Tracking Text in Mixed Mode Docuinents
J. Patrick Bixler

TR 88-19

TRACKING TEXT IN MIXED MODE DOCUMENTS

J. Patrick Bixler

Department of Computer Science
Virginia Polytechnic Institute & State University
Blacksburg, VA 24061

June 10, 1988

Abstract. This paper describes a method for extracting arbitrarily oriented text in documents
containing both text and graphics. The technique presented is inspired by the tracking algorithms
frequently found in raster to vector conversion systems. By indentifying text components in the
document, reducing the resolution of the image by the size of the characters, and then tracking the
centers of the character components, all text strings can be removed and subsequently reoriented
to the horizontal. They can then be presented for automated character recogunition. A by-product
of the method is that characters are antomatically grouped together to form words and/or phrases.
We give a detailed description of the algorithm, discuss its strengths and weaknesses, and present

some sample results obtained from a typical city street map.

1. INTRODUCTION

Optical character recognition techniques have now progressed to the point where most docu-
ments that consist primarily of large blocks of text can be easily processed by automatic means.
Likewise, documents that consist primarily of line art (technical drawings, for example) can also be
processed by any of a number of recently proposed raster to vector conversion techniques, Most
documents, however, are not as homogeneous as these respective systems would like, rather contain-
ing significant amounts of both text and graphics. Clearly, any robust document processing system
must be able to deal effectively with both the text and graphic content of a given document. To that
end, this paper details a technique for segmenting an arbitrary document into its text and graphics

components.

A number of techniques for processing mixed mode documents h#ve Been proposed in the recent
literature [2,4,5]. Some have attempted to solve significant pattern recognition problems while others
have restricted their attention to a specific type of document. The work presented here uses several
of the features of the algorithm proposed in [5]. The basic approach of finding text components
and reducing the resolution of the image is similar, whereas the method for actually grouping the
components to form words and phrases is fundamentally different. Rather than use the Hough
transform to group characters as in [5], we attempt to track adjacent or nearly adjacent character
components to form as long a string as possible. This approach is inspired by the tracking algorithms
frequently found in raster to vector conversion and /or polygonal approximation systems, particularly
those of [9,12].

The following is a brief overview of the algorithm as it is currently implemented. The process
begins with a high resolution {300 dpi), binary scan of the document. The first step consists of
finding all connected components within the image and computing some simple attributes such

as height, width, density, etc. Then, based on a pre—determined parameter that gives the size of

the text to be detected, components are segmented into those that are likely to be text and those

that are not. The non—text components are subtracted from the image and stored, perhaps to be
processed by a line following system. The remaining image is then sampled with the center of each
text component being mapped to the nearest sampled point. Once this reduced resolution image is
formed, adjacent pixels are tracked to form the longest straight line possible. In the ideal situation,
the centers of text components that were adjacent characters of a word in the original document
would be mapped to adjacent pixels in the sampled jmage. Of course, the ideal is rarely the case
and so the algorithm must also be able to track nearly adjacent pixels as well. Once a text string has
been tracked the orientation of the line joining the first and last character is noted and the entire

string is rotated to horizontal in order to facilitate automatic character recognition.

1

The temainder of the paper discusses these steps in detail. Section 2 discusses some of the
problems involved with identifying character components from alimited set of attributes, and Section
3 gives the parameters used to create the reduced resolution image from the original document.
Section 4 is the main section of the paper and details the tracking algorithm. Section 5 shows
some results of the algorithm as applied to a typical city street map, and section 6 provides some

conclusions and suggestions for subsequent work.

2. FINDING CHARACTER COMPONENTS

Any good connected component finding algorithm could be used in this context. We have chosen
~ to implement a variation of the stack based, scan line algorithm as presented in [6]. The assumption
is that the entire image is in memory and so the cost of accessing any given pixel is constant, that
is, the image does not have to be completely processed in scan line order. Ultimately the finding of
connected components could be done in hardware and so the efficiency of this part of the algorithm is
not a major concern. We have also chosen to find 4—connected components rather than 8—connected
components thereby increasing the number of components eventually found. The trade—off here is in
risking that a single character might be broken into two pieces in return for improving the chances

that characters will be cleanly segmented from each other and from the surrounding components.

Once the connected components have been found, the coordinates of its circumseribing rectangle
are recorded. In [5], the authors use the pixel height, width, arca, and aspect ratio of this rectangle,
as well as the density of the image within the rectangle to decide if the corresponding component is
likely to be a character. We have found, however, that area, aspect ratio, and image density can be
misleading so as $o cause both types of errors, that is, mislabeling text components as graphics and
vice-versa. An upper—case Iin a font such as Monaco illustrates the problem. If the string containing
this character is oriented horizontally (vertically) as in Figure 1, the density of the character is 1.0,
the maximum it can be. Also, if the resolution and/or the quality of the scanned image is such
that the character is exactly one pixel wide (high), then the area and the aspect ratio are simply
equal to the height (width) of the character. In Figure 2, where the character is oriented at 45
degrees, the density is the minimum possible value for any connected component, namely, 1/1/area.
Thus, for legitimate text components density can take on any possible value and, therefore, has no
discriminating power, and in some cases area and aspect ratic become simply height or width. The
point is that one gains no additional useful information about a component by looking at density,

aspect ratio, and area as opposed to looking only at height and width.

Fairly accurate segmentation of text and graphics components can be made by making proper
use of only the height and width attributes. Let res represent the resolution at which the original

document was scanned, let ptsize be the point size of the text to be detected, and let A, and w,

2

be the height and width of the given component. One obvious approach would then be, allowing
for characters oriented at an angle, to mark a component as text if both the height and width are

below the appropriate pixel threshold, that is if
he <= res/72 * ptsize % 1.4

and

we <= res/T2 « ptsize x 1.4

The factor of 1.4 on the right hand side of the inequalities is to account for characters that are
oriented at an angle, and the 72 is the standard number of printer’s points per inch. The problem
of the upper—case I again points out that imposing a lower bound on the height and/or width is
inappropriate. The potential difficulty with this is that it mismarks extremely small components
as text, a problem which could be significant in a noisy image. Noting that every character has at
least one dimension that is within about one half of its respective point size, we opt for marking a

component as text if either of the following conditions hold:
(res/T2 % ptsize + 0.5 <= ho <= res/T2 * ptsize * 1.4)AND (w. <= res/72 + ptsize 1.4)
or,

res/72 * ptsize ¥ 0.5 <= w, <= res/72« ptsize x LA)AND (h, <= res/T2 + plsize* 1.4
P

To allow for the simultaneous detection of a range of font sizes within the same document
we can modify the above inequalities by replacing ptsize with minptsize on the left sides and with
mazptsize on the right, where minptsize and mazptsize have the obvious meanings. Note, however,
that the larger this range is the less discriminating the test becomes. Finally, we notice that this
test will most likely exclude subscripts, superscripts and small puntuation, a problem which can be

solved after a string has been tracked by looking for nearby small components.

3. RESOLUTION REDUCTION

Once the components have been segmented, those identified as graphics can be subtracted from
the image leaving only the text. The graphics portion of the image can either be stored in its
original bitmap form or can be processed by an appropriate vectorizing system. The resolution
of the remaining image is then reduced by essentially sampling the image based on the size of
character components. Each text component is mapped to the sample point nearest to the center
of that component, see Figure 3. The ideal sampling rate would be such that adjacent characters

in the original image get mapped to adjacent pixels in the reduced image. It is, of course, possible

3

to achieve such a mapping only in the case of a document that contains a single font size and no
proportional spacing of characters. Because of the variety in size and spacing there will necessarily

be gaps and overlaps in the reduced image.

Referring to Figure 3, we let the sampling rate be equal to (dpi/72) % 0.5 x minptsize. With this
sampling rzite, adjacent characters whose dimensions are approximately minptsize will be mapped
to pixels that are one apart from each other rather than adjacent. If the gap between the adjacent
characters in the original image is greater than 0.5 % minptsize, then they will be mapped to pixels
that are two apart, and so on. With most fonts, however, the width of a character is usually closer to
one half the point size and so adjacent characters (that are separated by less than 0.5xminptsize) will
be mapped to adjacent pixels. It is this fact that motivates the 0.5 in the formula for the sampling
rate. Of course, if adjacent characters are less than 0.25 % minptsize wide and are close enough,
then they may be mapped to the same pixel in the reduced image. In this case, the components are

linked together and a pointer to the list is stored at the appropriate pixel,

When mazptsize is different from minptsize the potential exists for adjacent characters to be
mapped to pixels that are at significant distances in the reduced image. If characters from the font
of size mazptsize are adjacent, assuming again that they are approximately 0.5 * mazptsize wide
and are no further than 0.5 + mazptsize apart, then they will be mapped to pixels that are at a
distance of mazptsize/(0.5 % minpisize) from each other. Keeping mazptsize <= 2% minptsize will
insure that such characters are no more than four pixels apart, Clearly, then, the range of fonts to
be detected determines how far apart adjacent characters can be in the reduced image and, in turn,

influences the complexity of the tracking algorithm.

4. TRACKING ALGORITEM

The next step in the process is to actually track adjacent characters as represented by the
reduced image. We look here to a number of algorithms that have been used to produce polygonal
approximations to curves in binary images. In particular we note the algorithms of [9] and [12] as
being appropriate starting points for our application. There are, however, two important differences
between our application and those for which the existing algorithms were developed. First, since
we are attempting to track text strings, we are looking at data that should be straight rather than
using straight segments to approximate data that might really be curved. This could allow us to
impose slightly more stringent restrictions on the data as it is being tracked. And secondly, because
of the effect of the resolution reduction discussed in the previous section, we are faced with tracking

data points that are not adjacent. These two facts lead to the following tracking algorithm.

The algorithm begins by scanning the entire (reduced) image from left to right and top to

bottom searching for a starting point for the first string. Any pixel that is non—zero (ie. corresponds

4

to the center of a text component) can be a starting point. After a starting point is found the reduced
image is searched in a neighborhood of that point to find the nearest text component. The size of
the neighborhood searched is given by (2 * maz(he,w.))/(0.5 + minptsize). This ensures that the
next component really is adjacent to the starting point and not a character from a different nearby
string. Once the second point is found, the horzontal and vertical offsets from the first point are
recorded, and the algorithm then searches in the appropriately sized neighboorhood offset by those
same amounts from the second point, and so on. When checking for the nearest component, note that
distances are measured in the original image rather than in the reduced image. As soon as two points
have been tracked, the angle that the line joining the centers of the two corresponding components
forms with the horizontal is computed. Tracking then continues by searching in the appropriately
offset neighborhood subject to two additional constraints which insure that the components lie on
a straight line. The first is a global angle constraint which requires that the angle between the line
joining the starting component to the most previously tracked component and the line joining the
starting component to the component being considered is below some threshold. The second is a
local angle constraint which requires that the angle between the line joining the starting component
to the most previously tracked component and the line joining the previously tracked component to
the component being considered is below another thrééhold. The component under consideration
must also be about the same size as the most previously tracked component. If all of these constraints
are met, the component is added to the string and tracking continues. Finally, when tracking ends
for any reason, the algorithm reverses direction and attempts to extend the string by tracking in
the opposite direction. This is necessary because we cannot guarantee that tracking began at one

of the end components of the string.

We define a number of identifiers before summarizing the individual steps of the algorithm. Let
first, current, and next be the initial component in the string, the currently tracked component,
and the next component under consideration by the tracker, respectively. Let rowo ff and colof f be
the average row and column offsets between successive components for the entire string. Let heypr,
Weourry Mmext, alld Wnee: De the height and width of the current and next components, respectively,
and let a, and «; be the global and local angle thresholds.

STEP 1} Scan the reduced image left to right and top to bottom until a text component is found.

Set first and current to this component, set rowoff and colof f to 0.

STEP 2) Using NC, the nearest component rule, find the nearest component to current in a neigh-
borhood offset from current by (rowoff,colof f). If a component is found, set next equal

- to the component found, or to 0 if no component is found.

5

STEP 3) If nezt is not 0, apply A, the angle rule. If A holds, add nezt? to the string, update current,
rowof f, and colof f and go to STEP 2. If next is 0 or if A fails, continue to STEP 4.

STEP 4) Swap first and current, negate rowof f and colof f and continue tracking in the reverse

direction.
STEP 5) (Same as STEP 2)
STEP 6) (Same as STEP 3, except go to STEP 5 or EXIT)

NC (nearest component rule): Set next equal to the nearest component to current within the
given neighborhood, where distances are measured in the original image. If no components can be
found in this neighborhood, or if either Aeyrr and Anep: OF Weyrr and Wnegt differ by more than a

factor of 2, then set nezt to 0.

A (angle rule): The angle between the line joining first to current and the line joining first
to nezt must be less than or equal to oy, and the angle between the line joining first to current

and the line joining current to nezt must be less than or equal to a;.

5. EXPERIMENTAL RESULTS

Figure 4 shows the test image consisting of a typical city street map which was digitized at 300
dats per inch on a Ricoh IS-400 scanner. Text is oriented at a variety of angles and is printed in fonts
ranging from about 8 to 12 pts. The map itself is approximately 8 by 10.5 inches yielding an image
that is 3150 pixels high by 2400 pixels wide and, with one bit per pixel, requires a buffer of just
under 1MB. Two additional buffers are needed, one to mark the connected components as they are
being marked and one to hold the text strings after they have been re—oriented. The entire system
was written in C and was developed on a Macintosh II running the A /UX operating system. All
times reported were for a CPU configuration that included 5MB of memory so that swapping was

keep to a minimum. No optimization of the code was attempted before performing the experiments.

Figures 5 and 6 show the the two segmented portions of the test image. The few characters that
remain in Figure 6 are missed primarily because they are touching some larger graphic component
or some other character. There are 579 connected components in the image (almost all of the streets
are connected and form a single graphic component) of which 477 qualify as text. These components

are tracked to form 107 strings of length 2 or more and are presented horizontally in Figure 6.

There are only five errors that are not due to broken characters or characters which are touching
other parts of the image, and that could be considered the fault of the tracker. The first is the second
string in column two of Figure 6, where an arrow symbol was included as part of the string. This also
occurs in the last string in column 4. Two strings, the sixth and the eight in column 4, have been

presented upside down. Prior to rotation, each string is reoriented so that the left most character

6

becomes the first character in the string. As long as text is written so that it is right side up in the
document, everything will turn out correct. If not, the potential exists for a string to be presented
upside down since the algorithm has no way of knowing the orientation of a single character. In
such a case, character recognition would fail the first attempt and could retry after rotating by 180
degrees. The two errors observed here are with strings that are very nearly vertical in the image.
Apparently the centers of the first and last components in these strings line up so that the strings
appear to be written upside down. The final error is near the bottom at the center of the image
where the word ‘ROANOKE’ comes very near the vertical abbreviation ‘ST". Apparently the ‘R’
and ‘0’ are touching and form a large component which is then actually closer to the ‘S’ than it is
to the ‘A’. Such mis—tracking should be very unlikely once the correct direction is established and
we note that this particular error occured on the first character of a string. Finally, note that some
strings appear a bit off from horizontal in Figure 7. This is because the line joining the first and
last character is not exactly parallel to the baseline of the string. Even so, the tilt should be well

within the capabilities of any good character recognition system.

Although most of the text in this image is printed in upper—case, there are a few lower—case
strings (‘2nd’, ‘3rd’, for example). Even though these strings were tracked successfully, it is conceiv-
able that mixed case strings might have problems since the centers of their indivual characters do
not usually form a very nice straight line. It might be advantageous in this case to use not only the
centers of the components but also their corners as tracking points. Tracking could continue as long

as at least one of these tracking points satisfied all of the tracking constraints.

It is interesting to note the word ‘FRANKLIN’ near the lower left of the image. Although it
has a gently curving path it géts tracked correctly and appears as one string in the output. The
same is true of the two occurrences of the word ‘SHENANDOAH’ near the top of the map. The
angle threshold is slack enough to allow the tracker to follow the string as it takes the bend in the
road. It would, perhaps, be better if the tracker stopped where the word changed direction and
picked up a new string. Then there could be some postprocessing to rejoin such strings so that they
would appear straight in the final output for the character recognition step. Note also that the large
title ‘CENTRAL ROANOKE’ is segmented as graphics, since it was printed in approximately an
18pt font and the test run was set to detect text in the 8-12pt range. We could easily iterate the
algorithm for different point sizes in order to pick up such a title or any extra fine type that might

be in the document.

The processing times for various steps of the algorithm are listed in Table 1. Clearly, the bulk
of the time is spent simply in finding connected components This is a fairly simple task and could
easily be implemented in hardware. It would make sense to position the segmentation and tracking

procedure immediately after the scanning process, and so the time for reading and the image from

7

disk would be eliminated. This leaves only the time for deciding if the component is text and then
tracking the strings. Assuming that the algorithm could be implemented in hardware and that doing
so would reduce the time by an order of magnitude, the entire process could be done in less than 2

seconds which is about the time it takes to scan a document,

6. CONCLUSIONS

We have presented a fast, effective, and reasonably robust algorithm for segmenting text strings
from graphics in mixed mode documents. Image components are first segmented into text and
graphics based primarily on the height and width of their surroundmg rectangles, and the algorithm
then uses a fast tracking technique to link the characters together into longer text strings. Once the
characters have been tracked they can be rotated to horizontal for processing by automated character
recognition. By using this tracking approach the computational complexity of other techniques, such

as the Hough transform, is avoided.

The only parameters to the algorithm are the resolution of the input image and the range of text
sizes to be detected. The current algorithm expects the input image to be of fairly high quality, as no
attempt is made to repair broken characters or to detect characters that are partially obscurred by
other image elements. Some attempt could be made to infer the existance of these partially obscured
characters by analysing the patterns of the strings that are found. Although strings are also expected
to form a reasonably straight line, the algorithm can tolerate a somewhat gently curving path. The
current algorithm could easily be modified to join together adjacent words to form longer phrases if
desired. It could also be made to straighten the path of a string that changes direction as might be
the case of a street name that is written to follow the contour of the street. Some additional logic
could be developed to locate punctuation, subscripts, superscripts, etc., and to fuse them with the

corresponding text.

We have demonstrated the effectiveness of this approach to text segmentation by applying the
algorithm to a typical city street map that contains text strings of a variety of sizes and orientations.
Other applications could include survey maps where distances and bearings are typically written
along the corresponding boundaries, contour maps, and other technical drawings. By using color
separation in the scanning process, the technique could also be applied to standard topographic

maps.

10
11

12

REFERENCES
Black, W, T P Clement, J F Harris, B Llewellyn, and G Preston ‘A general purpose
follower for line-structured data’ Pattern Recognition. 14 (1981) 33—42.
Bunke, H ‘Automatic Interpretation of lines and text in circuit diagrams’ in Pattern Recoy-
nition Theory and Applications, J Kittler, K S Fu, and L F Pau, Editors, D. Reidel Boston,
(1982} pp 297-310.
Clement, T P ‘The extraction of line-structured data from engineering drawings’ Pattern
Recognition 14 (1981) pp 43-52 .
Ejiri, M, S Kakumoto, T Miyatake, S Shimada, and H Matsushima ‘Automatic
Recognition of design drawings and maps® Proc. 7th Intl. Conf. on Pattern Recognition (1984)
pp 1296-1305.

Fletcher, I. A and R Kasturi ‘Segmentation of binary images into text strings and graphics’
Proc. SPIE Conf. Applications of Artificial Intelligence 786 (1987) pp 533-540.

Pavlidis, T Algorithms for Graphics and Image Processing Computer Science Press, Rockville,

MD. (1982).
Ramachandran, K ‘A coding method for vector representation of engineering drawings’ Proc,
IEEE 68 (1980) pp 813-817.

Ramer, U E “‘An iterative procedure for the polygonal approximation of plane curves’ Comput.
Graphics Image Process. 1 (1972) pp 244~256.

Sklansky, J and V M Gonzalez ‘Fast polygonal approximation of digitized curves’ Pattern
Recognition 12 (1980) pp 327-331.

Tomek, I ‘Piecewise linear approximations’ JEEE Trans. Computers C-23 (1974) pp 445-448.

Wall, K and P Danielsson ‘A fast sequential method for polygonal approximation of digitized
curves’ Comput. Vision Gr. Image Process. 28 (1984) pp 220-227.

Watson, L T and K Arvind, R W Ehrich, R M Haralick ‘Extraction of lines and regidns
from grey tone line drawing images’ Pattern Recognition 17 (1984) pp 493-507.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

FIGURE CAPTIONS

. Character I with density equal to 1.0.

- Character I at 45 degrees with density equal to 1/+/areq.

. Character components mapped to nearest point in sampled image,
- Original street map.

. Text only portion of Figure 1, |

- Graphics only portion of Figure 1.

. Text strings tracked and oriented to horizontal.

10

Fig 1 Fig 2

AV.

: -
AV, M wooay B

WESTERN

N&W OFFIC g

HOTEL

KIRK

—

MUNHBPALBLDGi

CHURCH

ROF pm
$/ERcE LSS
CHUR CH 221

LB

C'Mﬂc

= BUS}NEsa

BULLITT

@ SILL
2 MEwm B
HMOSE z

LIBRARY

ELMWOOD

PARK

J116

civic

20 s CENTER
EGIONAL
116 PO
221
s,
Y~ WELLS AV
5y 73 HOTEL
&y 4/% Sn S N W OFFICEgm 212%
OAH AV Y NDoaH AV
WESTERN L. 4
NoRrFOLK AV
TRAILWAY S STATION -
11 SALE M o
o . A/ <
2 17 - o
os L w AV -
2 PBEL
= CA M FARMERS
MKT -
11 KIRK AV &
CHA OF a:
MUNICIPAL BLD ERCE & R o 2
AV CHURCH Ay & L
H ZA m L
CHURC PLA wn :?) :; TI&T—E\NE
W Luck AV AN 24
RO
LUCK b P
NATIONA BUSINES E
COLLEGE T 2
MAﬁsH,qLL BULL/TT AV i :_‘::'
Av LIBRARY é;"
D ©m Lswbg DAY AV o0
_— ELMWOOD
Qf POSTO FicE Z o =
Q HOSF m PARK —
<T) S i
& 3 15 =2
Ty L =
21 FIL M AV W
N CO Mo, M
& J;OANO
220 561

1§

civic
CENTER
220

581
EGIONAL
116

PO

221
CENTRE

WELLS

AV

HOTEL
SHENANDO Ay
ST

N W OFFiCEgs
11

SHEN N DOAH

220
AV
AV

WESTERN

L 4

NORFOLK

Av
TRAILWAY

- S STATION

-y

SALE M
3rd

11

i VA
2nd

ST
ST
ST

AV
3rd

CA MPBELL

FARMERS

MKT
58l
11
KIRK
AY
CHA
OF
MUNICIPAL BLD
Ist
SPUR
ERCE

220

RD

AV
CHURCH
221
AY

TAZEWELL
CHURCH

FLAZA

ST
ST

ST
24

Ay
Luex
AV

4y

RD

Luck
ST

INTERSTATE
NATIONA
BUSINES

6>
3rd

COLLE &
MARSHALL
BULL.TT
AV

AV

WILLIAMSON

LIBRARY

FRANKL 1y

AV
EDER L BLDG
DAy

ELMWOOD

POST O FICE
Ist

GILL
MEM

HOSP

NOSY34 45

PARK

g
116
ELM
AV

221
2nd

cor
HCw
S

ANO
ST

220
ST

b 981

task
read IMB image
find 579 components
segment components
track 107 strings
rotate 107 strings

Table 1. Performance results for map

sec

24.3
165.6
0.6
5.2
65.5

