I

Comparison of a Graphical and a Textual
Design Language Using Software Quality Metrics

Sallie Henry
Roger Goff

TR 88-20

Comparison of a Graphical and a Textual Design
Language Using Software Quality Metrics

by

Saliie Henry, Ph.D.
and
Roger Goff

Computer Science Department
Virginia Tech
Blacksburg, VA 24061

Abstract

For many years the software engineering community has been attacking the software
reliability problem on two fronts. First via design methodologies, languages and tools as a
precheck on quality and second by measuring the quality of produced software as a postcheck.
This research attempts to unify the approach to creating reliable software by providing the ability to
measure the quality of a design prior to its implementation. A comparison of a graphical and a
textual design language is presented in an effort to support research findings that the human brain

works more effectively in images than in text,

I. Introduction

In general, the software life cycle of requirements definition, program design,
implementation, testing, and finally, maintenance. The portion of the cycle that is of interest to this
rescarch is that of design and implementation with the inclusion of software quality metrics.
Figure 1 contains a diagram of this part of the software life cycle using complexity metrics. First,
a design is created and implemented in software. At that point, software quality metrics are
generated for the source code. If necessary, as indicated by the metrics, the cycle returns to the
design phase. Ideally, the software life cycle can be “reduced” to that in Figure 2 where the
metrics are generated during the design phase, before code implementation. This modified cycle
will eliminate the generation of undesirable source code, since it is possible to use the metrics,
exactly as before, only earlier. The goal of this study is to indicate the plausibility of using the
“reduced” cycle to increase the efficiency of the software development process by implementing

metric analysis as early as possible. Applying metrics during design was suggested by [11.

The goal of shortening the loop in the life cycle is highly dependent on the ability to perform
the metrical measures on the design, along with the need for evidence that the metric values
produced from the design reflect the quality of the resultant source code. To facilitate this ability, a
software metric analyzer is provided that takes as input either the design or the source code and

produces, as output, a number of complexity metric values.

This research is a quantitative comparison of a textal design tool to a graphical design tool.
Software quality metrics are used to measure both designs and resultant source code. A brief

description of the design tools used in this study follows.

PDL

By adding syntactic requirements to pseudocode, standardization of pseudocode format is
achieved and one defines what is called a program design language or PDL. Program design
languages can be used in both the architectural and detail design stages. A good PDL is adaptable
to its environment, is familiar to both designers and programmers, and has a nonrestrictive syntax
to allow the designer to freely express himself. Among the advantages of a PDL are the ease of
modification, since they can be stored in text files, Other advantages are the ability to syntactically
check the design and easily translate a design to high level code.

The textual design language, or PDL, used in this study has some Pascal-like and Ada-like
constructs, but it is sufficient to say this design tool is a general purpose PDL. For a complete

definition of the PDL, the interested reader is referred to [2].

GDL

Psychological studies have shown that the brain processes visual information faster than
verbal information and that humans actually think in pictures. These findings are the motivation
for designing with graphs. Graphs permit the designer to visualize all the components of a system
quickly and easily, thus allowing the thought process to concentrate on development, A textual
listing of the same system requires the designer to read each line and painstakingly assemble a view
of the system and its components. Design graphs are also easily understandable by inexperienced
programmers and nonprogrammer managers since there is little syntax to learn and only a small set
of symbols with which to become familiar. Graphical design languages are excellent tools for
architectural design, and in contrast to their graphical ancestors are well suited to detailed design,
GDL's can also have the added feature of automated translation to high level programming
language code. Versatility and ease of use are responsible for the wider acceptance and application

of GDL's in real world environments.

GPL is the graphical programming language of the Dialogue Management System, DMS,
being developed at Virginia Tech [3] and is the graphical design tool used in this research. GPL.
follows the Supervised Flow design methodology which dictates that each program and
subprogram has a supervisor which supervises all the flow of information within a diagram,

The basic building block for a GPL computational design is a Supervisory Cell which
contains a supervisor and a Supervised Flow Diagram (SFD). The SFD shows the flow of control
and information within the cell. Intuitively, a supervisory cell represents the definition of a single
subroutine in a system. Figure 3 presents the symbols in GPL used for computational design. The
syntax and semantics of each symbol and the information associated with each supervisor is

discussed.

The Computational Design Symbols in a SFD

Control Flow Arcs

Control flow arcs show the flow of control throughout an SFD. These arcs can connect any
two symbols of GPL together with the exception of databoxes, defined below. Control flow arcs
may or may not have a conditional associated with them. If there is only one control flow arc
leaving a symbol there is no conditional on the arc, however, if there is more than one arc leaving a
symbol there must be a conditional associated with each arc that leaves the symbol. A conditional

associated with an arc is a valid boolean expression.

Data Flow Arcs
Data flow arcs are used to bind databoxes, defined below, to functions, also defined below.
There can only be one data arc connecting a subroutine and a databox, and there is never a

condition associated with a data arc.

Start
There is exactly one start symbol per SFD. The start symbol marks the beginning of the

execution of an SFD. 1t has no arcs coming into it, yet, it may have any number of arcs leaving.

Return

There is at least one return symbol per SFD. Returns have no arcs out of them, but they may
have any number of arcs entering them. The return symbol represents the termination of execution
of an SFD. Returns have no parameters and therefore are not used to return variable values.

Thus, there are no functions that return values in GPL.

Decisions

A decision symbol may have any number of arcs entering it and any number of arcs leaving
it. Tts semantics resemble those of the Pascal “case” and C “switch” statements. Each arc that
leaves a decision must have a boolean expression associated with it. There are a minimum of two

arcs leaving a decision symbol,

Databoxes

GPL databoxes are used to specify the actual input and output parameters to a subroutine call,
They are sometimes called binding boxes since they contain the actyal parameters and the names of
their respective formal parameters. Databoxes have either a data flow arc leading into the box, i.e,,

an output parameter, or out of the box to identify an input parameter.

Inner Code Block (ICB)

An ICB is a symbol that contains the actual code of a system. The code is syntactically and
semantically correct high-level language code. In theory, all of a program’s code could be in an
ICB, however, this use of an ICB is not intended. AnICB ina completely refined design contains

only assignment statements. Any number of arcs may enter and leave an ICB.

4

Functions

The function symbol represents a call to a subroutine that contains no dialogue. A GPL
function is different from a Pascal function since it does not return a value. Each function symbol
contains a name used to identify the corresponding supervisor for that function's definition.
Functions may have any number of arcs leading into and out of them. Any time a function has
more that one arc leaving it, each of the arcs must contain a conditional indicating the conditions
necessary to follow that arc. If the function has input and output parameters in its definition, then -
there must be input and output databoxes aitached, via data flow arcs. If the function does not
have both input and output parameters, it is only necessary to have the appropriate databox (or

none). Function definitions are not nested in GPL.

Dialogue

Dialogue symbols represent input and output operations and may have any number of arcs
leading to them and leaving from them. In the Dialogue Management System, this is where the
dialogue designer takes over the design process. Computational designers either get information
from a dialogue function (input) or give information to a dialogue function (output) and are not
concerned with how the information is manipulated. In the development of an SFD, a
computational designer does not expand or further develop dialogue functions. Dialogue symbols,

like functions, may have databoxes attached to them, via data flow arcs.

DC-Functions
DC-Functions, or Dialogue-Computation Functions, represent subroutines that contain both
dialogue and computational operations. Aside from containing calls to dialogue functions,

DC-Functions have the same Syntax, semantics and requirements as functions.

The Supervisor

There is only one supervisor per SED, and it appears at the top of the diagram. Associated
with the supervisor is a list of input parameters, a list of Output parameters, a list of local variables,
a name, and an SFD. When defining a supervisor's parameters and local variables, each <ID>
given has a named type associated with it, however, as far as GPL is concerned there are no
meaningful types or ways to define them. Therefore, the types specified are meant to be

meaningful only to the designer and programmer.

Observations

GPL supports many desirable concepts of software engineering. First, there is no means of
defining global variables. To some this may appear as a disadvantage, however, eliminating the
ability to define a global variable is an excellent means to control its use. Secondly, and more
importantly, by limiting the size of the work area the definition of shorter, more modular routines
becomes natural.

GPL has some limitations that are particularly annoying. First is the inability to define system
constants which are needed for readability purposes, and second is the inability to define libraries
of routines for the purpose of reusability.

The interpretation of graphical symbols to the more standard token counts used by a number
of metrics is mostly intuitive. However, the exact translation is available for the interested reader
in [4],

Having recognized the need for a structured design methodology, many different design tools
and techniques developed including: flowcharts, HIPO diagrams, pseudocode, program design
languages and graphical design languages. The transition to each new technique is motivated by
the inadequacies of currently available techniques. The most recent transition from PDL's to
GDL's has sound theoretical support from the field of cognitive science which concludes that the

human brain processes pictorial information more efficiently. In this research an automated

software quality metric analysis tool is used to verify that the complexity of graphical designs can
be measured and, more importantly, that programs designed using a graphical design language are
less complex than those designed with a PDL.,

Section two gives a brief description of some of the established software quality metrics
along with a description of the software quality metric analysis tool used in this study. The results
of measuring the graphical language are presented in section three and a comparison of the
graphical language and a textual design language is given in section four. Finally, section five

recounts our conclusions.

II. Metrics and the Analysis Tool

A brief description of the metrics used in this research is presented in this section. For the

interested reader desiring more detailed information on the metrics please see the references.

Code Metrics

Many code metrics have been proposed in the recent past. An effort has been made to limit
this discussion to a few of the more popular ones that are typical of this type of measure. They
include lines of code, parts of Halstead's Software Science, and McCabe's Cyclomatic

Complexity. Each of these metrics is widely used and has been extensively validated [5] [6] [2].

Lines Of Code

The most familiar software measure is the count of the lines of code with a unit of LOC. or,
for large programs, KLOC (thousands of lines of code). Unfortunately, there is no consensus on
exactly what constitutes a line of code. Most researchers agree that a blank line should not be

counted but cannot agree on comments, declarations, null statements such as the Pascal “begin,”

etc. Another problem arises in free format languages which allow multiple statements on one
textual line or one executable statement spread over more than one line of text.

For this study, the definition used is the following: A line of code is counted as the line or
lines between semicolons, where intrinsic semicolons are assumed at both the beginning and the
end of the source file. This specifically includes all lines containing executable and

non-executable statements, program headers, and declarations.

Halstead's Software Science
A natural weighting scheme used by Halstead in his family of metrics (commonly called
Software Science indicators [7]) is a count of the number of “tokens,” which are units

distinguishable by a compiler. All of Halstead's metrics are based on the following definitions:

nj = the number of unique operands,
ny = the number of unique operators,
Nj = the total number of operands.
N2 = the total number of operators.

Three of the software science metrics, N, V, and E, are used in this research.

The metric N is simply a count of the total number of tokens expressed as the number of
operands plus the number of operators, ie,N=Ny+Nj.

V represents the number of bits required to store the program in memory. Given # as the
number of unique operators plus the number of unique operands, i.e., n = nj + ny, then logy (n)

is the number of bits needed 1o encode every token in the program. Therefore, the number of

bits necessary to store the entire program is:

V = N xlogy (n)

The final Halstead metric examined is effort (E). The effort metric, which is used to indicate the

effort of understandin g, is dependent on the volume (V) and the difficulty (D). The difficulty is
estimated as:

D =nl/2 x N2/n2
Given V and D, the effort is calculated as:

E=VXD
The unit of measurement of E is elementary mental discriminations which represents the

difficulty of making the mental comparisons required to implement the al gorithm,

McCabe's Cyclomatic Complexity
McCabe's metric [8] is designed to indicate the testability and maintainability of a procedure
by measuring the number of “linearly independent” paths through the program. To determine the
paths, the procedure is represented as a strongly connected graph with one unique entry and exit
point. The nodes are sequential blocks of code, and the edges are decisions causing a branch.
The complexity is given by:
VG =E-N+2

where

E

N

the number of edges in the graph

il

the number of nodes in the graph.
According to McCabe, V(G) = 10isa reasonable upper limit for the complexity of a single

component of a program.

Structure Metric

It seems reasonable that a more complete measure needs to do more than simple counts of
lines or tokens in order to fully capture the complexity of a module. This is due to the fact that
within a program, there is a great deal of interaction between modules. Code metrics ignore

these dependencies, tmplicitly assuming that each individual component of a program is a

9

Separate entity. Conversely, structure metrics attempt to quantify the module interactions using
the assumption that the inter-dependencies involved contribute to the overall complexity of the
program units, and ultimately to that of the entire program. In this study, the structure metric

examined is Henry and Kafura's Information Flow metric.

Henry and Kafura's Information Flow Metric
Henry and Kafura [6] [9] developed a metric based on the information flow connections
between a procedure and its environment called “fan-in” and “fan-out” which are defined as: -
fan-in the number of local flows into a procedure plus the number of global data
structures from which a procedure retrieves information
fan-out the number of local flows from a procedure plus the number of global data
structures which the procedure updates.

To calculate the fan-in and fan-out for a procedure, a set of relations is generated that
reflects the flow of information through input parameters, global data structures and output
parameters. From these relations, a flow structure is built that shows all possible program paths
through which updates to each global data structure may propagate [10].

The complexity for a procedure is defined as:

Cp = (fan-in X fan-our)2
In addition to procedural complexity, the metric may be utilized for both a module and a
level of the hierarchy of the system. Module complexity is defined as the sum of the complexities
of the procedures in the module, and the level complexity is the sum of the complexities of the

modules within the level.

16

Hybrid Metric

Since, as stated above, code and structure metrics appear to be measuring different aspects
of program complexity, it seems reasonable that a metric be comprised of both types of metrics in
order to capture the complexity of the procedure as much as possible. This is what is termed a
hybrid metric. More succinctly, a hybrid metric is composed of one or more code metrics and
One or more structure metrics. This study examines the hybrid form of Henry and Kafura's

Information Flow metric,

Henry and Kafura's Information Flow Metric
The hybrid form of Henry and Kafura's Information Flow metric which was used in an

actual study on the UNIX operating system is described in [6]. The formula is;

Cp = Cip X (fan-in X fan-out)2
where Cip is the internal complexity of procedure p,

The metric used for the internal complexity Cip may be any code metric,

Description of a Software Metric Analyzer

We have developed a software metric analyzer for use in our research, The analyzer takes
as input either the graphical design, texmal design, or the source code and produces, as output, a
number of complexity metric valyes, The metric analyzer requires syntactically correct code.
When using the analyzer at design time, input consists of syntactically correct graphical designs
written in GPL or syntactically correct PDL designs. A general relation language has been
successfully used as a tool to express the intermediate form of the design or source code [11].
This intermediate form is then translated into a set of relations which are interpreted to produce

metrics. The software quality metric analyzer is based on LEX (a lexical analyzer generator) and

11

YACC (Yet Another Compiler—Compiler), which are tools available with a UNIX environment.
Hence, the analyzer requires 2 UNIX system,

The remainder of this section describes the details of the implementation of the metric
analyzer. For purposes of discussion, the analyzer is divided into distinct three passes. See

Figure 3 fora diagram of the analyzer.

A software metric analyzer, which takes as input PDL or source code and produces several
software metrics, has been developed for use in our research. A general relation language has
been successfully used as a ool to express the intermediate form of the design or source code
[11]. This intermediate form is then translated into a set of relations which are interpreted to
produce metrics. The software quality metric analyzer is based on LEX (a lexical analyzer) and
YACC (Yet Another Compiler Compiler) which are tools available with a UNIX environment.
Hence, the analyzer requires a UNIX system,

The remained of this section describes the details of the implementation of the software
quality metric analyzer, For purposes of discussion, the analyzer is divided into distinct three

passes. See Figure 3.

Pass 1

Pass one has as input the Backus-Naur form (BNF) grammar for the source language to be
analyzed, the semantic routines which dictate processing for each production in the grammar, and
the design or source code to be analyzed. A file containing the intrinsic (built-in) functions,
peculiar to the source language is also input. For obvious reasons, these functions should not be
treated as real functions; they actually act similar to complicated operators and as such are treated
as operators. The source code to be analyzed is assumed to be syntactically correct,

Two files are output from pass one. The first file contains the language dependent metrics

for each procedure: lines of code (LOC) [12], McCabe's Cyclomatic Complexity (CC) 8], and

12

Halstead's Software Science indicators length, volume, and effort (N,V, and E respectively)
[7]. These metrics are produced in pass one since this is the only pass which has the actual code
necessary to generate them. The second file output from pass one contains the Relation
Language code which is equivalent to the source code., Pass one is the only language-dependent
portion of the analyzer. Current source languages processed are the PDL used in this study,
Pascal, “C”, FORTRAN, and THLL, 3 language used by the United States Navy. A Pass one
for Ada is currently being developed.

A difficult portion of thig study was to write a pass one for the graphical language. Since
there is no BNF associated with the graphical tool and no prior definition of a line of code, the
translation of GPL to relation language code was a challen ge. The interested reader is referred 10

[4] for the exact definition of the translation process.

Pass 2

Pass two use the UNIX tools LEX and YACC. The Relation Language code from pass
one is translated into a “set of relations” [10]. This set is completely independent of the original
language. Code can be processed one procedure at a time. An advantage is that the Relation
Language code for the procedure is the only information necessary to generate its relations. An
additional advantage is that source code could be translated into Relation Language code and then
analyzed at a separate facility. This feature allows any proprietary details in the original source

code to be hidden from the analysis process [11].

Pass 3

Three general classes of software metrics can be distinguished: structure metrics, which
dre measures based on automated analysis of the system's design structure, code metrics, which
arc measures based on implementation details, and Aybrid metrics, which combine features of

both structure and code metrics, As previously proposed by 5], [9], and [1], this research

13

shows that the structure metrics are global indicators of software quality which can be taken early
in the life cycle, while code and hybrid metrics can be brought into use as more implementation
details become visible,

Pass three and the associated implementations of the structure metric are written in standard
Pascal. The relations file from pass two generates the three structure metrics: Henry and
Kafura's Information Flow metric [6], McClure's Invocation metric [13], and Woodfield's
Review Complexity metric [14). Only the Information Flow metric was available for this study.
The structure metrics and the code metrics (file one from pass one) produce the hybrid metrics,

A quantitative measurement of design structure can be defined only in terms of those
features of the software product which have emerged during the (high-level) design phase. To
define a numerical measure, structure metrics use only these features, components, and
relationships among components. Note that the actual source code is not necessary to observe
the interconnections among components of a system.

A structure measure based on the data relationships among components is the Information
Flow metric [15]. This metric identifies the sources (fan-in) and destinations (fan-out) of all data
related to a given component. The data transmission may be through global data structure,
parameters, or side-effects. The fan-in and fan-out are then used 1o compute a worst-case
estimate of the communication “complexity” of thig component. This complexity measure
attempts to gauge the strength of the component's communication relationships with other
components.

As previously stated, pass three is written completely in standard Pascal and is independent
of a UNIX environment. The user is in complete control of the selection of the above metrics to
be run and the method of viewing the metrics. The user decides which of the structure metrics he
desires to apply to his system. In addition to running the structure metrics and examining them,
the user is allowed to define modules (a related collection of procedures) or levels (a related

collection of modules). Itis assumed that the user would like to view all related procedures as

14

single module, and likewise, view all related modules as a single level. This feature is especially

useful for very large systems. Hardcopies of all reports are available at any time.

III. Complexity Measurement of Designs

Introduction

In this section, the results of analyzing GPL design complexities are given. Complexity
measures of GPL designs are presented along with equations, for each of the metrics, that allow
the complexity of code corresponding to a GPL design to be predicted. An examination of GPL
as a design tool is also briefly reported. A parallel measurement and prediction analysis of the

PDL used in this study is given as well.

The Experiment

The data in this study was collected from an assignment, given in a graduate level operating
Systems course consisting of twenty-two graduate students. Students simulated the management
of consumable and reusable operating system resources to detect and prevent deadlock,
respectively. The banker's algorithm is used for deadlock prevention and knot detection
algorithms are used for deadlock detection. In this study, one half of the class designed the
program using GPL and the other half used the textual PDL. The assignment required the
students to submit an initial design, one week prior to the assignment due date, on the due date, a
revised design, and the Pascal source code and simulation results was submitted. Pascal was
required to eliminate any differences resulting from using different programming languages. The
revised designs were included as a part of the assignment for two reasons. First, to enable the
evaluation of the two design tools in terms of the amount of change required to achieve a
working system and second, to allow for the iterative refinement of the initial designs. Only the
eighteen correct projects were used with nine of the projects coming from each group.

15

Data Preparation

In order to perform the statistical correlations of initial design to revised design and revised
design to source, and to perform the regression analysis, it is necessary to have the same number
of data observations, procedures, in the data being compared. It is possible and in fact likely that
a design does not have the same number of routines as the source code. Often the source code
uses many routines to perform the function of a single routine specified in the design. Another
cause of extraneous routines in the source code may be the inability to refine a particular type of
function in the design language like dialogue functions in GPL. Similarly, a routine may appear
in a design, but, its function is combined into another routine in the resulting source code. It is
necessary to incorporate the complexity measures of all of the routines in the source code into the
data to be analyzed, When a routine exists in the source and does not have a corresponding
routine in the design one accumulates the complexities of the more refined routines with the
complexity of their parents. This is a valid operation since the design required the function to be
performed and therefore its complexity is present in the design. The case where a routine is
present in the design but not in the source code identifies a design that is not properly refined.
One problem arises as a result of the accumulation process. The complexity of the main program
in the source code becomes unrealistic since many routines are accumulated into it. This occurs
when programmers do not nest procedure declarations and as a result the only place for a
routine's complexity to be accumulated is in the main program. Beyond programming style, it is
possible that the language being used, for example GPL and 'C", may not allow procedure
nesting and again the routine's complexity must be accumulated in the main program. As a result
of language limitations and the programming style, the main program'’s complexity no longer
reflects the actual complexity of the code. In this study the main programs were removed from
the data prior to performing the statistical analysis. Three hundred and twenty-three procedures

from eighteen projects were used in this analysis.

16

code. Looking at Table 3, which gives the mean complexities of GPL and the PDL desi gns, it is
interesting to note that the complexity of GPL designs actually went down, for the structure and

hybrid metrics, from the initial 1o the revised designs. Further investigation revealed that two

had been reorganized and actually performed different functions in the revised design while
keeping the same name as in the initial design. The revised mean complexities are found in Table

3 and the revised correlations are in Table 2.

Table 2. Correlations of Initial to Revised Designs

GPL

LOC| N A\ E CC INFO [INFO-L [INFO-E INFO-CC
0.884 [0.917 10.9720.942 09351 0.877 | 0995 0.710 0.952

PDL

LOC| N v E CC | INFO [INFO-L [INFO-E INFO-CC
0.881)0.859 [0.891 [0.890]0.825 0.982 | 0.988 0.988 0.932

GPL Design Correlations with no Outliers

LOC| N A\ E CC INFO [INFO-L [INFO-E INFO-CC
0.90510.943 {0.97410.978 [0.944 0.924 | 0.829 0.926 0.865

18

Data Presentation Information
Table 1 contains the abbreviations for the code, structure and hybrid metrics that are used in
the tables displayed throughout this study. An abbreviation for each of the nine metrics

calculated is given.

Table 1. Metric Abbreviations Used in Data Presentation

Metric Abbreviation
Length LOC

N N

Volume A"

Effort E
Cyclomatic Complexity CC
Information Flow INFO
Information Flow with Length INFO-1.
Information Flow with Effort INFO-E
Information Flow with Cyclomatic Complexity INFO-CC

Comparison of Initial and Revised Designs

Comparing the initial and revised designs provides a measure of the change required in
order to achieve a working system. This measure is meaningful only if there is a good
correlation between revised design and source code. In this study there is a good correlation
between revised design and source code, and that correlation is presented in the next section.
Table 2 displays the correlations of initial to revised designs for both the GPL and the PDL
groups. The correlations between the code metrics in GPL designs are higher than those in PDL
designs, however, the converse holds true for the structure and hybrid metrics. Neither of these
results is significant due to .the high degree of correlation found in all cases. One concludes that
the design languages are equaly effective at helping the designer to create a good design, where a

good design is one that accurately reflects the structure of the corresponding working source

17

Table 3. Mean Complexities of Initial and Revised Designs

GPL

Design| LOC N v E cc INFO | INFO-L | INFO-E INFO-CC
initial | 14.032 { 85.948 |25 1.65616374.66] 3.552 |14129.62 1362948 | 808062000 | 337839
Tevised | 14.519 { 87.89 261.617| 644296 3.643 1003.13 | 28336.84 | 18113410 8164.23

FDL

Design| LOC N v E cC INFO | INFO-L | INFO-E INFO-CC
initial | 18.166 | 118.429 617.606 (18489.24] 4.20 16456.74 | 718024 | 678874000 48765.1
revised | 19.536 | 128.219 675.426 21049.67] 4.47 21447.101 882221 845066000 | 61844.7

GPL Mean Design C omplexities with no Outliers

Design| LOC N Y E CcC INFO | INFO-L | INFO-E INFO-CC
initial { 13.375 | 80.678 233.974 | 5698.52| 3.375 688.395 | 10431.23 | 7348210 2030.033
revised | 14.151 | 84.618 246.842 16009.91{ 3.52 686.559 | 12050.82 | 8206303 3302.488

Regression Analysis of GPL and the PDL

Regression analysis involves the comparison of sets of data between which there is some
assumed inherent relationship, In simple linear regression one is concerned with a single
independent and a single dependent variable and an atterpt to derive a linear prediction, or
regression, equation [16]. In this study, a simple linear regression is performed, with the
complexity of design as the independent variable and complexity of the source as the dependent
variable, in an attempt to derive equations which would allow a designer to estimate the
complexity of the system being developed prior to its implementation. Regression analysis is

performed for each of the calculated metrics,

19

GPL

Prior to the performance of the regression analysis on the GPL revised designs and GPL
designed source code, a correlation between the two sets of values is performed to see if there is
any relationship between the two. Table 4 gives the results of the correlation. The high
correlations indicate that a relationship between the data sets may exists, so the regression
analysis is performed. Table 5 contains the equations that result from the regression analysis of
the GPL revised designs and the GPL designed source code. The column labeled Coef gives the
value of the y-axis intercept and the slope of the regression line for the corresponding metric.
The column labeled Std Err gives the standard error found in the calculation of the coefficient
and the column labeled -Vailye gives the value from the Student T distribution and is used for
significance and confidence testing. The coefficient will fall within the range of plus or minus
two times the standard error. A t-Value of greater than two generally represents ninety-five
percent confidence that the corresponding coefficient is correct. The t-Values for each of the
metric’s slope are well above two and ninety—nine percent confidence in their values can easily be
assumed. Ninety-nine percent confidence in all of the y-axis intercepts, except Cyclomatic and
Information Flow with Cyclomatic, can also be assumed. The intercepts for the Cyclomatic
complexity and the Information Flow Complexity combined with the Cyclomatic complexity can
be assumed to be zero because of the low t-value. Figure 4 gives a plot of the actual data
observations, the regression line and the ninety-five percent confidence lines for the GPL
information flow measure. The information flow metric was selected for this example. The
prediction equation for a procedure’s information flow complexity is as follows:

Yy =1103x +205.167

where,

the predicted source code information flow complexity of the procedure

‘e
I

X = the calculated design information flow complexity of the procedure

20

Table 4. Correlations of Revised Designs to Designed Sourc:

GPL

LOC| N \4 E | CC [INFO [INFO-L INFO-E | INFO-CC
0.7800.702 [0.660 [0.508 {0.793 0.808 | 0.788 0.737 0.752

PDL

LOC| N Vv E | CC | INFO [INFO-L INFO-E | INFO-CC
0.84910.834 (0.843[0.749[0.711 0.901 | 0.887 0.832 0.800

Table 5. Regression Line Equations and Statistics for GPL Design

GPL Regression Line Information
Coef Std. Error t-Value
Intercept 3.878 0.871 4.454
Length Slope 0.826 0.055 15.105
N Intercept 22258 8.781 2.535
Slope 1.141 0.096 11.947
Intercept 211.697 427367 4.997
Volume Slope 1.639 0.154 10.643
Intercept 12892.83 "1 72666.116 | 4.838
Effort Slope 2222 0.311 7.15
. Intercept -0.63 0.334 -0.09
Cyclomatic Slope 1.325 0.084 15.799
Information Intercept 205.167 77.814 2.637
Flow Slope 1.103 0.066 16.629
Information Flow Intercept 4985.403 1709.029 2917
with Length Slope 1.278 0.082 15.524
Information Flow Intercept 14976060 4711310 3.178
with Effort Slope 3.025 0.229 13.235
Information Flow | Intercept 1284.167 | 735.014 1.747
with Cyclomatic Slope 1.539 0.111 13.812

With ninety-five percent confidence the predicted y value will fall within the confidence
interval. Similar €quations for each of the other metrics may be obtained by reading the
coefficient values in Table 5.

PDL
A correlation analysis between the PDL revised designs and the PDL designed source code
is performed prior to doing the regression analysis to determine if there was any relationship

21

between the two sets of data. Table 4 contains the results of the correlation. The high
correlations indicate that a relationship between the data sets may exist, so the regression analysis
is performed. Table 6 displays the equations that result from the regression analysis of the PDL
revised designs and the PDL designed source code. The table is shown in the same format as for
the GPL regression analysis and the values given represent the same items. The t-Values for
each of the metric's slope are, once again, well above two and ninety-nine percent confidence in
their values can is assumed. Ninety-five percent confidence in all of the y-axis intercepts is
assumed and in many cases ninety-nine percent confidence can be assumed. Figure 5 gives a plot
of the actual data observations, the regression line and the ninety-five percent confidence lines for
the PDL information flow complexity measure. Note, when comparing the GPL and PDL plots
that the scales may vary.

Table 6. Regression Line Equations and Statistics for PDL Design

PDL Regression Line Information
Coef Std. Error t-Value
Intercept 2.25 0.829 2714
Length Slope 0.854 0.041 21.101
N Intercept 16.452 6.563 2.507
Slope 0.947 0.048 19.802
Intercept 87.143 33.769 2.581
Volume Slope 0.943 0.046 20.529
Effort Intercept 5698.626 2032.574 2.804
Slope 1.079 0.073 14.833
: Tntercept 1.166 0.313 ~3.723
Cyclomatic Slope 0.776 0.059 13.262
Information Intercept 347.4512 106.084 3.275
Flow Slope 0.707 0.026 29.197
Information Flow Intercept 13294.48 2605.205 5.103
with Length Slope 0.48 0.019 25.235
Information Flow Intercept 22514560 5495677 4.097
with Effort Stope 0.712 0.036 19.633
Information Flow Intercept 3076.348 755.927 4.07
with Cyclomatic Slope 0.501 0.029 17.505

22

The results presented in this section indicate that it is possible, given the complexity of a GPL or
2 PDL design, to predict the complexity of the corresponding source code. However, it is
important to note that designs with different levels of refinement may produce different results.
The designs used in this study ate at a very detailed level of refinement and the accuracy of the

equations reflects the detail.

IV. Comparison of Design Tools

In this section a comparison of GPL and the PDL is presented. Specifically, the
complexities of the designs and the complexities of the corresponding source code are compared.

Both the initial and revised design complexities are given.

Comparison of GPL and PDL Design Complexities

Table 3 presents the mean complexities of both the revised and initial designs for all of the
GPL and PDL data. The complexities of the GPL designs are significantly lower than the PDIL,
designs. The difference in complexities, however, is misleading due to the extreme difference i
the nature of the languages. The semantics that can be expressed in a single symbol in GPL may
take several keywords and symbols in PDL. Therefore, lower complexities of GPL designs are
not necessarily an indication of less complex systems. Given a GPL and a PDL design for the

Same system, the GPL design should be measurably lower in complexity.

Comparison of GPL and PDL Designed Source Code
In comparing the GPL and PDL. designed source code, the procedures are divided into five
functional units, or modules, including: tape réquest processing, tape release processing,

message sending processing, message receiving processing and deadlock detection. A sixth unit

23

is defined as the complexity of the entire system. Table 7 presents the average module
complexities for both the GPL and PDL designed source code. The complexities of the GPL
designed source code are considerably lower than those of the PDL designed source code. Table
8 presents the average ratio of complexity of the GPL designed source to the complexity of the
PDL designed source. The ratios of the code metrics are higher than those of the structure and
hybrid metrics with an average ratio of 71.7%. The average ratio of the structure and hybrid
metrics is 17.4%. These ratios and complexities indicate that GPL is the better tool for designing
program structure. The structure and hybrid metric ratios in Table 8 show that the structure of
the GPL designed source code is nearly six times less complex than the PDL designed source
code. Due to the small sample size it is necessary o perform a statistical significance test on the
module complexities. Table 9 gives the calculated t-values from the Student T distribution for
each of the metrics in each module. Tn order to be eighty percent confident that the results are
statistically significant the t-value must be greater than 1.337, for ninety percent confidence,
1.746 and for ninety-five percent confidence 2.12. In most of the cases the t-values ensure more
than eighty percent confidence that the results are statistically significant. The send and deadlock
module's t-values are lower thén the eighty percent confidence level in many cases and therefore
those results are not considered significant. Concentrating only on the entire system's
confidence measures, the all module, there is better than ninety percent confidence, except for

the effort and cyclomatic complexities, that the results are statistically significant.

24

Table 7. Mean Module Complexities for GPL and PDL
Designed Pascal Source Code

GPL

Module LOC N v E CcC INFO
all 332,778 2438277 12553.444] 3150283 93.000 122431400
request 100.889 749.556 3781.000] 147067.3| 33.778 1153413
release 128.000 963.556 4839.444) 1869752 40.778 2599250
send 52,444 391.667 1963.222 81965.¢| 14.222 46490.44
recieve 66.667 537.667 2686.556 113073.8] 22295 1269498
deadlock 65.333 519.556 2621.1111 124036.3] 19222 165059.7
Module INFO-L INFO-E INFO-CC

all 4.92305%¢10 6.570745e13 1.277843eT0

request 1.931443¢8 2.037432¢e11 5.611805¢7

release 4.329576¢8 4.507008¢11 1.253695e8

send 1.210397¢7 2.269016e10 3.382792¢6

recieve 2.165298¢8 2.458338¢11 6.926457c7

deadlock 2.472898¢6 3.753299¢9 6.554804e5

PDL

Module LOC N v E CcC INFO
ali 412,778 2981.222 15588.110] 612871.0 106,000 3195125449
request 140.667 1052.222 5388.889| 199651.3 45.333 3035089
release 184.889 1355.666 0977.556| 247801.3(54.000 17837226
send 99,222 749,555 3799.333] 167877.7| 26.222 7370219
tecieve 100.333 740.556 3712.000 49763.6| 27.667 6031354
deadlock 91.778 691.888 3536.778] 133350.0 26.000 5641381
Module INFO-L INFO-E INFO-CC

all 1.488610¢T11 2.037372e14 3.820597¢10

request 4.787583¢e8 6.034352¢11 1.574458¢8

release 4.065810e9 5.220383¢e12 1.217569¢9

send 1.674139¢9 1.864659¢12 3.945642e8

recieve 1.097365e¢9 1.268334¢12 2.797951e8

deadlock 1.206509¢9 1.238027¢12 3.358399¢8

Table 8. Average Ratio of Complexities of GPL to PDL Designed Sourc

LOC N \4 E CC INFO| INFO-L | INFO-E INFO-CC
0.687 | 0.707 | 0.696 | 0.744 0.750 | 0.194 0.172 0.160 0.169

25

Table 9. t-values from the Student T Distribution

Module LOC N v E CC | INFO | INFO-L| INFO-E INFO-CC

all 1.982 | 2,165 | 2.293 { 1.408 | 1.359 1.880] 1.885 1.895) 1.868
request 2.226 | 2574 2791 (2.073 | 2.220 1736 { 1.568 | 1.811 | 1.734
release 2.660] 2.739 | 2.990(2.003 | 2.169 2.028] 1960 1.773{ 1.852
send 1.638 | 1.670 | 1.745 | 1.638 | 1.453 1.280) 1.183 | 1.259] 1.213
receive 2.819 [2.877 | 2.938{ 2943 | 2:691{ 1 7091 1.497 [1.6551 1.576
deadlock | 0.762 | 0.640 | 0.967 | 0.413 0355 1.279] 1.321| 1.318] 1.257

In this section results have been presented that indicate that systems designed in GPL are
significantly less complex than systerns designed in the PDL thereby adding quantitative support
to the work done by cognitive science researchers which finds that the human brain thinks and
works more effectively in images. The inability to compare GPL and PDL designs directly is

also shown.

Additional Measurements
In this section the intermetric correlations for the GPL and PDL revised designs and the
GPL and PDL designed source code are displayed to replicate the results of several earlier studies

(91 (17]1215].

Intermetric Correlations

Table 10, Table 11, Table 12, and Table 13 present the intermetric correlations for GPL
and PDL revised designs and GPL and PDL designed source code. Both sets of GPL
correlations and the PDL revised design correlations reflect the results of another study with the
code metrics having high correlations to the other code metrics and low correlations with the
structure and hybrid metrics and the structure and hybrid metrics having high correlations with
the other structure and hybrid metrics and low correlations with the code metrics [9]. These

26

correlations indicate that the structure and hybrid metrics measure different properties of software
than the code metrics. The fourth set of correlations, PDL designed source code, demonstrates
the same relationship between code metrics and other code metrics and structure and hybrid
metrics with other structure and hybrid metrics, however, the correlations between the code
metrics and the structure and hybrid metrics are not as low as in previous studies. It is unclear
why the correlations are this way.

This section shows that the complexity measures of GPL designs replicate the results of
another study with the code metrics correlating well with the other code metrics and not the
structure and hybrid metrics. The additional data set demonstrates that some minimum level of

refinement of design is necessary in order to perform complexity analysis.

Table 10. Intermetric Correlations for GPL Revised Designs

GPL Revised Designs

Metric LOoC N \'% E CC | INFO {INFO-L|INFO-E INFO-CC
LOC

N 0.855

\4 0.826 { 0.891

E 0.636 | 0.684) 0.702

CC 0.902 | 0.830 | 0.790 | 0.603

INFO 0.033 1 0.359 { 0.224 | 0.225 | 0.096

INFO-L 0.245 | 0.547 | 0.405 | 0.376 0.315 | 0.914

INFO-E 0.179 | 0.480 | 0.341 | 0.437 | 0.278 0.815 | 0.922
INFO-CC | 0.205 | 0.518 { 0.378 0.366 | 0.312 | 0.899 | 0.983 | 0.957

27

Table 11. Intermetric Correlations for GPL Designed Pascal Source Cod

GPL Designed Soyrce

Metric LOC N \' E CC | INFO |INFO-L|INFO-E INFO-CC
LOC

N 0.897

\' 0.897 | 0.997

E 0.814 | 0.941 [0.943

CC 0.700 | 0.763 | 0.767 0.763

INFO 0.223 { 0.221 | 0.227 { 0.203 | 0. 176
INFO-L | 0.450 | 0.427 { 0.440 0.435 | 0.372 | 0.919
INFO-E | 0.485 [0.529 | 0.548 0.613 | 0496 | 0.735 | 0.901
INFO-CC| 0.351 | 0.373 | 0.382 0.405 | 0478 | 0.819 | 0.888 0.883

Table 12. Intermetric Correlations for PDL Revised Designs

PDL Revised Desi gns

Metric LOC N A% E CC | INFO (INFO-L!INFOE INFO-CC
LocC

N 0.961

v 0.965 { 0.995

E 0.825 | 0.905 | 0.889

CC 0.432 | 0.538 { 0.500 0.654

INFO 0.258 | 0.236 | 0.252 0.120 |-0.080

INFO-L 0.439 | 0.397 | 0.423 0.248 |-0.038 | 0.889

INFO-E 0.521 | 0.474 | 0.508 0.338 | 0.006 | 0.777 0.695
INFO-CC | 0.486 | 0.453 0477 { 0317) 0.040 | 0. 695 | 0.900 | 0.963

28

Table 13. Intermetric Correlations for PDL Designed Pascal Source Cod

PDL Designed Source

Metric LOoC N A E CC | INFO |[INFO-L [NFO-E INFO-CC
LOC

N 0.960

v 0.956 | 0.992

E 0.780 | 0.878 { 0.904

CC 0.829 1 0.882 | 0.843 | 0.702

INFO 0.703 0.699 | 0.620 | 0.405 0.746
INFO-L | 0.685 | 0.682 | 0.600 0.388 | 0.735 | 0.998
INFO-E 1 0.692 | 0.689 | 0.608 0.395 | 0.740 { 0.999 { 1000
INFO-CC | 0.682 | 0.680 | 0.597 0.385] 0.734 | 0.997 | 1.000 | 0.999

V. Conclusions

This study began to explore the hypothesis that systems designed using a graphical
language are less complex than systems designed using a textual design language.

In section three, the results of measuring GPL designs are given. Section three also gave a
set of equations to predict, with more than 95% confidence, the complexity of source code.
These equations allow the selection of the single least complex design, from a group of designs,
that perform the same task and it serves to shorten the design-code-measure-redesign cycletoa
design-measure-redesign cycle.

Section four compared GPL designed source code with PDL designed source code. The
mean complexities of GPL designed source code are significantly lower than the mean
complexities of the PDL designed source code and a statistical significance test revealed more
than ninety percent confidence in the results for most metrics. Takin g a closer look showed that
the GPL designed source code has far less complex structure, indicating its superiority over the

PDL for designing system structure. These results support the hypotheses of researchers who

29

state that humans think in images and that the human brain works more effectively in images.

In summary, we can:
* Predict the complexity of GPL designed source code with 95% confidence
¢ Show less complex source code
* code metrics are 71.7% as complex in GPL designed source
* Structure and hybrid metrics are 17.4% ag complex in GPL designed source

* 95% confidence that the results are statistically significant

These results indicate that GPL is a much better tool than a PDL for designing system
structure.

This research represents a first attempt to quantitatively measure a graphical design and to
compare the resultant source code from both a graphical and textual design. Obviously,

additional validations of this type are needed to support these results.

30

Bibliography

[1]

[2]

[3]

[4]

(5]

[6]

[7]

(8]

[9]

[101

[11]

[12]

[13]

Henry, S.M., Kafura, D., "The Evaluation of Software Systems Structure Using
Quanitative Software Metrics," Software: Practice and Experience, Vol. 14, No.
6, June 1984, pPp. 561-563.

Selig, C.L., ADLIF - A Structured Design Language for Metric
Analysis, Masters Thesis, Virginia Tech, Department of Computer Science,
August 1987,

Hartson, H.R., Advances in Human-Computer Interaction, Norwood, NI,
Abbex Publishing Company, 1985,

Heary, S.M., Goff, R.A., Complexity Measurement of a Graphical
Programming Language. Technical Report 87-35, Virginia Tech, Department
of Computer Science, 1987.

Canning, J.T., The Application of Software Metrics to Large-Scale
Systems, Ph.D. Dissertation, Virginia Tech, Computer Science Department,
April 1985.

Henry, S.M., Kafura, D.G., "Software Structure Metrics Based on Information
Flow", IEEE Transactions on Software Engineering, September 1981.

Halstead, M., Elements of Software Science, New York, NY, Elsevier
North Holland, Inc., 1977,

McCabe, T., "A Complexity Measure", IEEE Transactions on Software
Engineering, December 1976,

Henry, §.M., Kafura, D.G., Harris, K., "On the Relationships Among Three
Software Metrics™, Proceedings of the Sigmetrics Conference on
Performance Evaluation Review, Vol. 10, No. 1, Spring 1981.

Katura, D., Henry, S., "Software Quality Metrics Based on Interconnectivity",
Journal of Systems and Software, Vol. 2, 1982,

Henry, S.M., "A Technique for Hiding Proprietary Details While Providing
Sufficient Information for Researchers”, Journal of Systems and Software,
8(3): 3-11; January 1988,

Conte, S.D., Dunsmore, H. E., Shen, V. Y., Software Engineering
Metrics and Models, Menlo Park, CA, The Benjamin/Cummings Publishing
Company, Inc., 1986.

McClure, C., "A Model for Program Complexity Analysis", Proceedings

Third International Conference on Software Engineering, Atlanta,
GA, May 1978, pp.149-157.

31

[14]

[15]

[16]

[17]

Woodfield, S., Enhanced Effort Estimation by Extending Basic
Programming Models to Include Modularity Factors, Ph. D.
Disertation, Purdue University, Computer Science Department, 1980.

Henry, S., Information Flow Metrics for the Evaluation of Operating
Systems' Structure, Ph. D, Disertation, Iowa State University, Computer
Science Department, 1979,

Walpole, Ronald E., Myers, Raymond H., Probability and Statistics for
Engineers and Scientists, New York, NY, Macmillan Publishing Co., Inc.,
1978.

Kafura, D., Canning, J., "The Independence of Software Metrics Taken at
Different Life-Cycle Stages", Proceedings: Ninth Annual Software
Engineering Workshop, NASA Goddard Space Flight Center,
November 1984,

32

DESIGN ~———— 9 CODE ———» METRIC ANALYSIS

RE-DESIGN

Figure 1. Diagram of Currently Used Software Life
Cycle

DESIGN ——— _p METRIC ANALYSIS ———p CODE

L RE-DESIGN 4—-—l

Figure 2. Diagram of Proposed Reduced Software Life Cycle

Intrinsic
BNF File

'

Source _’(T 1L AT()@ Pass 1
Code RANS

Code Relation

Metrics Language
ode

RELATION
MANAGER Pass 2
(LEX) (YACO)

—l Relitions
METRIC
[GENERATOR) Fass 3

Code Structure Hybrid
Metrics Metrics Metrics

Figure 3. Software Metric Analyzer

33

SAUMCE
lﬂm'i
i

!Dﬂf-]
!

BJ0C

"

a'r.mr—i -
w26 S
I. .
wope S .
.
-
[
a0z - ‘-/
-
[;
Y
g
o e, 2
LB oats gebo sm: kst fomr g tenr smac wos 10850

Figure 4. GPL Information Flow Regression

and 95% Confidence Lines

mm;-*
-
179005
| 18000
15000
1400

1300% -

!IDEE}

18805+

!33:1

1
i

-

1
i
.

e .
w3

=,
IS
z 108 atoo B200C
. BEETHY

Figure 5. PDL Information Flow Regression
and 95% Confidence Lines

