 i 52% 3 3
12 3 1 56% 3 3
13 3 1 4?2 5 5
14 2 1 16 4 7
15 2 1 39 4 7
17 2 1 55% 5 7
19 2 1 57@ 4 7
20 2 1 1 4 9
24 3 1 5 5 9
26 3 1 11 4 9
27 4 1 29 5 13
28 3 | 48 4 13
30 2 1 49 5 13
34* 2 1 59 S 15
35% 2 1 54% 5 23
38 2 1 37 6 29
47* 3 1 4 6 31
50% 3 1 33 6 31
S1* 2 1 43 6 31
61 2 1 44 6 31
62 2 1 7 8 35
63 2 1 32 7 39
64 1 1 18 6 43
8 2 i 40 7 63
2@ 2 3 46* 7 63
6 5 3 60 9 153
9 3 3 21 8 193
22 3 3 58 8 234
23 3 3 45 11 1103
25 3 3 53* 14 16114
31 5 3 41* 15 24171

Table 1(b). Distributions of #Terms and #Min-terms in CACM Query Set
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Chapter 4

Performance Results

Experimental Analysis on CIST Collection

P-norm Runs

Table 2 shows the average precision values obtained on CISI using the P-norm
scheme for coefficients of the Boolean operators uniformly set at 1, 6, 12 and 50. Table
3, on the other hand, shows average precisions obtained for coefficients set between 1.0
and 4.0 with intervals of 0.25. (Note that the highest averége precisions are enclosed in
parentheses in these and later tables. The same will be done with results using other
schemes. In tables showing E-measures, the best E-measures are also enclosed in

parentheses. )
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As shown by Table 2, the P-norm scheme does not perform well with large
coeflicients of AND and OR. The P-norm scheme tends to behave like the conventional
strict Boolean scheme at large coefficients of AND and OR. The average precision of
the standard Boolean scheme on the CISI is 0.1 123, while the average precision for the

P-norm scheme with both of the coefficients set to 50 is 0.1348,

The P-norm scheme becomes a version of the vector-processing scheme when both the
coeflicients of AND and OR are equal to 1. As shown in Table 3, the average precision

obtained with Coeff,, and Coeff,, set at 1.0 is 0.1957.

The average precisions are somewhat less sensitive to the changes in the coefficient
of AND than to changes in the coefficient of OR. Such phenomenon is also depicted
in the surface plot shown in Figure 7(a). To further highlight this observation, the
graphs in Figures 7(b) and 7(c) show how average precisions vary with the coefficient
of AND at constant coefficients of OR, and how average precisions vary with the

coefficient of OR at constant coefficients of AND, respectively.

The best average precision among all of these P-norms runs is 0.2008, and it occurs
with both the Coeff,,, and Coeffor set at the level 1.50. The curves in Figure 7(b) do
not show any large variation in average precision with respect to changes in the
coeflicient of AND at constant coefficients of OR. Except for the boundary case of
Coeffor = 1, the curves show a slow decrease as the Coeff, v, increases Beyond the peak
value location. However, the curves in Figure 7(b) show that beyond the peak value,
the average precisions decrease rapidly with increases in the coeflicient of OR at constant

coefficients of AND.
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1t is noted that the P

-norm scheme, at its best, shows an improvement of 79 percent

over the standard Boolean scheme in terms of average precision.

A comparison of the best performance result with P-norm and those with other

schemes under consideration will be made in a later section.

CAND

1
6
12
50

50

COR
1 6 12
(.1957).1876 .1833
1953 7,1801 .1793
1897 1778 1777
1881 1710 .1691

1402
1388
1369
1348

Table 2. Average Precision Values with P-norm Scheme on CISI
for the set of Coefficients: 1, 6, 12 and 50.
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Table 3. Average Precision Values With P-norm Scheme on CISI
Cor
Cynp 100 125 150 175 200 228 2.%0 275 300 325 350 375 4.00
1.00 957 11972 1988 2004 .1975 1959 Jd937 1916 1911 .1904 .1899 .1894 1886
1.25 1963 1970 1997 .2001 .1982 .}1947 92411923 (1919 .1908 .1895 .1885 .1873
1.50 1968 .1977 (-2008).1991 .1965 .1944 .1924 .j922 J917 1909 (1901 .1891 .1884
1.75 1968 (1990 .2002 .1979 .1976 .1944 1930 1922 .1914 1907 .1902 .1895 .189]
2.00 J971 (1983 L1999 1991 .197% d942 1932 .1919 1912 .1905 .1906 .1399 1895
2.25 1966 1983 2001 .1989 .1983 .1950 J922 1917 1915 1910 .1904 .1897 .1896
2.50 A970 1977 1990 2003 .1979 J941 1925 1919 .1914 .1910 .1907 .1895 1890
2.75 986 1983 .1993 .1992 1972 .1942 19251921 1910 1909 1899 .1889 .1888%
3.00 1974 1989 2000 .1997 .1966 .1931 1919 1917 1914 .1905 .1892 .1883 .1883
3.25 967 1998 1997 1990 1962 193} 1923 (1912 .1909 ,1898 .189! .1886 .187%
3.50 1976 1995 1991 1986 .1958 .1937 J918 (1908 1908 (1895 .1881. .1878 .1871
375 1980 1985 1990 .1988 .1963 .1925 J911 1908 1903 1888 .1878 .1868 .1%66
4.00 1993 1981 1995 1986 .1949 .1922 1906 .1898 .1891 .1882 .1872 .1870 .1855
Figure 7(a). The P-norm Scheme on CISI: Surface Plot
Average Precision vs. Coeff,, and Coeffor
PREC
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Figure 7(b). The P-norm Scheme on CISI:
Average Precision vs. Coeffynp for Various Levels of Coeff,n
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Figure 7(c). The P-norm Scheme on CISI:

Average Precision vs. Coeff,,, for Various Levels of Coetfinn
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Paice Buns

Table 4 shows the average precision values obtained on CISI using the Paice
scheme for coefficients of the Boolean operators set between 0.0 and 1.0 with intervals
of 0.1, For this scheme, the average precision seems to be affected to a much larger
degree by changes in the coefficient of OR than by changes in the coefficient of AND,

as can be seen from the surface plot and graphs in Figures 8(a), (b) and (c).

The peak average precision occurs at 0.1987 with Coemm) = 1.0, and
Coeffor = 0.6. This peak average precision is a little lower than that of the P-norm runs.
From the curves in Figure 8(c), it is noted that the average precision values increase with

increases in the coefficient of OR at constant coeflicients of AND, up to but not beyond

‘the level of the coefficient of OR for which the peak average precision occurs. The

curves in Figure 8(b) show that, at constant levels of Coeffor, the average precision
values increase rapidly with increases in the Coeffyunp for the range between 0 and 0.1,
beyond which the growth of the average precisions seems more steady. This sudden rise
of average precision values with. increases in the Coeffunp at constant levels of Coeff,,
may be explained by the fact that the Paice formulation for the AND operator
emphasizes the more heavily weighted terms when the Coeff,np 15 at the high end of its
range, as a result of its requiring the AND similarity computation be carried out in

ascending order of term weights.

The Paice scheme effectively gives some form of weighted averagc of all query
terms, as opposed to the classical fuzzy-set scheme which simply takes the max or the
min, Thus, when one sets a coeflicient of AND or OR to 1.0, one intends to give equal

importance to each individual query term in the retrieval process. As shown by the Paice
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runs, the coefficient of AND should be set at around 1.0 to achieve high average

precision.

When a query is constructed by the user using AND, all terms included must serve
equally well or play similar roles in describing his search intent. Otherwise, the user
would have chosen to use OR instead. So, the fuzzy subsets associated with terms
within an AND-query are often not needed to be discriminated against one another
during retrieval, and therefore, setting the coefficient of AND to 1.0 is sensible. On the
other hand, a user frequently includes in an OR-query terms which can serve only
somewhat to describe his intents. Under such a circumstance, some terms in the user
query may play more important roles than the others in describing the user’s need; thus
it would be wise that all fuzzy subsets associated with terms in an OR query be ‘fairly’

weighted in the retrieval process so as to achieve a high performance search.

For this study, the .Paice scheme has been so implemented that when the Coeffpr
is 0, only the max in the sum of the Paice formula is considered, and when the Coeff iy
is 0, only the min is considered. Thus, at those coefficients, the Paice OR and AND are
respectively the classical fuzzy OR and AND. The average precision obtained with those

coeflicients is 0.1291, as can be seen in Table 4,

Also, when both the Coeff,, and the Coeffynp are equal to 1, the Paice scheme
behaves like a vector-processing scheme. The average precision obtained with those
coeflicients is 0.1957, which as we have expected turns out to be the same as the
corresponding value for the P-norm. This average precision is lower than the overall
peak value by a small margin. However, the average precision of the classical fuzzy-set
scheme (0.1291), as compared with the overall peak value (0.1987) is exceeded by 0.0696.

The Paice scheme, at its peak performance, has an improvement of 54 percent in terms
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of average precision over the classical fuzzy-set scheme, and an improvement of 77

percent over the standard Boolean scheme.
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Table 4. Average Precision Values with Pajce Scheme on CIS1
Cor

Canp 00 01 02 03 04 05 06 07 08 09 1.0
0.0 1291 1260 1255 .1264 .1269 .1275 .1296 .1290 1320 .1345 1387
0.1 A725 1719 1725 1735 1742 1774 .1807 .1802 1822 (1846 .1342
0.2 A755 1775 1783 1787 .1802 .1828 .1829 .}1867 J869 1914 .1930
0.3 1753 1783 1810 .1822 .1830 .1865 1881 .1893 .1897 .1896 .1899
0.4 1764 .1798 .1825 .1819 .1852 .1883 .1905 .1905 1903 1917 1937
0.5 1} 1772 .1798 .1837 .1852 .I868 .1896 .191% 19321925 (1948 1937
8.6 1792 1825 1865 1869 .1874 .1913 .1936 1928 1923 19356 .1948
0.7 1794 1842 1869 .1879 .1879 .1924 .1933 .1933 .1949 1957 19356
08 1804 1845 1875 .1891 .1901 .1951 .1954 .1966 1958 1962 1969
0.9 1796 1851 .1882 .1897 .1916 .1971 .1980 .1976 1955 .1965 .1962
1.0 1792 1846 .1880 .1919 .1940 .1976 (:1987).1972 .1957 .1954 .1957

Figure 8(a). The Paice Scheme on CISI: Surface Plot
Average Precision vs, Coeff,y, and Coeffor
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Figure 8(b). The Paice Scheme on CISI:
Average Precision vs. Coeff,,, for Various Levels of Coefl,r
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Figure 8(c). The Paice Scheme on CISI:
Average Precision vs. Coeff;,, for Various Levels of Coeff,np
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MMM Runs

Table 5 shows the average precision values obtained on CISI using the MMM
scheme for coefficients of the Boolean operators set between 0.0 and 1.0 with intervals
of 0.1. For this scheme, a similar set of graphs to those in previous sections is presented
in Figures 9(a), (b) and (c). The peak average precision occurs at 0.1889 with
Coeffynp = 0.5 and Coeff,; = 0.6. This value is lower than both that of the P-norm and

the Paice runs.

It is observed that changes in the coefficient of OR do not seem to affect the
average precision as much as the changes in the coefficient of AND. The curves in
Figure 9(c) are relatively flat with respect to the whole range of values for the coefficient
of OR, and they run parallel to one another for the various coefficients of AND.
However, the curves in Figure 9(b), at constant coefficients of OR, risc with increasing
values of the coefficient of AND. The rates of change of average precision with respect
to the coefficient of AND are not the same at the various constant coefficients of OR.

This suggests that there is an interaction effect between the two predictor variables.

Instead of defining OR using max alone and AND using min alone, the MMM
scheme suggests a linear combination of the two for each case. As expected, higher
average precision results were obtained with the coefficients of AND and OR. set at
levels 0.5 and above than otherwise. This supports the desirable situation we have
suggested about the OR being set closer to max than min, and the AND being set closer

t0 min than max, as previously outlined in our discussion on the MMM retrieval model,
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As compared with the sets of curves and surface plot in the previous two retrieval
schemes, the set of curves and surface plot in this MMM scheme are relatively smooth.
However, it is to be cautioned that when both the coefficients of AND and OR approach
1.0, the MMM scheme is essentially that of the classical fuzzy-set case. Though the
average precision values depicted by the curves in Figure 9(c) witness a uniform increase
up to the 1.0 level set for the coefficient of OR, the average precision values shown by
the curves in Figure 9(b) fall steeply when the coefficient of AND approaches the value
1.0. This clearly indicates that the classical fuzzy-set scheme, in general, does not
perform as well as MMM. The average precision with both of the coefficients set at 1.0
is 0.1291, which is exactly the same as that from Paice. The MMM scheme shows an
improvement of 46 percent in terms of average precision over the classical fuzzy-set

scheme, and also an improvement of 68 percent over the standard Boolean scheme.

With the Coeffy, and Coeff,y, set to 0, the average precision obtained is 0.1138.
Under such a setting, we have essentially switched the classical fuzzy OR and AND
operations. Two other peculiar settings for the coefficients that are worth considering
are (a) Coeffyr =1 and Coeff,y, =0, and (b) Coeffor =0 and Coeffyy, = 1. The first case
changes the AND to OR, and has an average precision of 0.1449; the second changes the
OR to AND , and has an average precision of 0.0370. It seerns that changing OR to
AND has resulted in not retrieving anything useful at all. On the other hand, changing
AND to OR may have rendered the search queries too broad, with the average precision

jeopardized but far less seriously than in the previous case.
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Table 5. Average Precision Values With MMM Scheme on CISI

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.3
0.9
1.0

CAND

0.0

0.1

0.2

0.3

Cor
0.4 0.5

0.6

6.7

0.8

0.9

1.0

1138
1139
A137
1135
J13s
1135
1139
1139
1139
1139
0370

1741
1818
1827
1834
1833
.1846
1857
1835
1806
1784
1264

1736
J821
1822
1837
.1849
1862
18352
1826
1817
1731
1263

1752
1835
1850
1872
1879
1871
1861
1842
1799
4729
1262

1743
1809
1831
1867
1874
1874
1874
1837
1781
1725
1264

1729
750
818
1856
1868
1886
1872
.1837
1796
1757
.1293

1725
1792
1839
1852
1858

1691
1778
J820
1830

1854

(.1889).1881

1863
1848
1792
1746
1267

1868
1828
1796
1729
1266

1622
1723
1750
1789
1822
.1863
1861
1819
1793
1728
1256

1518
1606
1659
A727
1774
1838
1841
.1804
1791
1738
1265

1449
1527
13575
1631
1711
1800
1813
1780
A774
1743
1291

Figure 9(a). The MMM Scheme on CISI: Surface Plot
Average Precision vs. Coeffunp and Coeff,,
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Figure 9(b). The MMM Scheme on CISI:
Average Precision vs. Coeff,y, for Various Levels of Coeffy,n
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Figure 9(c). The MMM Scheme on CISI:

Average Precision vs. Coeff for Various Levels of Coeffynp
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TIRS Runs

In this study, the idea of 'relevance ball radius’ is not exactly made full use of in the
way implied by the original scheme of Cater & Kraft, since we are interested in ranking
rather than retrieving at arbitrary thresholds. The relevance ball radius does not actually
form an independent variable in our TIRS scheme, since in all cases, it is taken to be
arbitrarily large. The average precision obtained from the TIRS experimental run is
0.1645. This average precision result seems to be lower than any of the peak average

precisions from the experimental runs of aforementioned schemes.

The TIRS average precision is a 46 percent improvement over that of the standard
Boolean scheme, and a 27 percent improvement over that of the classical fuzzy-set

scheme,

TIRS runs were particularly time consuming, and had to be done in partial batches
of queries. For the same set of queries, the TIRS scheme involves more computational
overhead than the other schemes. This is so because the TIRS scheme does not just
consider a query as given, but rather the set of associated min-terms, from which many

query points are obtained for matching.

Looking back at Table 1(a), we see that more than 50 percent of CISI queries have
40 or above min-terms, and almost 25 percent have 675 or above min-terms. While each
of the other schemes has-to match each of the 35 CISI queries, the TIRS scheme has to

match each of the individual min-terms for each of the queries.
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Prediction Models

In order to understand the effects of varying strictness of AND and OR that result
from manipulating the parameters availabie in each of the retrieval schemes, multiple
linear regression techniques [MYERS 86] were used to obtain prediction models o.f
retrieval performance. The SAS stepwise regression procedures (namely; FORWARD
SELECTION and MAXR) [SAS 85, pp. 763-774] enabled us to find a set of candidate
prediction models. But, there remained the difficult task of selecting the model that best
predicts retrieval performances. A model that is too simple may suffer from biased
regression coefficients and biased predictions. On the other hand, a model that is overly
complicated can result in large variances, both in the regression coefficients and in the

predictions. Thus, one always attempts to balance the tradeoffs between the two.

The s* and R? values are generally used to ascertain the quality of a fitted model.
The s* represents the mean Square error of the model, while the R2 represents the
proportion of variation in the response data that is explained by the fitted model.
Another criterion that we can use in selecting models is the Mallows Clp) statistic. It
is essentially a measure of bias plus variance. In a normal procedure, p which is the
number of variables plus the intercept, should be close to the function value of C(p) in

order to judge that the model contains no biased estimates.

Table 6a shows a summary of the results for the SAS forward selection procedure
performed on CISI. The table presents the sequential steps in which the predictor
variables are entered, and the corresponding partial F and p statistics. The F-statistic

outlined for each step may be viewed as a ratio that expresses the variance explained by
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the variable entered divided by variance due to the model established up to and including

that variable.

With P-norm, C,, is entered first, followed by C avpCor and C,,,  With Paice, .CAND
is entered first, followed by its square and its cube; Cor and C%, are not entered until the
last two steps. With M MM, G, is entered first, followed by C%p and then CinoCon
Also, with this scheme, the variable CannCor Whose F and p statistics are respectively
16,4131 and 0.0001, is entered early in the selection process; there seems to be significant
interaction effects between Cawvp and C,; The partial R? for the entry of C,upCop is
0.0814. The C,,,C,;, interaction variable is entered second for the case of P-norm, with
F=20.668, p = 0.0001, and partial R? = 0.0164. Thus, adding the variable C,,,C,, in the
third step in the forward selection of prediction variables for average precision with
MMM contributes more towards the overall model R? than in the second step of

selection with P-norm.

Table 6b shows the best 3-, 4-, and 5-variable models obtained for each retrieval
scheme using the SAS MAXR procedure. In terms of R, all the models for P-norm and
Paice are well-fitted. But, for MMM, only the S-variable model (R2=0.7778) is
reasonably better fitted than the 3- and 4-variable models. In terms of R? and Clp)
combined, all the 5-variable models are well-fitted, and the 4-variable model for Paice 18

also acceptable.

To further obtain even better fittings with multiple regression, we proceed to omit
results at the boundary values of coefficients which seem to constitute the set of
undesirable outliers. For P-norm, we take only the range of coefficients between 1.5 and

4.0; for Paice, we take the range between 0.2 and 1.0 and for MMM, the range between
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0.1 and 0.9. The stepwise regression results and predictions models for best 3, 4 and 3

variables are given in Tables 7a and 7hb.

The prediction models in Table 7b are superior to the corresponding ones in Table

6b, especially for the case of MMM. All the best 3-variable models are well-fitted. For
P-norm, the best 3-variable model has B2 =10.9655 and C, =22.6088; for Paice,

0.8717 and C, =19.8613,

R?=0.,9032 and ¢, = 316090, and for MMM, R? =
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Table 6a. Stepwise Regression Results on CISI Collection

Summary of SAS Forward Selection Procedure

Dependent Variable ; Average Precision

P-NORM SCHEME

~1 3t bt b o

STEP VARIABLE PARTIAL  MODEL c(P) F PROB > F
ENTERED RSQUARE  RSQUARE
1 Con 0.8523 0.8523 198.661  963.5694  0.0001
2 ConnCon 0.0164 0.8686 160.396 20.6678  0.0001
3 4ND 0.0023 0.8709 156,849 2.8795  0.0916
4 D 0.0065 0.8774 142,869 8.6818  0.0037
5 Cip 0.0007 0.8781 143.233 0.8885  0.3473
6 Cip 0.0565 0.9346 6012  140.0753 0.0001
PAICE SCHEME
STEP VARIABLE PARTIAL  MODEL C(P) F PROB > F
ENTERED RSQUARE  RSQUARE
1 Conp 0.4346 0.4346 392.936 91.4874  0.0001
2 Cap 0.2285 0.6632 188.818 80.0541 0.0001
3 Cap 0.1377 0.8009 66.574 80.9498  0.0001
4 Con 0.0709 0.8718 4,639 64.1354  0.0001
5 Cip 0.0027 0.8745 4.160 25194 0.1152
MMM SCHEME
STEP VARIABLE PARTIAL  MODEL o) F PROB > F
ENTERED RSQUARE  RSQUARE
Chaw 0.1802 0.1802 336.003 26,1489 0.0001
2 p 0.1579 0.3380 250,758 28.1470 0.0001
CoannCon 0.0814 0.4195 207.760 16.4131 0.0001
% 0.0615 0.4810 175.755 13.7562 0.0003
R 0.1349 0.6159 103.229 40.3828  (.0001
2n 0.1748 0.7907 8.633 95.2328 0.0001
Cyp 0.0048 0.7955 8.000 2.6327  0.1075
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Table 6b. Selected Prediction Models of Average Precisions On CISI
Best 3-, 4- and S-variable Models Obtained by MAXR

P-NORM SCHEME

Prec = 02022 + 0.0006C 11vp — 0.0030C2 = 0.0004C,, o

s22= 0.000002
R =0.870805
C, = 156.8495

A . )
Prec = 0.2006 + 0.0017C 4y, ~ 0.0030C y 0.0004C 1y, C g — 0.0001C7 5,

szz= 0.000002
R = 0877386
C, = 142.8692

Prec = 0.1831 + 0-0006C 4 + 0.0247Cpp ~ 0.0004C 4 Cpp — 0.0119C7 5 + 0.0015C]

322= 9.000001
= 0.928109
C,=19.99215

PAICE. SCHEME

A
Prec = 0.1388 4 0.2961C 4pyp ~ 0.5201C 25 + 0.2818C vp
5% = 0.000067
R*=0.800910
€, = 66.57433
Prec = 0.1312 + 0.2961Cnp + 0.0151C 4 ~ 0.5201C2 0.2818C] vy,

5% = 0.000043
R* =0.871794
C, = 4.638687
Prec = 0.1296 + 0-2961C 1vp + 0.0258C 0 — 0.5201C2 ) — 0.0107C 5 + 0.2818C> D

s22= 0.000043
RY = 0.874542
C, = 4.159648

MMM SCHEME

A
Prec = 0.1760 + 0.0986C 1y, Cog — 0.0783C ) — 0.0392C7,

s22= 0.000390
R% = 0.448802
C, = 191.5618

A .
Prec = 0.1302 + 0.1724Cz + 0.1890C 2 , 0.1503C5 5 — 0.2239C7

322= 0.000238
R =0.666208
C, = 73.43508

Prec = 0.1160 + 0-3834Cpp + 0.1890C] vy — 0.7036C2 5 — 0.2239C vy + 03689C3

s22= 0.600160
R® =0.777767
€, = 13.47937
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Table 7a. Stepwise Regression Results on CISI Collection
(With Boundary Values Omitted)
Summary of SAS Forward Selection Procedure
Dependent Variable : Average Precision

P-NORM SCHEME
{with independent variables set within range 1.5-4.0)

STEP VARIABLE PARTIAL MODEL CP) F PROB > F
ENTERED RSQUARE RSQUARE
1 Con 0.8764 0.8764 369.416  843.4623 0.0001
2 22 0.0558 0.9322 151.906 97.0460 0.0001
3 S D 0.0334 0.9655 22.609  113.2801 0.6001
4 AND 0.0017 0.9672 18.034 5.9108 0.0166
5 o Cor 0.0032 0.9704 6.780 2.7404 0.1006
6 2R 0.0007 0.9711 8.000 0.7804 (0.3789
7 Ciwop 0.0002 0.9713 8.060 0.7804 0.3789
PAICE SCHEME
{with independent variables set within range 0.2-1.0)
STEP VARIABLE PARTIAL MODEL C(P) F PROB > F
ENTERED RSQUARE  RSQUARE
1 CoawnCon 0.7277 0.7277 217217 211.0717 0.0001
2 AND 0.0155 0.7432 202.444 47157 0.0329
3 Con 0.1438 (.8869 49.135 97.9143 0.0001
4 Cia 0.0340 0.9209 14.420 32.6664 0.0001
5 Cinp 0.0114 0.9323 4.127 12.6078 0.0007
MMM SCHEME
(with independent variables set within range 0.1-0.9)
STEP VARIABLE PARTIAL MODEL C(P) F PROB > F
ENTERED RSQUARE RSQUARE
i Cdwp 0.5741 0.5741 252.187 118.6277 0.0001
2 Zwp 0.2701 0.8442 39.717  150.8182 0.0001
3 AND 0.0275 0.8717 19.861 184528  0.0001
4 3R 0.0144 0.8861 10416 13,7598 0.6015
5 awvnCor 0.0100 (.8962 4.445 8.1214 0.0055
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Table 7b. Selected Prediction Models of Average Precisions On CISI
(With Boundary Values Omitted)
Best 3-, 4- and 5-variable Models Obtained by MAXR

P-NORM SCHEME
(with independent variables set within range 1.5-4.0)
Prec = 0.2185— 0.0141Cop + 0.0017C 5 ~ 0.00004C1

s22= 0.000001
R = 0.965530
C, = 22.60875

A .
Prec = 02157 + 0.0025C ynp — 0.0141Cop — 0.0006C2 pp + 000172

5% = 0.600001
= 0.967346
C, = 1746445

A
Prec = 0.2130 + 0.0035C 1, ~ 0.0131Cp ~ 0.0004C 4 Cop — 0.0006C 3 p + 0.0017C2

52 = 0.000001
R* = 0970528
C, = 6.946225

PAICE SCHEME
(with independent variables set within range 0.2-1.0)
Prec = 0.1720 + 0.0130C p + 0.0230C,, — 0.0087C]

322= 0.600003
R*=0.903167
C, = 31.60897

) _
Prec = 0.1684 + 0.0189C 1p -+ 0.0290C 5 ~ 0.0100C 4 ypCopp — 0.0087C)

5% = 0.000002
R? = 0.920930
C,=14.41978

Prec = 0,1657 + 0.0299C 4p + 0.0290C s — 0.0100C 4y C g — 0.0091C 2, ~ 0.0087C2

5% = 0.000002
R =0.932309
C,=4.126878

MMM SCHEME
{with independent variables set within range 0.1-0.9)

Prec = 0.1895 — 0.1317C 5y + 0.4394C7 ) ~ 0.3636C

52 = 0.000040
R =0.871724
C, = 19.86132

A 2 ’
Prec = 0.1914 - 0.1317C 1y + 04394C yp — 0.3636C = 0.0086C2

52 = 0.000036
R*=0.886137
C, =10.41597

A
Prec = 0.1937 — 0.1413C;p + 0.0191C 45y Copp + 0.4394C vy — 0.3636C xp — 0.0190C) 5

si: 0.000033
RY = 0.896175
C, = 4.444911
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Discussion

Scheme Best Rank Best Rank
Precision E-measure

P-NORM 2008 1 1940 1
PAICE 1987 2 7945 2
MMM .1889 3 .8060 3
TIRS 1645 4 8331 4

Table 8. Relative Ranks of Schemes by Average Precision and E-measure on CISI.

Table 8 shows the summary of best performance measures of all the schemes and
their relative ranks. On this CIS] collection, the P-norm scheme is suberior to all the
others in terms of average precision, and it is followed by Paice, MMM and lastly TIRS.
While the best average precisions of P-norm, Paice and MMM are close to one another,

that of the TIRS scheme seems a little lower,

In each of our experimental runs, the SMART retrieval program also produces a
‘top-ranked’ file containing information about the top ten documents retrieved for each
query. Table 9 shows the information we obtained for query 35 with the four different
retrieval schemes. The first column shows the document ID. Associated with each
document are its relative rank, a flag indicating if it is relevant or not, and its similarity
with the query in question.  Consider the first row from the table for P-norm.
Document 18 is ranked highest in the retrieved set, is judged to be relevant with respect
to query 35, and has a similarity of 0.2653, This similarity result can serve to validate

against the "hand-computed’ value obtained in the section on ‘Similarity Computations’
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which appeared earlier. The same kind of validations can also be carried out for the

other schemes.

As seen in Table 9, document 18 is ranked consistently the highest in the retrieved
set by all the schemes except MMM. With P-norm and Paice, 7 out of the ten
top-ranked retrieved documents are relevant, aﬂd with MMM, 6 are relevant. However,
with TIRS, only 5 out of the ten top-ranked retrieved documents are relevant. It is also
interesting to note that while P-norm, Paice and MMM each ranks document 385 the
second of the ten top-ranked, TIRS ranks it the third. TIRS ranks document 375 the
second, while P-norm and Paice each rank it third and MMM ranks it sixth. The MMM
scheme ranks document 286 first, while the P-norm and Paice schemes rank it fourth and
fifth respectively. Surprisingly for TIRS, document 286 is not ranked at all within the
ten top-ranked retrieved documents, even though it is a relevant document. Documents
385, 375 and 286 are shown in Figures 10, 11 and 12 respectively. Though document

375 is not a relevant document, it seems to be quite relevant.
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Table 9. Ten Top

(a) P-NORM SCHEME Cypy= 150, C, = 1.50

document 1D rank relevant similarity
18 I3 1 0.265303
385 2 1 0.253013
375 3 0 0.232333
286 4 1 0.231278
1145 5 1 0.227007
130 6 1 0.206087
402 7 i (.201781
403 8 1 0.197633
1245 9 0 - 0.196567
421 10 0 0.192213

(b) PAICE SCHEME C,y=14,C, = 0.6

document ID rank relevant similarity
18 1 1 0.289074
385 2 1 0.274840
375 3 0 0.248752
1145 4 1 0.247774
286 5 1 (.245275
130 6 1 0.224691
402 7 1 0.216784
1245 & 0 0.213371
403 9 1 0.210157
421 10 0 0.207812

(c) MMM SCHEME C,,=05,C, = 0.6

document (D rank relevant similarity
286 ¥ 1 0.270544
385 2 1 0.259676
18 3 1 0.239676
1145 4 1 0.259676
130 5 1 0.241611
375 6 0 (.238232
1245 7 ] 0.225072
1449 8 0 $.222579
1031 9 0 0.217341
402 10 1 0.216784
(d) TIRS SCHEME
document ID rank relevant similarity
18 : 1 1 1.118024
375 2 0 1.109683
385 3 1 0.978384
1362 4 0 0.945677
1207 5 1 0.841416
1145 6 1 0.782064
1415 7 ] 0.727307
910 8 0 0.722732
130 9 i 0.709542
947 10 0 0.687792

-tanked Documents Retrieved with Query 35 on CISI1
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The document, D5 is as follows (with query terms
highlighted for reader’s convenience):

1 385
.T
Evaluative Research Principles and Practice in Public Service and
Social Action Programs
A
Suchman, E.A.
W

In these days of large government programs intended to reduce poverty,
develop communities, prevent delinquency and crime, control disease, and
reconstruct cities, the predominant rhetotic is that of planning, pilot
projects, experimental and demonstration programs - and evaluation. Those
who seek 1o select for support the more promising plans and projects submitted
to funding agencies have become habituated to the ritualistic inclusion in
the proposal of a final section on Evaluation. In most cases this section
consists of sometimes grandiose but usually vague statements of intent and
procedure for assessing the impact of the proposed action. In some cases
there is an elegant, highly acadernic, and impractical scheme worked out in
meticulous detail by an obviously talented research consultant. In a few
treasured instances there is a well-considered, realistic, and workmanlike
plan for getting some fairly reliable answers to the questions of what worked
and why.

Figure 10. Document 385 from CISI collection
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The document, D¥ is as Follows:

1375

.T

Encyclopedia of Infermation Systems and Services
A

Kruzas, AT.
W

The processing and transfer of information is an important activity of many
thousands of libraries, research institutes, educational institutions,. -
professional and trade associations, non-profit organizations, publishing
houses, government agencies, and others. All of these groups are already
listed in a variety of existing directories. This publication, on the other
hand, has selected from the above groups, those organizations and services
which are principally concerned with storage, retrieval, and dissemination
of information, and in addition, are innovative, experimental, or non-
conventional. A major emphasis is on computerization, micrographics, networks,
advanced reference services, information centers, and data banks,

The Encyclopedia of Information Systems and Services includes descriptions
of the following types of services and facilities:

Information Centers
Computerized Systems and Services
Networks and Cooperative Programs
Data Banks
Documentation Centers
Information Storage and Retrieval Systems
Micrographic Systetns and Services
Research Centers and Projects
Clearinghouses and Referral Centerss
Consulting and Planning Organizations and Services
Information Offices
Industrial Research Information Centers
Professional Associations
Specialized Library Reference Services

Figure 11. Document 375 from CISI coflection
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The document, D% is as follows:

J 286

T

User’s Reaction to Microfiche A Preliminary Study
A

Lewis, Ralph W.

W

Recent emphasis placed on the use of microfiche by large govermment agencies
has increased the pressure in libraries supporting government research to make
greater use of microfiche.. Negative and apathetic user attitudes, expressed by
researchers, indicate that expanded efforts to overcome resistance if the great
potential of microfiche is to be realized.. Efforts in microphotography,
expended on technical achievement in the past, should be directed toward
understanding the user and his needs to discover why he avoids microforms and
how to overcome his resistance to them..

Figure 12. Document 286 from CISI collection
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The E-measures

Since some argue that the users must be allowed to attach different relative
importance to precision and recall, we will next consider E-measures obtamed in
addition to average precision values from our experimental runs. The E-measure is a
performance measure that is computed with respect to a parameter (8) set by the user.
The B-level represents the importance the user attaches to recall as opposed to precision.
As mentioned before, the lower the E-measure, the better is the retrieval performance,
The E-measure is based on a set oriented view of retrieval, where for each query the
recall and precision of a retrieved set are determined. Since our comparison is of

ranking, we have chosen to obtain values for sets representing the best 30 documents.

Tables 11, 12, and 13 present the complete sets of E-measures from the P-norm,
PAICE and MMM runs on CISI. We have summarized the best E-measures at B-levels
0.5, 1.0 and 2.0 along with those of TIRS in Table 10. As we can see from the table, the
best E-measure at ﬁ’-level 1.0 ranks the four different retrieval schemes in the same order

as the best average precision, namely P-norm, PAICE, MMM and TIRS.

Scheme Best Rank Best Rank Best Rank
E-measure E-measure E-measure
B =105 B =10 B =20
P-NORM 7616 1 .7940 1 8060 2
PAICE 7623 2 .7945 2 .80356 1
MMM 7725 3 8060 3 8210 3
TIRS 8065 4 8331 4 8408 4

Table 10. Relative Ranks of Schemes by E-measure at f-levels 9.5, 1.0 and 2.9 on CISI
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Again, at f-level 0.5, the E-measure ranks the retrieval schemes in the same order.
However, at f-level 2.0, the best E-measures seem to indicate margimally better retrieval
. performance with Paice than P-norm. Thus, when one wants to emphasize recall as
twice as important as precision, one might settle on the Paice scheme rather than
P-norm. But, such an inference is simply not valid until we have further seen similar
results from experimental runs on other collections and in any case, the difference

between the P-norm and Paice schemes is clearly not of any real significance,
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Table 11{a). E-measures with P-norm Scheme on CISI at § = 0.5

Cor
Canp 100 125 150 175 2.00 225 250 275 300 325 350 375 4.00

L.0o 7678 7654 7653 7661 7704 7723 7167724 7715 7743 768 7774 7789
1.25 7674 7660 7668 .7658 T730 7740 7741 7707 7697 7756 .7763 7783 7782
1.50 7676 7638 7659 7659 7732 7738 7741 77247679 7729 7755 7787 7780
1.75 6767622 7674 7697 7748 7729 7732 J71S 9713 7711 7738 7767 1775
2.00 7636 .7622 7682 76834 77307732 7728 7715 J704 7734 7711 7741 7742
2.25 7656 7622 7700 7673 7727 7731 702 7686 7675 7687 77327750 7757
2.50 76227638 7678 7705 7701 7683 7675 7689 7635 7689 7700 7728 71742
275 7649 7655 7669 7690 7690 7680 7673 7666 .7673 7720 T719 7741 7762
3.00 7649 1 .7666 7663 7669 7681 .7682 .7663 J686 7651 7713 7729 741 7763
3.25 T668 7665 7636 .7662 76757679 7669 .7669 7683 7725 7726 7732 L7768
3.50 7671 7650 7622 7647 7666 7675 7658 7677 7663 7689 7716 .7737 7757
3.7 7676 7638 7627 7644 7668 7675 7673 76767662 7699 7721 7733 7757
4.00 7676 ,7623 (.7616).7644 7665 7661 7665 7679 7661 7698 7697 7709 7742

Table 11(b). E-measures with Pajce Scheme on CIST at F=05
Cor

Can || 00 01 02 03 g4 05 06 07 08 09 g
0.0 8188 8161 .8164 .8122 8120 .8100 .8051 .8049 8014 8033 .8046
0.1 8059 7966 .8012 .7974 -7892 7875 7851 .7852 7818 7799 7810
0.2 7966 7893 7910 7925 7859 7828 7788 7747 7765 7727 7708
¢.3 7933 7833 7817 7808 7786 7760 7749 7724 7714 708 7667
0.4 7862 7761 7743 7751 7728 7721 7705 7690 7667 7694 7667
6.5 7879 7774 7760 7127679 7642 7661 7663 7836 7628 (7644
0.6 7862 7747 7732 7679 7709 7687 7649 7643 7651 7661 (.7623)
0.7 7839 7781 7738 714 T 7702 7671 7664 7673 7647 7647
0.8 JI848 7760 7741 7737 7750 7762 7686 .7678 7667 7656 ,7634
0.9 7857 7787 7709 7709 7297742 7719 7678 7688 .7672 .7661
1.0 7903 7803 7753 7723 7730 7719 7689 .769] 7696 7696 .7678

B‘ahle IHc).  E-measures with MMM Scheme on CIS] at f = 0.5
Cor

Cavp 0.0 0.1 02 03 04 o35 06 07 08 g9 1.0
0.0 8308 8181 .8177 8108 .8055 .799% 7976 .7992 8098 8210 8383
6.1 8516 .8103 .80%2 L022 7940 7883 7849 7916 .7965 8097 8215
0.2 8502 8063 8000 .78%6 7803 7827 7807 .7896 7949 8065 8159
0.3 8458 8036 7945 718547829 7823 7824 7811 7902 7979 8076
0.4 8450 7995 7942 7866 7815 (.7725).7817 .7834 7822 7912 7995
0.5 8415 7975 7940 7855 7783 77847770 7825 7796 7855 7895
0.6 8421 7961 7923 818 7773 7792 7793 JT75 7803 7804 7842
0.7 8421 8013 .7925 7850 7813 7783 7777 7768 7806 7825 7881
0.8 8421 7979 7912 7811 7821 .7831 78247880 7919 7875 .7936
0.9 8421 7986 .7915 79247957 7943 7967 7972 8043 8035 8060
1.6 9794 8149 8155 8149 R155 8137 B135 8158 8179 .8137 8188

Performance Results



Performance Results

Tahle 12(a). E-measures with P-norm Scheme on CISI at § = 1.0
Cox

Cinn 100 1.25 130 175 2.00 225 250 275 300 325 350 375 4.00
1.00 994 7971 7969 7979 8022 .8039 .8032 .R037 8029 8050 .B076 .8074 .808S
i.25 7991 7976 7980 .7971 8045 8054 .8054 8022 8013 .8059Y .806% .8081 8080
1.50 7994 7958 7973 7972 8048 8051 .8034 .803% 7995 .8034 ,8060 .8058 8077
1.73 7994 7941 7984 B008 806D .8042 .8046 8030 .8028 8016 .R045 8070 .8078
2.00 79797941 7991 8000 .8043 8046 8040 .8030 .8018 .8042 8026 .80354 .8054
2.28 7979 .7941 8006 .7987 8037 8044 8020 .8006 7995 8003 .8050 .8059 8065
2.50 7947 7955 7989 8022 .8017 .8007 8001 8011 7979 8007 .8017 .8040 8051
2.75 7966 7970 .7984 8009 8011 8001 .7998 .7992 7995 8037 .8036 .8056 .8671
3.00 7966 7981 7980 7993 8001 .8005 .7984 8002 .7966 8032 .R048 8056 .8074
3.25 7987 7985 7955 7988 7997 7998 7987 7979 .7996 8040 8043 8046 8078
3.50 79917973 7944 7975 .798% 7997 7973 7986 7976 .8001 8032 .B049 .8064
37s 7992 7960 7952 7970 7992 7997 7985 7983 7974 8013 .8035 .8043 8064
4.00 7992 7946 (.7940).7970 7987 .7981 7978 7991 .7973 .8012 8011 .8019 .804%
Table 12{b). E-measures with Paice Scheme on CISI at B=1.0

Cozr
Cavp || 00 01 02 03 04 05 06 07 o8 0.9 1.0
0.6 8422 8402 .8406 8374 8381 8364 .8323 8319 8291 8308 .831%
0.1 8310 .8230 .8273 .8242 .8174 -8165 .8145 8151 8118 .8111 8124
3.2 8231 .8173 .8187 .8205 8149 8124 8097 .8057 8077 8051 .8032
0.3 8211 8117 .8104 .8097 .80%6 8068 .8069 .8038 .8026 .8023 7984
0.4 8147 .8054 8045 8056 .8037 .8038 .8022 .8008 .7989 .8003 .7985
6.3 8164 8070 .8071 .8033 .7999 7963 7980 7976 7955 (.7945).7965
0.6 8157 .8052 8047 .7994 8016 .7997 .7965 7936 7963 7983 .7950
0.7 -8137 8095 8032 &019 8022 8011 .7978 .7973 7981 L7967 7971
0.8 8147 8063 .8040 .8038 8049 8062 7991 .7985 JI980 7975 7954
0.9 8150 .8092 .8006 .8007 8028 .8044 .8024 .7994 8002 .7992 7982
1.0 8194 8108 .8048 .2018 .803(0 8025 .7992 .8003 .8013 .8011 7994
Table 12(c). E-measures with MMM Scheime on CIS] at B=1.0

Cor
Canp 0.0 0.1 0.2 6.3 0.4 8.5 0.6 6.7 08 0.9 1.0
0.0 8709 8431 .8452 8386 .8334 8286 .8261 .8278 8372 .84%2 8639
0.1 8715 8371 B354 8301 .3228 8175 8141 8210 8254 8349 8438
0.2 8705 .8343 .8287 8186 8117 8142 8113 8199 .8236 .8344 8438
¢.3 8676 8330 .8230 8168 8145 81356 .8139 8117 8202 8270 .836%
0.4 8669 8303 8261 .8179 8120 (.8060).8128 .8150 8132 .8219 8303
0.5 8646 8278 .8247 8138 8098 .8095 .8077 8123 8098 8153 .818%
.6 8650 .8264 .8237 8131 8089 .8095 .8094 .808% BI12 8114 8142
0.7 8630 8307 8225 .8151 8117 .8092 .8089 .8081 8108 .8118 .8167
0.8 8630 8273 8207 8112 8118 8123 8117 .8165 .8194 81354 8207
0.9 8650 8263 .8204 .8214 .8245 8223 8249 8245 8298 .8203 8312
1.0 9843 8408 8412 8408 8412 .8395 8392 .8404 8415 8381 .8422
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Table 13(a). E-measures with P-norm Scheme on CISI at § =20

Con

Performance Results

Canp LO0 125 156 1.75 200 225 2350 275 3.00 325 350 375 4.06
1.00 8117 8092 8086 8104 8154 8169 .8162 8162 8153 8172 5205 8198 8208
1.25 8114 8096 .8095 .8087 .8174 8181 8181 .8148 .8140 8179 8194 8205 8204
1.58 8117 8081 .8089 8088 8177 8178 .BI81 8163 .8123 8155 8187 8182 8199
1.75 8117 (8060).8099 8122 8186 8169 8174 8158 8156 8138 8173 8196 .8212
2.00 8105 (-8060).8104 8116 8171 8174 8166 8158 8145 8167 8159 8192 8193
2.25 8105 (.8060).8118 8102 8159 8171 8150 .8136 .8125 .813] 8192 8193 .8193
2.50 8069 8072 .8102 .8144 8141 8138 .B135 .8142 8108 8139 8148 8171 8180
2,75 8085 8085 .8100 .8132 8137 .B131 .8130 .812% 8123 8169 .8168 .818% 8200
3.00 8085 8099 .8097 8124 .8126 8136 8110 .8124 .8080 8165 8182 .3188 .8208
3.25 8110 8105 8071 8117 8123 8123 8112 8094 8116 .817] 8175 8177 8211
3.50 8114 8693 .8062 8104 8115 8123 .8090 S100 8094 8124 8164 8179 .8191
3.75 8113 .8080 .8073 8098 8119 .8123 .BI0D 8095 .8093 8138 8166 8171 .819}
400 || 8113 8066 (8060).8098 8113 8106 8093 8113 .8092 8137 .8136 .8142 8169
Table 13(b). E-measures with Paice Scheme on CISI at B=240

Cor
Cinn 4.0 0.1 6.2 t.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 8509 8492 8496 8468 8479 8459 .8423 8420 8394 8410 8418
0.1 8405 .8333 8373 8346 5282 8275 8260 .8268 .8230 .8235 8232
0.2 8332 8284 8296 8315 826] 8239 8219 8175 8198 .8177 .8155
0.3 8326 .8229 8217 .8207 8204 8190 8199 8161 8142 8140 .8095
6.4 8261 8166 8167 .8178 .3161 8169 .8147 8135 8111 .8109 8096
0.5 8277 .BIB9 .8206 .8168 .8130 8089 8106 .8094 .8074 (,8056).8084
0.6 8282 8177 .8180 .8120 8133 8116 .8084 .8072 8079 8109 .R072
0.7 8263 8232 3186 8136 8139 8130 .8092 8088 .8095 .8091 .8097
0.8 8277 8192 8158 .8155 .8165 B178 8104 8103 .8100 .8098 8075
0.9 8279 8230 8121 .8122 8145 8163 .8143 8118 8123 8116 8106
1.6 8320 8245 8166 .8132 8148 8147 8104 .8126 8141 8133 .8117
Table 13(c). E-measures with MMM Scheme on CISI at B=20

Cor
Canp 06 01 02 03 ¢4 05 06 07 068 99 ]
0.0 8821 8564 .8590 .8524 .8470 B426 8400 .8418 .8506 8616 .B761
0.1 8826 .8497 8484 .8430 .8362 8310 .8279 8352 8391 .849p 8614
0.2 8818 .8475 8423 8326 8265 8201 .8250 8346 8368 .8469 .836%
0.3 8796 .8473 8400 8321 8209 8291 .8295 .8266 .8346 8407 8511
0.4 B791 8458 8422 8334 8287 -8233 8281 .8308 .8287 .8378 .8461
0.5 8774 8412 8383 8291 .8239 8234 (8210).8252 .8225 8283 8316
0.6 8777 8399 8375 .82M1 8230 8220 .8220 8221 8249 8252 8269
0.7 8777 8437 8356 .828] 8248 8221 .8220 8214 8236 8236 .8280
0.8 8777 8398 8330 .8226 .8234 8238 8231 8275 .8300 .8263 8311
0.9 8777 8373 8316 .8326 .8363 8332 8359 .8350 .8394 .839] 8407
L0 9871 .8504 .8507 8504 8507 8491 .848% 8498 8500 .8472 .8s509
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Experimental Analysis on CACM and INSPEC Collections

The same set of experimental runs were performed on the CACM collection as on
CISI. However, experimental runs on the INSPEC collection were carried out with the
coefficients of AND and OR set at larger intervals and only within the range of peak
retrieval performances observable from runs on the previous two collections.  Since
TIRS did not do well on both the CJ SI and CACM collections as compared to any of
the other schemes and since the INSPEC collection has more documents and longer
queries, we did not think it was worthwhile for us to run TIRS on the INSPEC
collection. On INSPEC, we have also made no experimental runs in this study with

P-norm using any particularly large coefficients of AND and OR.

CACM

Collected Results

Table 14 shows the P-norm runs on the CACM collection for coeflicients set at 1,
6, 12 and 50, while Table 15 shows runs with coefficients set between 1.0 and 4.0 with
intervals of 0.25. Again, it is clear that the P-norm scheme does not generally perform
well when large coefficients are used. At Coeffyyp and Coeff,, equal 50, the average
precision obtained with the P-norm scheme is 0.2580, while the average precision

obtained for the standard 'Boolean scheme is 0.1577. However, the overall best average

Performance Results 78



precision for the P-norm runs is 0.3249; it occurs at C,y, = 1.00 and C,,=1.25. The
P-norm scheme, at its best, shows an improvement of 106 percent in terms of average

precision over the standard Boolean scheme,

Table 16 presents the Paice runs on the CACM collection for Coeff,y, and Coeff,,
set between 0 and 1 with intervals of 0.1, The overall best average precision for the
Paice runs, occurring at C,yp, = L0 and C,, = 0.7, is 0.3215, which is a little lower than
that for P-norm. In terms of average precision, the Paice scheme has an improvement
of 104 percent over the standard Boolean scheme. Also, both the P-norm and Paice
schemes show an improvement of about 85 percenf in retrieval effectiness (as indicated
by their best average precisions) over the classical fuzzy-set scheme which has an average

precision of 0.1745,

Table 17 presents the MMM runs on the CACM collection for Coeff,y, and
Coeff,r set between 0 and 1 with intervals of 0.1. The overall best average precision for
MMM runs, occurring at Cgyp=0.9, and C,z=0.4, is 0.3300. This peak average
precision is higher than that for both the P-norm runs and the Paice runs, The MMM
scheme has improvement of 109 percent over the standard Boolean scheme and 89

percent over the classical fuzzy-set scheme in terms of average precision.

For TIRS, the average precision obtained is 0.2804. As with CISI, the average
precision for TIRS on this collection is lower than the best average precisions of P-norm,
Paice and MMM, In terms of average precision, the TIRS scheme has an improvement
of 78 percent over the standard Boolean scheme and also an improvement of 61 percent

over the classical fuzzy-set scheme,
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It is noted that similar observations for the boundary cases of the various retrieval
schemes on the CISI collection can be made for CACM and INSPEC. As on the CIS]
collection, analysis of the same kind with surface plots and graphs showing changes in
average precisions with respect to changes in Coeffm at constant levels of Coeff,,, and
vice versa, can be carried out with the average precision results. The surface plots and

related graphs for various schemes on CACM are given in Figures 13, 14 and 15.

As compared to the corresponding surface plot and related curves on CISI, those
found in this section for the P-norm scheme on CACM show a little more variation in
average precision with respect to both the coefficients of AND and OR. On the CACM
collection, the surface plot for the Paice scheme is virtually identical to that on CISI,
while the related curves are close to their counterparts on CISI. Similarly, the surface
plot for the MMM scheme is just as smooth as that on CISI, and the related curves

show the same behavior as their counterparts on CISI.

COR
Cnp 1 6 12 50
| (.3122).3102 .3093 .3025
6 2977 2965 2975 2862
12 2975 2943 2932 2833
50 2850 2733 2706 .2580

Table 14.  Average Precision Values with P-norm Scheme on CACM
for set of Coefficients: 1, 6, 12 and 50,
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Performance Results

Table 15, Average Precision Values with P-norm Scheme on CACM
Cor
Cunp 1.00 125 150 1,75 200 225 250 275 300 325 350 375 4.00
1.00 3122 (.3249).3201 3187 .3172 3170 .3176 3184 .3178 3177 .3168 .3141 .3136
125 3206 .3217 .3186 .317% 3162 .3161 .3170 .3172 .3163 .3138 .3138 .3132 .3127
1.50 3181 3186 3171 .3148 3148 .3148 .3143 .3141 .3127 .3126 .3124 .3117 .3095
1.75 3171 3170 .3172 3147 3149 .3124 3112 3111 .3116 .3108 .3110 .3098 .3089
2.00 3188 3178 .3169 .3154 .3138 .3125 .3133 .3123 .3121 .3115 .3116 .3113 .3108
2.25 3191 3161 .3160 .3143 .3150 .3128 .3121 .3129 .3127 .3123 .3120 .3111 .3108
2.50 3167 3167 .3152 .3148 3140 .3135 .3133 .3130 .3129 .3129 .3129 .3118 .3106
2.78 3142 3144 3134 .3126 .3123 .3108 .3104 .3112 .3103 .3099 .3097 .3091 .3086
3.00 3115 .313¢ 3107 .3091 .3088 .3091 .3092 .3094 .3093 .3090 .3083 .3073 .3067
3.28 3097 .3096 .3092 .3076 .3079 .3077 .3078 .3082 .3079 .3078 .3078 .3069 .3066
3.50 3102 3102 .3095 3081 .308D .3085 .3083 .3088 .3087 .3085 .3085 .3079 .3075
3.75 3088 .3088 .3077 .3064 .3068 .3071 .3072 .3077 .3080 .3074 .3074 .3064 .3060
4.00 3079 .3072 .3065 .3057 .3058 .3061 .3065 .3069 .3064 .3064 .3063 .3057 .3052
Figure 13(a). The P-norm Scheme on CACM: Surface Plot
Average Precision vs. Coeff,5, and Coeff,,
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Figure 13(b). The P-norm Scheme on CACM:
Average Precision vs, Coceffynyp for Various Levels of Coeff,p
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Figure 13(c). The P-norm Scheme on CACM:
Average Precision vs, Coefffyx for Various Levels of Coeffinn
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Table 16. Average Precision Valyes with Paice Scheme on CACM
Cor

Cunp 0.6 0.1 62 03 04 o5 06 07 08 o9 1.0
0.0 1745 1731 1720 1720 A723 1723 1723 17173 733 1744 1743
6.1 2977 2980 .3001 .3021 3025 3020 .3039 .3034 3050 .3046 3044
0.2 2952 .2946 .2995 3006 3012 .3014 3048 3047 3041 .3039 .303S
0.3 2992 2988 .3032 .3036 3065 .3063 3086 .3089 3075 3065 .3086
0.4 3015 3016 .3058 3086 3091 3086 .3108 .3105 3108 3124 3119
0.5 3006 .3015 .3066 .3079 S100 3100 3117 3171 3137 3130 .3138
0.6 3021 ,3039 .3i06 .3111 3114 3118 .3141 .3150 3154 3165 .3171
0.7 3013 .3054 .3095 3103 S105 .3112 3137 3151 3146 3156 .3177
0.8 30243078 3096 3155 3117 3127 3157 3155 3169 .3182 .3178
0.9 -3058. 3086 .3106 .3111 3137 3183 3157 .3180 3190 3197 3097
1.0 3091 3096 .312] .3137 3161 3170 3192 (:3215).3134 3127 3122

Figure 14(a). The Paice Scheme on CACM: Surface Plot
Average Precision vs. Coeff,np and Coelfyp
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Figure 14(b). The Paice Scheme on CACM:
Average Precision vs. Coeff,np for Various Levels of Coeff;n
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Figure 14(c). The Paice Scheme on CACM:

Average Precisio
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Table 17.  Average Precision Values with MMM Scheme on CACM
Cor

Cynp 0001 02 03 04 05 06 07 08 09 10
0.0 2015 2590 .2597 2668 2683 .2727 .2737 -2625 2651 .2420 .2360
0.1 2092 2747 2732 2717 2744 2767 2759 2718 2680 .2602 .2573
0.2 2118 2790 2775 2815 2862 2873 2864 2795 2789 2684 2798 .
0.3 2184 2884 .2916 .2938 2951 .2975 .2954 29407 2924 2984 2922
0.4 2258 3007 3046 .3077 3068 .3098 3115 3180 3169 .3130 .3104
0.5 23393110 3171 3152 3192 .3187 .328% 3263 3243 3227 3234
0.6 23463127 3161 3191 .3177 .3267 .3284 3269 3256 .3232 .3196
0.7 2342 3186 .3175 .3173 3267 .3267 .328% J261 3238 3206 .3194
0.8 2339 3160 3165 .3269 .3265 .3293 3299 3249 3228 3198 3188
0.9 2350 3177 3273 .3295 (3300).3281 .3288 3233 3218 3200 .3193
1.0 0627 1752 1737 .1754 .1740 .1724 1724 720 1717 1732 1745
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L

Figure 15(a). The MMM Scheme on CACM: Surface Piot
Average Precision vs. Coeff, ~p and Coeff,,,
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Figure 15(b). The MMM Scheme on CACM:
Average Precision vs. Coeff,np for Various Levels of Coeflor
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Figure 15(c). The MMM Scheme on CACM:
Average Precision vs. Coeff;,, for Various Levels of Coeff i
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Prediction Models

Table 18a shows a summary of the results for the SAS forward selection procedure
performed on CACM. Again, the table presents the sequential steps in which the
predictor variables are entered. With P-norm, C,,, is entered first, followed by C,, and
CennCor  With Paice, the CavoCor 1s entered ﬁrét followed by C,,, and Cor-  With
MMM, the C3y, variable is entered first, followed by Ciwp and C,p. Here, the sequence
in which the predictor variables are entered with the P-norm or Paice scheme is quite
different from the corresponding sequence on CIS]. However, for the MMM scheme,
the first two steps of the sequence in which the Ciwp and 2, are entered,
correspondingly match those on CISI. For the MMM scheme, it is noted that the
variable C,y,C,, is entered only in the last step on CACM, while it is entered in the third

step on CISI.

Table 18b shows the best 3-, 4-, and 5-variable models obtained for each retrieval
scheme using the SAS MAXR procedure. On the CACM collection, it seems that these
prediction models (particularly the Paice scheme) are not as well-fitted when measured
in terms of R? as is the case on CISI. However, in terms of &2 and C(p) combined, the
set of prediction models with the P-norm scheme on CACM are considerably better than
the corresponding set on CISI. It is interesting to observe that, for the set on CACM,
the averége brecision in each model shows consistent relationships with respect to the
variables C,,p, C,,, and CunnCor . This is not quite the case for the set on CISI; ascan
been seen from Table 6b, the regression coefficient for the variable Cor thches sign
from negative to positive, as one moves from the best 4-variable model to the best

S-variable model. While the best S-variable model for the MMM scheme on CACM is
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quite acceptable in terms of R? and C(p) combined, none of the models shown here for

the Paice scheme seems well-fitted at ali.

for the best 3, 4 and 5 variables obtained with the omission of boundary values. As on
CISI, all the best 3-variable models are well-fitted for all schemes. For P-norm, the best
3-variable model hag R*=0.8745 and C,=44.1628: for Paice, R2=0.8318 and
G, = 26,0692, and for MMM, R2=0.9304 and C, = 30.8186.
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Table 18a. Stepwise Regression Results on CACM Collection

Summary of SAS Forward Selection Procedure

Dependent Variable : Precision

P-NORM SCHEME

STEP VARIABLE PARTIAL MODEL C(P) F PROB > F
ENTERED RSQUARE RSQUARE
1 Cewp 0.6888 0.6888 235.044 369.5810  0.0001
2 oR 0.1540 0.8427 39.130  162.5375  0.0001
3 CowCor 0.0240 0.8668 10.243 297611 0.0001
4 2 0.0017 0.8684 10.115 2,063  0.1528
5 Clp 0.0046 0.8730 6.231 58756  0.0164
6 Cinp 0.0012 0.8742 6703  1.5309  0.2178
7 Cup 0.0005 0.8747 8.000  0.7030  0.4030
PAICE SCHEME
STEP VARIABLE PARTIAL MODEL cpP) F PROB > F
ENTERED RSQUARE RSQUARE
1 CynoCor 0.1349 0.1349 477122 21839  0.1616
2 AND 0.0448 0.1798 590186  0.7107 0.4144
3 R 0.3078 0.4876 1.93475  7.2076  0.0199
4 3D 0.0627 0.5503 271899 1.5338  0.2413
MMM SCHEME
STEP VARIABLE PARTIAL MODEL cP F PROB > F
ENTERED RSQUARE RSQUARE
1 Cwp 0.1076 0.1076 366.938  14.3539  0.0002
2 2 p 0.4785 0.5862 109.431 136.4425  0.0001
3 R 0.0547 0.6408 8L782 - 17.8090  0.0001
4 Cia 0.0913 0.7321 34263 39.5432  0.0001
5 Cin 0.0394 0.7715 14905  14.8238  0.0001
6 Conp 0.0165 0.7881 7.938  8.8935  0.0035
7 CownConr 0.0036 0.7916 8.000  1.9379  0.1666
92
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Table 18b. Selected Prediction Models of Average Precisions On CACM
Best 3-, 4- and S-variable Models Obtained by MAXR

P-NORM SCHEME

Prec = 0.3201 0-0053C 1vp, — 0.0034C 0 + 0.0007C 5, Cpp

s = 0.600002
R*=086677s
€, = 10.24302

Prec = 03302 — 0-0053C yvp = 0.0045C 0 + 0.0007C 4y Ce + 0.0002C3,

5% = 0.000002
R =0.868430
Cp = 10,11502

Prec = 0.3353 — 0-0053C gp = 001190 + 0.0007C,pC o + 0.0034C 2 — 0.0004C

52 = 0.000002
R* = 0.873008
C, = 6.231063

PAICE SCHEME

Prec = 02217 +0.1200C p + 0.1139C 0 — 0.1446C, ) o
s = 0.000006
R*=0.487565
€, =1.943750
Prec = 0.1684 + 0.2475C yp + 0.1140C0g ~ 0.1446C. 1 pCopp — 0.0750C2

52 = 0.000006
R = 0550275
€, = 2.718988

Plec = 0.1952 + 0-2482C 4vp = 0.1455C 4, Cg = 0.0750C2 i, + 0.1555C5 5 — 0.0684C)

s22= 0.000006
R*=0.558406
C, = 4.559502

MMM SCHEME

Prec = 0.2324 + 0.0369Cp + 0.6276C vy — 0.6800C3

s? = 0.00092¢6
R = 0.640830
C, = 81.78215

Prec = 0.2068 + 0.2077Cop + 0.6276C vy, — 0.1709C2 , — 0.6300C 3 np

2 = 0.000697
R*=0.732140
C,=34.26332

A
Prec = 0.1918 + 0.4470C 5 + 0.6276C2 p — 0.7981C ], ~ 0.6800C3 5, + 0.4182C) 5

5% = 0.008599
R = 0771525
C, = 14.90459
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Table 19a. Stepwise Regression Results on CACM Collection
(With Boundary Values Omiitted)
Summary of SAS Forward Selection Procedure
Dependent Variable : Average Precision

P-NORM SCHEME
(with independent variables set within range 1.5-4.0)
STEP VARIABLE PARTIAL MODEL P F PROB > F
ENTERED RSQUARE RSQUARE
1 Ciyn 0.7051 0.7051 252174  284.5151 0.0001
2 Cor 0.1219 0.8270 101.516 83.1977 0.0001
3 CennConr 0.0474 0.8745 44.163 44.1856 0.0001
4 Ciwp 0.0066 0.8811 37.862 6.4682 0.0123
5 Con 0.0148 0).8959 21.366 16.3156 0.0001
PAICE SCHEME
(with independent variables set within range 0.2-1.0)
STEP VARIABLE PARTIAL MODEL (P F PROB > F
ENTERED RSQUARE RSQUARE
1 Cinp 0.6003 0.6003 158.433 118.6355 0.0001
2 Con 00,1440 0.7443 75.631 43.9123 0.0001
3 Civn 0.0875 0.8318 26.069 40.0757 0.0001
4 Cir 0.0326 0.8643 8.897 18.2369 0.0001
5 Cixp 0.0093 0.8736 5.447 5.4903 0.0218
6 Cigr 0.0013 0.8749 6.698 0.7523 0.3886
7 ConnCon 0.0012 0.8761 8.000 0.6981 0.4061
MMM SCHEME
(with independent variables set within range 0.1-0.9)
STEP VARIABLE PARTIAL MODEL cP F PROB > F
ENTERED RSQUARE  RSQUARE
1 Cavp 0.7933 0.7933 231.240  303.2170 0.0001
2 Cip £.1305 (0.9238 38.675 133.5042 0.0001
3 CinoCor 0.0066 0.9304 30.819 7.3101 0.0084
4 Cia 0.0089 0.9393 19.504 11.1807 0.0013
5 Cor 0.0113 0.9506 4710 17.0878 ¢.0G01
6 Cimp 0.0004 0.9510 6.119 0.5981 0.4418
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Table 19b. Selected Prediction Models of Average Precisions On CACM
(With Boundary Values Omitted)
Best 3-, 4- and S-yariable Models Obtained by MAXR

P-NORM SCHEME
(with independent variables set within range 1.5-4.0)
A .
Prec = 0.3224 - 0.0039C,, + 0.0009C 1y Cog = 0.0010C2,,

5% = 0.000001
R*=0.874453
C, =44.16275
A
Prec = 0.3241

= 0.0043C58 + 0.0011 C g Cpp ~ 0.0016CSnp + 0.0001C2 )
s? = 0.000001
R®=0.881084
C, =37.86209
Prec = 03061 4 0.0213C 1y — 0.0042C 5 4+ 00011C, 15 Cop — 0.0096C2, ) + 0.0011C]
52 = 0000001
R? = 0.895859
C,=21.36639

PAICE SCHEME
{with independent variables set within range 0.2-1.0)

Prec = 0.2913 + 0.0434C, v + 0.0070C,,, — 0.0242C% 5,
s22= 0.000004
R* = 0831797

C, = 2606915

Prec = 02908 ¢ 00434C.nvp — 0.0242C ]y + 0.0307¢2  — 0.0249C3
s%= 0.000003
R’ = 0.865530

C,=8.195776

Prec = 0.2855 4 0.0786C 4y — 0.0900C2 1, + 0.

0307CS5 + 0.0366C3 5, — 0.0240C)
22 = {.600003

R*=0.874792

C, = 4.745967

MMM SCHEME
(with independent variables set within range 0.1-0.9)
Prec = 02500 4 01861C 1 + 0.0111C, yp Cppp ~ 0.1230C%
52= 0000029
R = 0.930385
C, =30.81862
A
Prec = 02415 4 0.1917C 1 + 0.0332Cpp - 0.1230¢2,,

~ 0.0319C5
s%==0.000022

R™ = 0.949027

C, = 5.016495
A
Pre¢ =

0.2444 + 0.1858C 1y + 0.0273C 1y + 0.0117C 1 pCop — 0.1230C2 y, — 0.0319C3

s22= 0.000021
R =10.950574
C, = 4.710257
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Discussion

Scheme Best Rank Best Rank
Precision E-measure

P-NORM .3249 2 71346 1
PAICE 3215 3 7358 2
MMM 3300 | 1429 3
TIRS .2804 4 7506 4

Table 20. Relative Ranks of Schemes by Average Precision and E-measure on CACM.

Table 20 shows the summary of best average precision values and B-measures with
f=1 on the CACM collection for all the retrieva] schemes being considered and their
relative ranks, In terms of average precisions, MMM is ranked first, followed by
P-norm, Paice and lastly TIRS. The TIRS average precision is much lower than the best
average precision for any of the other schemes. This set of rankings is not quite the
same as that on CISI. Recall that on CISI, the order is P-norm, Paice, MMM and
TIRS. Nonetheless, in terms of E-measufes at f-level 1, the rankings of retrieval

schemes on CACM are consistent with those on CISI.

Consider the ten top-ranked documents retrieved for each scheme using query 24
as shown in Table 21. For all of the schemes, 3 out of the ten top-ranked documents
retrieved are relevant, Doéuments .1696, 268, and 749 are consistently ranked as
respectively the first, second and third by each of the schemes in the ten top-ranked
documents. Query 24 is shown in Figure 16, and documents 1696 and 749 are shown in
Figures 18 and 19 respectively. Document 1696 is certainly a relevant document,

Document 749 is a very short document, and it has a match of the query term
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“stochastic”. With respect to query 24, this document seems relevant, but it was not

judged as one of the relevant documents in the collection.

From Table 21, it is interesting that P-norm, Paice and TIRS each ranks the same
set of ten top-ranked document in exactly the same way. However, this is not so for
MMM. On a closer look, we see that MMM did not retrieve the same set of ten.
top-ranked documents and that it ranked document 1892 more accurately than the other

schemes.

Performance Resulis 97




document ID
1696
268
749
1410
1892
1194
2335
2742
1435
1133

document 1T}
1696
268
749
1410
1892
1194
2335
2742
1435
1135

document ID
1696
268
749
1892
1540
1194
2742
1435
1235
1410

document ID
1696
268
749
1410
1892
1194
2535
2742
1435
1135

rank
1
2
3
4
5
6
7
&
9
10

rank
1
2
3
4
5
6
7
8

9
i0

—

ank

~ICh L B b

0o
funl

relevant

DO OO D D0 ke

relevant

DT O O~ OO e

(c) MMM SCHEME Co4=109,C, =04

relevant

OO O i (D bt o

(d) TIRS SCHEME

COLOO = -

relevant

(a) P-NORM SCHEME C,y=1.00,C, = 1.25

similarity
0.288768
0.227418
0.227415
0.195959
0.194885
0.191667
0.190238
0.186343
0.186343
0.153422

(6) PAICE SCHEME Cpy=10,C, =0.7

similarity
0.288768
0.227415
0.227415
0.195959
0.194883
0.191667
0.190238
0.186343
0.186343
0.153422

similarity
0.068225
0.068224
0.068224
0.042640
0.042640
0.040935
0.039798
(.039798
0.039798
0.039798

similarity
0.866304
0.682244
0.682244
0.58787%
0.584653
0.575000
0.570713
0.559028
0.559028
0.460265
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The query, 0% is as follows:

Q24 = (AND ( <applied, 1.0>, < stochastic, 1.0>, < processes, 1.0>))

Figure 16. Query 24 from CACM Collection

The document, D16% ig a5 follows:
J 1696
T

An Algorithm for Identifying the Ergodic Subchains

and Transient States of a Stochastic Matrix

W

An algorithm for identifying the ergodic subchains

and transient states of a stochastic matrix

is presented. Applications in Markov renewal programming
and in the construction of variable length

codes are reviewed, and an updating procedure for dealing
with certain sequences of stochastic matrices :

is discussed. Computation times are investigated experimentally
and compared with those of anaother recently

propose method.

B

CACM September, 1963
A

irox, B. L.
Landi, D. M.
K

stechastic matrix, ergodic, chain identification
.C
5.39 5.5

N
CA680905 IB February 22, 1978 9:04 AM

Figure 17. Document 1696 from CACM Collection

The document, D™? ig ag follows:
1749

T

Note on Stechastic Matrices

.B

CACM September, 1963

A

Dumey, A. L.

N

bA63U909 IB March 13, 1978 7:35 PM

Figure 18. Document 749 from CACM Collection
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Table 22 presents the summary of the best E-measures at B-levels 0.5, 1.0 and 2.0,
obtained from Tables 23, 24 and 25. Whether the f-level is set at 0.5, 1.0 or 2.0, the
E-measure consistently ranks the retricval schemes being considered in the order

P-norm, Paice, MMM and TIRS.

The best E-measures for P-norm and Paice on the CACM collection do not seem
to be significantly different from cach other. The best E-measure of the MMM runs
indicates that the MMM scheme does not do as well as P-norm or Paice, but performs

relatively better than the TIRS scheme,

Scheme Best Rank Best Rank Best Rank
E-measure E-measure E-measure
g =05 B =10 B =20
P-NORM 7663 1 7346 1 6654 1
PAICE 7676 2 .7358 2 6668 2
MMM 7746 3 L7429 3 6740 3
TIRS L7790 4 7506 4 .6893 4

Table 22. Relative Ranks of Schemes by E-measure at §-levels 0.5, 1.0 and 2.0 on CACM
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Table 23(a). E-measures with P-norm Scheme on CACM at == 9.5

Cor
Cann 1.00 125 1.5¢ 175 200 225 230 275 3.00 3.25 330 378 4.00

1.60 7257694 7673 7695 76957707 7719 7725 T726 9720 7721 7721 7721
1.25 7723 .7692 7671 76947699 7712 7107723 77129 7724 J712 7719 71719
1.50 7717 7685 (.7663).7694 .7699 7693 J7YT 7730 7730 7731 7733 7732 7732
175 77237684 7675 7692 7698 7704 7724 7736 77367737 7731 7731 7738
2.00 77237690 7690 707 7705 7711 7723 77297743 7738 7733 7738 7745
2.25 7730 7683 7677 .7713 J698 7703 7723 7730 7737 7737 7744 7738 7738
2.50 7736 7683 .7684 77267705 7717 7730 77447752 7752 7746° 7753 7753
2.75 T741 7695 7697 7724 7738 7745 7752 7758 -T758 7758 7759 7768 7766
3.00 77417709 7697 7739 7746 7746 7759 7765 7758 7758 7765 7773 7786
3.25 7417702 7717 7746 7746 7760 7773 77737773 7778 7779 JT79 7179
3.50 749 7717 1716 7761 J768 7768 7779 7779 7785 7792 7786 .7793 7793
3.75 7763 7725 7724 7768 7768 7768 7786 L7786 7792 7799 7793 7793 7808
4.00 7763 7746 7730 .7768 J775 7775 7786 7792 77997799 7793 7800 7800

Table 23(h). E-measures with Paice Scheme on CACM at 8 =05
Cor

Canp 0.0 0.1 02 03 64 g5 06 07 08 o009 1.0
0.0 -8929 8929 8929 go3g 8929 8929 8929 929 -8929 8918 .8923
6.1 7957 7922 7895 7883 7857 7876 .7858 7842 7853 7860 7855
0.2 7943 7916 7884 .787] 7845 7838 7814 7790 77957809 7815
0.3 7930 7895 7871 .7859 7801 .7795 7783 7783 T783 7790 7773

7915 7876 7857 7798 77477737756 7756 7755 7783 7768
7884 7850 .7812 7877749 7741 7297730 7743 7737 750
7865 7818 .7749 .7745 J722 9727 7724 9718 7704 7725 7731
7852 7810 7751 7732 7708 7736 7127699 7705 7725 7731
78417792 7751 7724 J722 7722 7704 7699 7711 71717 7730
7821 7773 1731 7719 7704 7701 (.7676).7692 7698 7717 7723
7823 7768 7733 -7728 7698 .7696 7673 7687 7707 7719 L7725

TP ooo
Soxunink

Table 23(c). E-measures with MMM Scheme on CACM at g =05
Cor

Cao || 00 01 02 03 g4 %ps 06 067 08 09 19
0.0 8415 8115 8088 8027 8017 .8017 8023 8025 .8035 8074 8124
0.1 8386 .7954 7954 7927 7940 7933 7931 7974 7989 .7990 8035
0.2 - 8359 7913 7906 7898 7883 7891 7895 .79p] 7901 7924 7952
0.3 8327 7874 7859 7336 7830 .7828 7815 .7816 7815 .7820 7879
6.4 8333 7844 7815 .7813 7806 .7804 7803 .7779 7788 7803 .7849
0.5 8319 7793 7784 7795 7807 7759 7752 7749 765 7788 7834
0.6 8304 7771 7780 7785 7752 7759 7757 (-7746).7764 7790 7830
0.7 8311 7801 792 7767 767 7759 7761 7779 7805 7831 7875
0.8 8311 7798 7767 J773 7773 7770 9776 7792 7828 7836 .7896
0.9 8324 7780 7801 7778 7796 7808 7823 7828 7842 7869 7903
1.0 9362 8872 8872 -B878 8907 8923 8929 8929 8929 8929 8929
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Table 24(a). E-measures with p

-horm Scheme on CACM at f = 1.0

Cop
200225 2350 275 349

1]

Can 125 150 175 325 350 375 409
1.60 7386 .7362 7381 .7379 L1390 7402 7406 7408 7403 7405 7405 7405
1.25 7380 7338 7375 7380 7394 7387 7400 7407 7402 7392 7399 7399
1.58 7373 (.7346).7375 7380 .7375 7396 7409 7409 7412 7417 7415 7415
1.73 7370 7354 7370 7377 7381 7402 7416 7416 7418 7412 7412 7419
2.00 7374 7374 7389 7384 7388 7400 7407 7423 7419 7420 7420 7427
2.28 7365 .7359 7395 71374 7379 7400 T410 7417 417 7425 74200 7420
2.50 7364 7368 7408 ,7384 7395 7410 7426 7438 7438 7433 7440 7440
2,78 377 7381 7402 7418 7427 7437 J442 7442 7442 7446 L7452 7452
3.00 7393 7381 7421 7430 7430 7445 7450 7442 T442 7453 7462 7476
325 1384 7405 7430 7430 71449 7464 7462 7462 7466 7468 L7468 .7468
350 7405 7402 7451 7458 7438 7467 7467 1475 7482 7477 7487 7487
3.75 7414 7414 7458 7458 7438 7477 4777482 7492 7487 7487 7494
4.06 7440 7419 7458 7468 .7468 7477 7482 7492 7492 7487 7494 7494
flable 24(b). E-measures with Paice Scheme on CACM at = 1.0
Cor
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3 0.9 i.0
]
8736 8736 8736 8736 8736 .8736 8736 .8736 8726 873}
7620 .7590 53777551 7372 7554 7549 7550 7359 7554
7645 7615 7581 7568 341 7530 7509 7486 7491 7507
7591 7568 7558 7496 7490 7480 7480 7480 7486 7460
75872 7552 7488 7463 J462 7446 7446 7444 7476 7455
7542 7505 7480 7441 7428 7418 7420 7432 7427 7442
7509 7429 7430 .7408 7413 7416 7409 7391 417 7423
497 7435 7414 7301 7428 7403 7389 .7394 417 .7423
7481 7433 7405 7411 7410 7393 7389 .7399 7406 7418
7462 7414 7401 7392 7385 (.7358).73%0 7385 7405 L7410
7461 7420 7416 7386 7381 .7366 7379 7400 411 7416
[ Table 24(o), E-measures with MMM Scheme on CACAT at f=1.0
Cor
Canp 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.9
0.0 8214 7880 7851 7783 JT767 7767 J174 7769 T778 7820 .786;’
6.1 8178 .7694 7694 7662 678 7668 J663 7712 Ja716.7719 7786
0.2 8147 7647 7640 7627 T609 7620 162G 7627 618 L7646 7667
0.3 8114 7604 7586 .7554 7550 7545 7331 7527 7523 7526 7591
0.4 8118 .75p4 7329 7525 516 .7512 311 7477 7480 7500 .7549
6.5 8100 7498 L7486 7494 7506 7454 7445 7436 7450 7480 7530
0.6 8081 7472 1476 7478 7444 7455 .7448 (.7429).7445 7476 7518
0.7 -8090° 7500 7488 7464 7464 7452 7449 7466 7494 7522 7566
0.8 8090 7494 7464 7471 7472 7462 467 7480 7513 7549 7591
.9 8103 7477 7503 7473 .748% 7502 1511 7514 71529 7561 .7597
1.0 9512 .8685 8685 8693 8717 8731 8736 8736 8736 .8736 8736
102
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Table 25(a). E-measures with Panorm Scheme on CACM at =20

Coz
250 275 3.00

Performance Results

Cyinp 1.0 1.25 159 1,75 200 225 325 350 395 4.00
1.00 6742 6712 6685 6698 6695 6706 .6718 .6719 6722 6718 6720 .6720 6720
125 6730 6700 .6672 6686 6690 6708 .6693 .6706 6713 6709 .6700 6707 6707
1.50 6723 6693 6657 .6686 6690 6682 6706 .6719 6719 6722 6738 6732 6732
1.75 6729 6686 (.6654).6669 .6632 .66%6 6710 6724 6724 6727 6722 6722 6729
2.00 6724 6685 .6684 .6699 66916693 6704 6711 6733 .6729 6731 6731 6738
225 B737 6672 6664 6704 6675 .6680 6704 6719 6726 6726 6735 6731 6731
2.50 6740 .6669 .6677 .6717 6688 6700 .6719 .6739 6764 6764 6759 6766 6766
2,75 6738 6681 .6691 .6704 6724 6745 6760 .6764 6764 6764 6772 6779 6779
3.00 6738 6702 6691 .6737 6750 6750 6769 .6773 6764 6764 6789 .6801 6815
325 6738 6689 6727 .6730 6750 6782 .6802 .6799 -6799 6803 6805 .680% .6805
3.50 6749 6726 6720 .6787 6794 6794 6802 6802 6815 6822 .6317 .6832 6832
3.75 6782 6740 6745 6794 6794 6794 6818 6818 6822 6837 6832 6832 .6839
4.00 6782 6779 6750 .6794 6809 6809 .6818 .6822 6837 6837 6832 .6839 6839
Table 25(b). E-measures with Paice Scheme on CACM at g =24
. Cor

Cyinp 0.0 0. 0.2 03 04 g3 06 07 08 00 1.0

0.0 8338 8338 8338 .833g 8338 8338 .8338 8333 8338 8330 8334

0.1 7020 6974 6938 .6925 6896 6922 6905 .6901 6902 6911 6907

0.2 7008 .6975 6934 6922 6892 6879 6858 6833 6838 .6855 .6859

0.3 69936947 6924 6914 6842 6837 6827 .6827 -6828 .6832 .6783

0.4 6971 6924 6902 6820 .6794 6792 6781 6781 6776 6815 6777

0.5 6929 6883 6843 .6824 6778 6752 6742 6745 B757 6732 6770

0.6 6917 6851 6745 5751 6730 6733 .6745 6738 6712 6745 5752

¢.7 -6897 6826 .6756 .673] 6709 6758 .6731 B715 6719 6748 6752

0.8 68389 6810 .6756 .6719 6737 6736 6718 6714 6720 6727 6739

0.9 6867 6791 6734 6719 6717 6700 (.6668).6700 6705 6725 6730

1.0 6878 6797 6747 6745 6709 6699 .6687 6705 H729 6738 6742

Table 25(c). E-measures with MMM Scheme on CACM at =29

Cor

Canp 0.0 0.1 02 03 04 o5 06 07 08 o9 1.0

.4 7760 7334 7303 7229 72037203 7210 7199 J213 7259 7306

0.1 J702 7107 7107 7069 7086 .7073 7065 7121 119 7120 7192

6.2 7664 7050 7041 7023 6999 7015 .7010 7020 ,7003 7039 .7046

0.3 7629 6997 L6974 6933 6926 .6918 .6904 -6894 L6887 6889 6963

0.4 7625 6936 .6891 .6883 6875 6867 .6869 .6320 -6816 .6844 6893

0.5 7592 6835 6818 .6825 6839 6780 .6767 .6749 6764 6808 .6864

0.6 7566 .6800. 6799 6801 .6763 6784 .6769 (.6740).6755 .6795 6841

0.7 71579 6829 6813 .6797 6797 6777 6769 6785 6819 .6833 6898

6.8 7379 6820 6797 .6803 6806 6787 .6791 6801 6835 6883 6920

0.9 7591 6809 .6844 6801 .6816 6833 .6834 6832 6849 6892 .693]
[ 1.0 9387 8292 8292 8302 8322 8334 8338 .833% -8338 8338 8338
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INSPEC

Collected Results

Tables 26(a), (b} and (c) present the average precision values obtained on the
INSPEC collection using the P?norm, Paice and MMM schemes, Tables 27, 28 and 29
present the corresponding E-measures at B levels 0.5, 1.0 and 2.0, respectively. The best
Scores are summarized in Tables 30 and 31, along with their relative ranks to aid
comparison of relative retrieval effectiveness of the schemes as before on CISI and
CACM. Note that at Coeffyp and Coeff, equal to 1, the average precision value with
the MMM scheme is 0.1497, which 1s also the average precision value with the classical
fuzzy-set scheme. The P-norm, Paice and MMM schemes show an improvement of
about 100 percent on INSPEC over the classical fuzzy-set scheme in terms of average
precisions. The average precision value obtained on INSPEC with the standard Boolean
scheme is 0.0998. The P-norm, Paice and MM M schemes show an improvement of close
to 200 percent on INSPEC over the standard Boolean scheme in terms of average

precisions,
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Table 26.

(8) P-NORM SCHEME

Average Precision Valyes on INSPEC

Cox
Conn 1.00 125 150 175 2.0
1.00 29723044 (.3093) 3077 3070
1.25 29823061 (.3093).3072 3065
1.50 30013059 3081~ 3064 3057
1.75 30123056 3068 3060 3043
2.00 30103062 3072 3062 305
(b) PAICE SCHEME
Cox
Covn 0.70 0.80 0.90 go95
0.70 30223009 3019 3010
0.80 3038 3042 3032 3020
0.90 (.3061).3051 3037 3023
0.95 30553040 3024 3009

(C) MMM SCHEME

Cor
Can 1040 060 080 1.00
0.40 2819 (.2948) 2910 258]
0.60 28212936 " 2885 2737
0.80 2790 2801 2779 2702
1.00 16411624 1583 1497
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Table 27. E-

measures at f = 0.5 on INSPEC

(2) P-NORM SCHEME,
Cor

Caro 100 125 150 175 240

100117084 7056 7247 7021 7013

125117099 7055 7026 7019 7010

13011709 7048 7020 (.7003) 705

L75 11,7100 7057 7015 7022 7013

200 __[|.7096 7059 7025 7028 7027
(b) PAICE SCHEME

Cor

Coo  ||070 080 090 0.5

0.70 11,7033 7065 7065 7079

0.80  11(.7003).7036 7062 7073

0.90  11.7245" 7045 7080 7089
L__095  [I'017 7033 o0 7079
(©) MMM SCHEME

CO.R

Caw ][040 0.60 0.80 1.00

0.40 17245 7380 7210 7531

0.60  11.7220 (.7110).7146 7990

0.80 117332 7296 7316 7417

1.00__ }/.8009 .8040 8038 811
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Table 28. E-measures at B = 1.0 on INSPEC

(a) P-NORM SCHEME

CDR
Comn 100 125 150 175 249
1.00 196 7171 7287 7137 7128
1.25 7210 JT170 7140 JT138 7123
1.50 7203 7164 T137 (.7116).7142
1.75 T212 7173 133 7137 7136
2.00 72107179 7145 7147 7145
b)) PAICE SCHEME

Con
Cono 0.70  0.80 090 g.95
0.70 J146 7180 181 7192
0.80 (.7122).7156 180 7188
0.90 1288 7162 J193 7203
0.95 T136 7150 7184 7191

(¢©) MMM SCHEME

Cox ]
Cop 046 0.60 0.80 1.00
0.40 7333 .7410 7309 7610
0.60 7316 (.7216).7253 7403
0.80 7424 7393 4127515
1.00 8136 8164 8165 8235
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Table 29. E-

(2) P-NORM SCHEME

measures at § = 2.0 on INSPEC

Cor
Com 100 125 156 195 200
LOO 1170817059 7098 7026 7019
125117005 7055 7023 7030 {7012
130 117091 7051 17024 6999 ‘rose
175117097 7061 7020 7005 r0oc
200 [1.7096 7072 77036 7030 7030
(b) PAICE SCHEME
C

Cwr  [|0.70 080 Fop 0.95—’
0.70 11,7031 7066 7068 7073

0.80  [1(.7009) 7045 7068 7073

0.90 117094 7048 7077 ‘7093

895  [|.7023 7037 7073 ‘7077

() MMM SCHEME
Cor

Coo 040 0.60 080 100
040|721 7211 7189 7ag7

0.60 117192 (.7097).7145 731

0.80 117308 7283 7301 720

100 || 8119 8147 8155 8210
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Scheme Best Rank Best Rank
Precision E-measure
B =10
P-NORM 3093 7116 1
PAICE 3061 2 7122 2
MMM 2948 3 7216

Scheme Best Rank Best Rank
E-measure E-measure
=05 B =20
P-NORM 7003 1 7012 2
PAICE 7003 1 7009 1
MMM JTHI0 3 7097 3

Table 31. Relative Ranks of Schemes by E-measure at B-levels 0.5 and 2.0 op INSPEC

Discussion

In terms of average precision and E-measure at B-level 1.0, the P-norm scheme is
superior to the Paice scheme, which is in turn superior to MMM. However, at g-level
0.5, the E-measure ranks both P-norm and Paice the same, and MMM, the lowest of the

three.
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As on CISI at B-level 2.0, the E-measure actually ranks the Paice scheme higher
than the P-norm, Though the performance measures for P-norm and for Paice are close
to each other, with evidence from results obtained on two out of the three collections
used, we may observe that on the average the Paice scheme performs slightly better in

most cases than P-norm under the situation where recall is emphasized over precision.
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Chapter 5

Conclusions

In this study, we have compared the retrieval effectiveness of P-norm, Paice,
MMM and TIRS. As special cases of these retrieval schemes, we also examined the
retrieval effectiveness of the classical fuzzy-set scheme. In addition, we have also
obtained the average precision values for the standard Boolean scheme on afl of the

three collections,

Based on the resulis of our experimental runs on CISI, CACM and INSPEC
collections, we have scen evidence for the following ranked order of the above retrieval
schemes,

(1) P-norm

{2) Paice

3y MMM

(4 TIRS

{5) Classical Fuzzy-set
(6) Standard Boolsan
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This ranking is based on average precision values and E-measures (with § = 0.5
or 1. 0) and holds for the majority of the cases considered, However, at S-leve] 2. 0, for
which recall is deemed twice as important as precision, the E-measure seems to indicate
that the Paice scheme is superior to the P-norm on both the CACM and INSPEC

collections.

Both the Paice and the MMM schemes, which are variations of the classical
fuzzy-set scheme, perform well on all collections, In terms of average precision, the
Paice or MMM scheme shows at least an improvement of 46 percent on CISI, 84
percent on CACM and 96 percent on INSPEC over the classical fuzzy-set scherne, On
the other hand, the P-norm scheme shows a 56 percent improvement over the classical
fuzzy-set scheme on all collections, TIRS has an improvement of only 27 percent over
the classical fuzzy-set scheme on CISI, and an improvement of 61 percent on CACM.
Below we provide a summary of the percent improvements obtained by various schemes
over the classical fuzzy-set scheme in terms of average precision. As seen from the
Summary, the P-norm, Paice or MMM scheme each gives a greater percent improvement
In average precision over the classical fuzzy-set scheme on the INSPEC collection than

on the CACM or CISI collection; and similarly, on CACM than CISI.

Percent Improvements Over Classical Fuzzy-set Scheme

Test Collection

Scheme CIsI CACM INSPEC
P-norm 56 86 106
Paice 54 84 104
MMM 46 89 96
TIRS 27 61 NA
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The P-norm, Paice and MMM schemes generally give higher retrieval performance
than the standard Boolean scheme. As shown by the summary below, except on the
CISI collection, they in all cases attain more than 100 percent improvement over the

standard Boolean scheme in terms of average precision,

Percent Improvements Over Standard Boolean Scheme

Test Collection

Scheme  (CISI CACM INSPEC
P-norm 79 106 210
Paice 77 104 206
MMM 68 109 195
TIRS 46 71 NA

Our result that the average precision values for TIRS on CISI and CACM are
relatively low as compared with the best average precision values of P-norm, Paice, and
MMM, may be in part due to some shortcomings that we may have imposed on our
experimental study. The use of the INNER PRODUCT function for computing the
similarity between a document point and a query point in TIRS may not have been a
good choice. Also, the idea of relevance ball radius of the TIRS scheme has not been
fully made use of in our experimental study in the way implied by Cater & Kraft to

maximize the recall-precision product.

Overall, the differences between the P-norm and the Paice schemes are marginal,
and thus may not be statistically significant. The P-norm scheme performs better than
the MMM scheme by only a small degree. The TIRS performance result is much lower
than that of P-norm, Paice or MMM on both the CISI and CACM collections. The
P-norm, Paice and MMM schemes each has a range of performance results (with

variations in the associated parameter values), from which the best ig selected for
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comparison. However, the TIRS scheme has only a single performance result to be
considered. Therefore, it may be that we have not been able to draw a very fair
conclusion about TIRS in our comparison of various approaches for improving upon

the standard Boolean retrieval,

The P-norm approach, being distance-based, has greater intuitive appeal than
Paice, MMM or TIRS. But, its similarity computation method requires greater
overhead than Paice or MMM. Irrespective of the function used for computing the
similarity between a document and a query point, the TIRS approach, havmg to deal
with the min-terms rather than just the typical Boolean query, is generally a difficult
approach to implement and involves far greater computational costs than other schemes
such as Paice or MMM. As we have seen from the experimental results, the P-norm
scheme does not perform that much better than the MMM, Depending upon the actual
cost of computations, the real overhead of the P-norm may far exceed that of the
MMM. This may not justify its replacement with the MMM scheme where there is only

a marginal loss in retrieval effectiveness.
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