An O(N log N) Expected Time Merge
Heuristic for the Planar ETSP

Ritu Chadha and Donald C. S. Allison

TR 88-16

An O(N log N) expected time merge

heuristic for the planar ETSP

Ritu Chadha and Donald C. 8. Allison
Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061.

Abstract

We discuss a new heuristic for solving the Euclidean Traveling Salesman Problem (ETSP).
This heuristic is a convex hull-based method and makes use of the Delaunay triangulation of
the set of cities to compute a tour for the given set of cities. We conjecture that thé expected
running time for this algorithm is O(N log N}, implying that a new and faster ETSP heuristic is

now available.

1. Introduction

in this paper, we discuss a new heuristic for solving the Euclidean Traye!ing Salesman
Problem {ETSP). The traveling salesman prob!em may be stated as follows : if we have a set
of N cities, and a salesman has to visit each of the N cities exactly once and then return to
his starting point, what is the order in which he should visit lthe cities (calied the tour) in order
to minimize the total distance which he has to travel? In this problem, the cities are given as
a set of points in the Euclidean plane, i.e. they are given in cantesian coordinates, and the
distances between the cities are measured using the Euclidean measure of distance in the
plane. It has been shown by Garey and Johnson {8} that this probtem is NP-compI.ete. Thus
a lot of attention has been focused on heuristics which run in polynomial time and generate
tours which are close fo optimal. In general, there is a tradeoff between speed and guality;
i.e. faster algorithms do not approximate the optimal tour as well as some costiief' algorithms.

Thus it is necessary to achieve a suitable balance between cost and quality.

The various approximation methods used for the ETSP can be classified into two broad cat-
egories : tour construction procedures and tour improvement procedures. Tour construction
procedures start with a set of points representing the cities to be visited, and generate a tour
of the cities which approximates the optimal tour, Tour improvement procedurés take a given
tour of a number of cities, and try to improve the approximation of that tour to the optimal tour
(which is not generally known). In this paper, we will concentrate on tour construction pro-
cedures. We briefly describe some of the better-known heuristips which have been used for

constructing Euclidean Traveling Salesman tours.

The nearest neighbor heuristic [Rosenkrantz, Stearns énd Lewis] starts with any city as the
first city of the tour, and chooses the city nearest to this one as the next city on the tour. This
process is repeated until all the cities have been visited. The nearest neighbor heuristic has
a worst-case time performance of O(N?). The nearest insertion heuristic [Rosenkrantz] staris
with an arbitrary city as the initial subtour, finds a city which is the nearest to some point on -
the subtour, ahd inserts it between two adjacent cilies i and | on the subtour so as to minimize
di +dy — d;; , where d,, is the distance between cities r and s. The farthest insertion heuristic
operates in a similar fashion, except that at each step, the city chosen for insertion is the one

farthest from any point on the subtour, and it is inserted between adjacent cities i, j already

on the subtour so that d,, + dy — d;; is maximized. The nearest insertion and farthest insertion

heuristics also have a worst-case time performance of O{N?).

The Stewart Hull Heuristic uses the convex huli of the set of points representing the cities to
be visited as the initial subtour of the cities. Then, for each city k not yet contained in the
subtour, it finds a pair of adjacent cities i, j already on the subtour such that d + dy, —d; is
minimal. After such a pair (i, j) is found for every city k not yet on the subtour, a triple {(i*, j*,
k") is chosen frcm all the triples (i, j, k) above such that dpe + dyy — iy is minimal. The city
k* is then insert.d into the subtour between cities i* and j*. The above procedure is repeated
until all the cities have been inserted into the subtour. The Stewart Huil Heuristic has a
worst-case time performance of O(N®), but empirical studies have shown that in practice, the

expected time performance of this heuristic is O(N? fog N).

From the extensive analytical and empirical studies in the literature about the above algo-
rithms, it seems safe to say that in general, the performance of the Stewart Hull Heuristic has
been found to be superior to ali the other methods mentioned above (see [1, 2]. For this rea-
son, in Section 4, we will compare the performance of our heutistic with the performance of

the Stewart Hull Heuristic.

This paper is organized as follows. The next section describes the reiationship between
minimum spanning trees and Euclidean Traveling Salesman tours. Section 3 gives a brief
overview of the definition of a Delaunay .trianguiation {which will be required in Section 4) and
an asympictically optimal divide-and-conquer algorithm for constructing the Delaunay trian-
gulation of a set of points. Section 4 describes' in detail a new heuristic, which we call Heuristic
C, for finding a traveling salesman tour of a set of points in the Euclidean plane. In Section 5,
we compare the performances of the Stewart Hull heuristic and Heuristic C on data sets of

several sizes. Finally, we present the conclusions of this study in Section 8.

2. Minimum spanning trees

In this section, we describe how the length of the minimum spanning tree of a set of points

cah be used in estimating a lower bound for an optimal ETSP tour. Recall that a spanning tree

for a set of n cities is a set of n-1 edges which join all cities into a connected component. Using
a well-known algorithm such as Kruskal’s algorithm for minimum spanning trees [6], the
minimum spanning tree for a set of N cities can be found in time O(N?). Now suppose that we
know the optimal tour for a set of n cities. if we delete one edge from this tour, we will be [eft
with a spanning tree whose length must be less than or equal to the length of the minimum
spanning tree. Thus the length of the optimal traveling salesman tour must be strictly greater
than the length of the minimum spanning tree, and so we have obtained the resu_lt that the
fength of the minimum spanning tree is a lower bound on the length of an optimal Euclidean
traveling salesman tour. However, a tighter lower bound was obtained by Akl [7], based on
Monte Carlo experimentation. He obtained a theoretical lower bound of
MST * 1.102
for a Euclidean traveling salesman tour, where
MST = length of the minimum spanning tree of the cities In the tour.

We shall use this result as a basis for estimating the quality of the tours produced by the

heuristics which we will test.

3. Delaunay triangulation

In this section, we give a brief exposition of the problem of finding the Delaunay triangulation
of a set of points. Let V = {vy, v, ..., v,} be a set of distinct points in the Euclidean plane, such
that all the points in V are not collinear and no four points in V are cocircular. For any iwo

points u = (x4, v, and v = (%, y;) in V, define the distance d{u, v) to be

dlu, v) = \/(X1 = X%P+ =) .

Define the set
V() = {x[dx, v) dlx, v),] = 1,2 .., N}

Then V(i) contains ail the points which are closer to v, than to any other point in the set V.
The polygon V(i) is called the Veronoi polygon of the point v, , and v, is called the growth center

of V{i}. Voronoi polygons which share a common edge are called Voronoi neighbors.

Consider two points v, and v; , whose Voronoi polygons are Voronoi neighbors. This means
that V(i) and V{j) share an edge in common. Now, every point on this common edge must be
equidistant from both v; and v;, since it Is the boundary separating the two sets of points which
are closest to v, and to v, respectively. Thus the common edge e, between V{i) and V({j) is the
perpendicular bisector of the line joining v, and v; {see Figure 1}. Now consider one of the
endpoints of this common edge e;. There is an edge e, of the Voronoi polygon V{j) which is
incident to an endpoint a of e,. The edge e, must be an edge of a third Voronoi polygon Vik)
of some point v,. Hence every point on the edge e, is eguidistant from points vy and v,. In
particular, the point a (which lies on edge e;) is equidistant from v; and v,. Also, a is
equidistant from v; and v, (since it also lies on the edge e,). Hence a is equidistant from all the
three points v, v; and vy, and hence is the circumcenter of the triangle formed by connecting

the points v, , v, and v,.

Consider the aggregate of triangles formed by connecting the growth centers of Voronol
neighbors. This aggregate is called a Delaunay triangulation DT(V) of the set of points V, and
any triangle in DT(V) is called a Delaunay triangle. From the above observations about the
circumcenter of a triangle in a Delaunay triangulation of V, it is clear that given any Delaunay
triangle, its circumcircle does n.ot contain any other point of V in its interior. The converse of
this statement is also true, i.e. a triangle T is a Delaunay triangle if and only if its circumcircle
does not contaiy any other point of V in its interior (for proof see [3, 4]). in fact, this property

is sometimes given as an allernative definition of the Delaunay triangulation.

We present below a divide-and-conquer technique for finding the Delaunay triangulation of a
set V of points. This algorithm is due to Schachter & Lee [5] and is asymptotically optimal,

running in fime O{N log N).
First, the set V of N poinis is sorted and its elements are renamed so that

I <] iff vy<v}, where v;<v; means that either x;<x; or x; = x; and y, <y, , where v, = (x, y,) and

Vj = (Xj, yj) .

V is then partitioned into two subsets V_and V., , where V = {V1Vq-.., v[i]} and
4
Ve = {V[y_]+1,..., vy} . In effect, V, is the set of the [N/2] leftmost points of the set V, and Va
2

contains the remaining points of V.

We recursively construct the Delaunay triangulations DT(V,) and DT(Vy) of the two sets V, and
Vg respectively. The two triangulations DT(V\) and DT(V,) now have to be merged to form
DT(V}). For this, we need to construct the convex huil of the set of points V. We can do this
recursively by finding the convex hulls CH(V)) and CH(Vg) of V, and V. respectively and
merging these two convex hulls. Now, while merging CH(V)) and CH(Vy), we will get two new
convex hull edges which are the lower and upper common tangents of the set of points V.

These two common tangents will be in the Delaunay triangulation of V.

Next we merge the Delaunay triangulations of the two sets V, and V, , starting with the lower
common tangent and zigzagging upward until the upper common tangent is reached. This is
done as follows. Initially, we examine the points adjacent to the 'endpoints of the lower com-

mon tangent. Then, using the ‘circle test ' (described below), we either connect ;

(i) the feft endpoint (in V) of the lower common tangent to a point adjacent to the right

endpoint (in V) of the lower common tangent, or

{ii) the right endpoint (in Vy) of the lower common tangent to a point adjacent to the left

endpoint {in V} of the lower common tangent.

The ‘circle test * will choose the point to be connected so that the circumcircle of the triangle
formed by the connection of this point does not contain the other point being considered for
insertion. The search for the point to connect begins with the points of V, and Vy lying nearest
to a vertical line separating V, and V, and alternately advances clockwise around the convex

hull of V| and counterclockwise around the convex hull of V.

This process is repeated with the newly found edge taking the place of the lower common
tangent, and ea~h succeeding edge taking the previous one’s place. The process halts when
the new edge found is the upper common tangent. As an illustration, consider the set of points
shown in Figure 2. The points in V_ are shown as solid black points, and the points in Vg are
shown as hollow points. The upper and lower tangents of the two sets of points and their

convex hulls are also shown in the figure.

A proof of the correctness of this procedure may be found in [5]. The algorithm runs in time

O(N log N).

4. Description of Heuristic C

We now describe the Heuristic C for approximating solutions to the ETSP. The method -used
here is based on the convex hull approach used by Stewart et. al. described earlier, but runs
in O{N log N) expected time, as compared with the expected time of Q{N? log N) for the Stewart
Hu_II Heuristic. Heuristic C makes use of the Delaunay triangulation of the set S of N input
poinis, merging it into the convex hull of 8. As the merging proceeds, the initial Delaunay tri-
anhgulation is dynamically reconfigured to ensure that every edge in the subtour has a viable
insertion point. However, this scheme does not guarantee that all points will be added to
produce the final tour. Polnts may remain inside a subtour which have edges connecting them
only to non-consecutive subtour points. These points cannot be merged and are therefore

added into the subtour by brute force using a cheapest insertion-no intersection rule.
We give a description below of the algorithm used to implement Hauristic C.

Let 8 = {V[1], Vi2], ..., V[N]} be a set of N points in the Euclidean plane. Let DT(8) be the
Delaunay triangulation of S and let CH(S) be the convex hull of 8. The input to the algorithm

consists of

{i) The cartesian coordinates of the points in the set 8

{I} A list of the indices (in V) of the points that make up each triangle in DT(8), and
(iif) An ordered list of the indices of the points lying on CH(S).

The algorithm is summatrized below :

Step 1: A single pass Is made through the list of triangles and each edge and its (at most two)
connection points are dynémical[y stored into a balanced binary tree B, (the key fields of B,

are the endpoints of an edge in the triangulation).
Step 2 : The initial subtour ST is chosen to be CH(S).

Step 3 : For eac!: edge (i, j) in the sublour 8T a connection point k is found in B,. The cost ratlo

to insert k into ST is computed using the formula

d(i.k) + dk)

cost ratio = -
d(if)

and stored along with (i, j) and k into a priority queue Q.

Step 4 : The following steps are executed N - CH(8) times (until every point in S that is not
on CH(S) is inserted into ST) :

Step 4.1 : A remove-queue operation is carried out on Q to find the smallest insertion
ratio and its corresponding edge {i, j} and connection point k.

Step 4.2 : Each insertion is catalogued into another balanced binary tree B,. The keys
for B, are the endpoints of the edge (i, j) that is to be replaced by new edges {i, k) and (k,)
in ST.

Step 4.3 : We now update Q. B, is examined to find the connection points for (i, k) and
(k, 1). insertion ratios are computed and stored into Q along with their edges and connection

points.

Step 5 : Finally, a backtrack procedure can be used to fill in an array with the sequence of
points comprising the final ETSP tour. 1t can be shown that this step makes at most n-3 ac-

cesses into B, and backtracks O(N) times.

It is a rather straightforward result that the merge algorithm can be implemented to run un
O(N) time {worst-case performance). Also, the Delaunay triangulation of the set of points and
the convex hull are computed in O{N fog N) time. Thus the time complexity of the algorithm,
assuming that no brute force insertions are required, is O(N log N). However, in the case

where some points have to be inserted by brute force, the time complexity can go up to O(N?),

8. Testing and Results

As mentioned earlier, empirjcal evidence from the literature suggests that the Stewart Hull
Heuristic is superior to the other approximate tour construction methods mentioned in this
paper. Also, the Stewart Heuristic and Heuristic C are very similar in that their approach to
constructing the Euclidean Traveling Salesman tour consists of starting with the convex hull
of the given set of points as the initial subtour and repeatedly merging the remaining points

intfo the subtour, until & comp'iete tour is obtained. For this reason, we chose to use the

Stewart Hull Heuristic as a vyardstick to measure and compare the quality of the tours
produced by Heuristic C. Both the heuristics were coded in Pascal and run on the same sst
of data points, which were generated using a uniform random number generator. We used
10 sets of 25 poinis each, 10 sets of 50 points each, and 10 sets of 100 points each, We esti-
mated the quality of the tours obtained by comparing them with the lower bound of

MST * 1.102,
where MST = length of the minimum spanning tree for the cities, as explained in Section 2.

Thus we define the efficiency for a particutar tour as
length of calculated tour

1.102 * MST
The results are shown in the tables below.

efficiency =

n = 25 points

Data set Stewart hull Heuristic
number heuristic C

1. 1.0785 1.0897
2. 1.1976 1.2072
3. 1.1363 1.1091
4. 1.1738 1.2182
5. 1.4181 1.1755
B. 1.1138 1.0934
7. 1.1312 : 1.2229
8. 1.0840 1.1333
8. 1.1091 1.1093
10. 1.0858 1.0858

Pata set

number

® ® N @ o koW D

Data set

humber

© ® N e oo s @

n = 50 points

Stewart hull

heuristic

1.1447
1.1040
1.1083
1.1238
1.1442
1.0968
1.0873
1.0839
1.1547
1.1052

n = 100 points

Stewart hull

heuristic

1.1218
1.0756
1.0642
4.0927
1.1028
1.0790
1.0642
1.1374
1.1217
1.0806

Heuristic

C

1.1932
1.4588
1.1494
1.1579
1.1455
1.1519
1.1316
1.1374
1.1787
1.0724

Heuristic

C

1.1389
1.1611
11241
1.1153
1.1048
1.1483
1.1241
1.1678
1.0828
1.0855

10

The means and standard deviations of the efficiencies shown above for n = 25, 50 and 100

are shown below :

Stewarnt Heuristic C
Mean Standard Mean Standard
deviation deviation

n=25 1.12290 0.11655 1.14542 0.16482
n =350 1.11560 0.07681 1.14765 0.09653

n = 100 1.09500 0.07645 1.12514 0.08745

Some of the tours obtained are depicted in Figures 3 and 4. We also ran the Stewart and the
Heuristic C algorithms for problems 24 through 28, mentioned in [9]. The lengths of the tours

obtained for these five 100-point problems are shown in the table below :

Problem Stewart Heuristic C
number

24 22056 235286

25 22700 23507

26 21275 21233

27 21794 22740

28 22830 22995

From the results obtained above, we observe that the average efficiency for tours obtained
using Heuristic C is approximately 2% worse than the average efficiency for tours obtained
using the Stewart Hull heuristic for n = 25 and n = 100, and is 3% worse for n = 50. In the
case of problems 24 through 28, the Stewart Mull heuristic performs slightly better than
Heuristic C for problems 24, 25, 27 and 28, while Heuristic C performs marginalty better for

problem 26,

11

6. Conclusions

From the resuits in the previous section, we see that the performance of Heuristic C with re-
spect to the quality of tours produced is only slightly worse than that of the Stewart Hull
heuristic. Also, in all the above tests, no more than one point was ever added by brute force,
and in many of the cases none of the points were added by brute force. Thus we conjecture
that the expected running time of Heuristic C is O{N log N), which is considerably better than
the expected running time of O(N? log N) for the Stewart Hull Heuristic. Thus in cases where
a reasonably good tour is needed and where speed is important, it may be worthwhile to use

Heuristic C in preference to other slower heuristics.

References

1. B. Golden, L. Bodin, T. Doyle, W. Stewart Jr., "Approximate Traveling Salesman
Algorithms”, Operations Research 28 (1980), 694-711.

2. Mark Noga, "Fast Geo_metn‘c Algorithms”, Ph.D. dissertation, Dept. of Computer Science,

Virginia Tech (1984), 176-180.

3. D.T. Lee, "Proximity and Reachability in the Plane”, Ph.D. dissertation, Coordinated Science

Lab. Report ACT-12, University of lllinois, Urbana, llinois (1878).

4. M. |. Shamos, D. Hoey, "Ciosest Point Problems”, Proceedings of the 16th Annual Sympo-

sium on the Foundations of Computer Science {Oct. 1975), 151-162,

5. D. T. Lee, B. J. Schachter, "Two algorithms foi constructing a Delaunay triangulation”,

International Journal of Computer and Information Sciences 9 {1980).

6. J. A. Bondy, U. 8. R. Murty, "Graph Theory with applications”, North-Holland, New York,
36-40,

7. 8. G. AKl, "An analysis of various aspects of the traveling salesman problem”, Ph.D. thesis,

School of Computer Science, McGill University, Montreal, Quebec, Canada (March 1878).

i2

8. Michael R. Garey, David. S. Johnson, “Computers and intractability : A guide to the theory
of NP-completeness *, W. H. Freeman & Co., New York 1978.

9. Patrick Krolak, Wayne Felts, "A Man-Machine approach toward solving the Traveling Sales-

man Problem”, Communications of the ACM 14 {May 1971), 327-334.

13

|
Mﬁ\“r@bnf’
\ .

Figure 1

,—‘--—.m g
/ \ : ; ‘0\\
° » D \
N B
e / l f 0
\ f |
\\ /1‘ l { o
A\ ’/ I d“ _______
e

Tower Cpmmon tangent

Vi

 Figure 2 .

Ve

Figure 3. n=25, efficiency =I-1155 (Heuristic C)

Figure 4 n==25, efficiency =1.ti9} (Stewart) |

15

