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ABSTRACT

This is the final report of a short study of the applicability of formai definition techniques
to program development activities with specific emphasis on using the programming
language Ada.

The portion of the study reported here encompassed three elements:
® A review of the various formal definition techniques;

. A study of the existing and planned tools in programming development
environments; and

. An examination of life cycle methodologies with the objective of inserting
formalized techniques.

As a resuit of these activities, this report proposes that a plan for a formalized life cycle
can be developed and that the initial steps should be:

1. The identification of the appropriate formalisms to be used at each stage of
the life cycle and the interface requirements necessary to integrate the
formalisms into the overail life cycle model;

2. The identification of the tools and environments which will serve as the
carriers for the formal components; followed by

3. The implementation of a complete software development system.



1.0 INTRODUCTION

This is the final report of a short study of the applicability of formal definition techniques
to program development activities with specific attention to using the programming
language Ada as part of a larger “Ada Project” within the Software Productivity
Consortium.  Support for this project was supplied by the Center for Innovative
Technology of the Commonwealth of Virginia and the Software Productivity Consortium.
The portion of the study reported here encompassed three elements:

° A review of the various formal definition techniques that have been applied
to elements of programming systems, with a view to investigating the
~potential for creating a coordinated approach to the complete formal
description of the components of a program. Whereas in the past formal
definition techniques have been applied singly to programming laﬁguages,
this preliminary study envisages the use of a number of different
techniques, each tailored to the element of the programming system where
they have the closest relationship and where they can most accurately
describe the semantics of that element.

. A study of the existing and planned tools in programming development
environments, with a view to their use in:

1. Supporting a formalized programming development activity,

2. Providing the technological and computational support for program
development with formalized verification, and

3. Providing a bridge between current programming activities and the
targeted fully formal system.

° An examination of the currently accepted life cycle methodologies with the
objective of inserting formalized techniques into the definitional,
transformational, and review processes.

1.1 BACKGROUND

The need to verify the correctness of programs has been recognized since the early
programs were written by such pioneers as von Neumann [KNUTH] and Turing [DAVIS],
who both accompanied their programs by formal proofs of correctness. As programming
grew from a mathematical activity accompanied by proofs, through a coding activity that
followed the verified designs completed by mathematicians, to a combined design and
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coding activity undertaken by programmers, the verification process was lost. In its place
programmers substituted empirical testing as a means to raise the assurance level of the
software. As the complexity of programs and systems grew, the ability to test

 satisfactorily has further diminished the confidence level in software developed in an ad
hoc manner.

The emergence of software engineering as a discipline was as much predicated on the

need to bring order from this chaos as it was a means for providing a methodology for

increasing the quality of developed software. The use of various techniques (e.g.,.
structured programming) and management styles (e.g., chief programmer team concept)

combined with a systematic methodology (embedded in a so-called life cycle) has

provided a first step in formalizing the development process. This has been achieved

through two requirements:

1. The identification of clearly defined intermediate stages in the life cycle,
accompanied by an audit trail of documentation, that raises the confidence
level that the development process is disciplined and well managed; and

2. A series of reviews whereby the expertise of peers is brought to bear
(hopefully) to identify errors and mistakes that are not then allowed to
ripple through the remainder of the development activity.

While there is a plethora of such techniques and methods, and many of them have a basis
in some formalism (such as software metrics), the majority of their applications are
empirical. The software engineering process is at a stage that is akin to that of Civil
Engineering in the mid-1800’s when the processes of construction were being formalized,
but the process of design was yet unable to provide complete proofs of correctness. Even
in those days, some impressive feats of engineering were completed that have stood the
test of time, but this may be more attributable to conservatism and high factors of safety
than to good design.1 In some respect we are beginning to see some elements of the
same two qualities (conservatism and factors of safety) being applied to software.
Conservatism in engineering can be seen as using only those materials and designs that
have worked well previously —— the concept of reusability. It is much more difficult to
apply factors of_safety by “beefing up” software, but we are seeing the beginnings of this

' In a recently published biography of John von Neumann, by his brother Nicholas Vonneuman, a
third brother (Michael) tells the story of one of his Professors of structural engineering saying:“...
and the safety factors should be selected so that, if possible, the bridge should not collapse even
once during its first five years of use.” John commented: “Why of course, one can always secure
100% probability from satistical formulae, but then the spread of ranges and expenses become
prohibitive.” Interestingly enough there is a better analogy between these comments and software,
due to its ability to recover from “catastrophic” failures, than with bridges!



concept in N~-person programming, fault tolerant software and the use of strongly typed
languages. Many of these less rigorous approaches have been built in to existing
methodologies such as advocated by Yourdon, Jackson, etc. These approaches need not
be abandoned; instead they may well be the basis of a system that is to be extended by
formal systems. '

This report looks at the longer term progression of change with a view to organizing the
transition from a disciplined Mmanagement approach to software development to a
methodology that involves a great deal more formalism and that will eventually provide
the same degree of confidence in the correctness of the product as in an engineering
environment. This does not imply that the disciplined management approach (using the
life cycle as its core) should be replaced by a totally formal, mathematical mechanism.
Rather, as in engineering design and construction (and maintenance) the formal approach
provides the tools and methods that are utilized within the existing development
framework. '

The Ada environment for program development is particularly interesting in this regard
though it is strongly believed that the recommendations developed herein are equally
applicable to other language based environments. In recent years there have been some
initial excursions into this area both in terms of formal description of the language and its
environment and tools that support program development [BJOR1], [BJOR2], [BIOR3],
[BJOR4], [BJORS]. The integration of these components into a methodology for program
development that would support different intellectual levels of participation is an
important part of this plan.

Traditional management approaches to software quality include IV&V (Independent
Verification and Validation). In IV&V the word “verification” basically means checking
between stages in the software development process to be sure that all items have been
correctly handled. For example, that each of the points in the specification is
accomplished by a portion of the design, that no functions exist in the design that are not
explicitly required in the specifications, and that ail the connections between the
requirements specification and the design have been properly documented.

As an approach to increasing the discipline of development some methodologies have
begun to use various metrics and models to predict the complexity and error proneness of
large software developments. There are also formal procedures for software audits and
so forth. These topics are well covered in many current software engineering text and
guide books (e.g., [PFLEE]).
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The life cycle methodology has been neglected by more formally oriented computer
scientists because of its being generally a management technique. The Cleanroom
[MILLS] and Software Safety {LEVES] approaches have their roots in these now classical
approaches to software management.

These techniques should be adapted to use the emerging formal description methods, the
automatic cross referencers between stages in program development, and the limited
formal verification technologies that are now becoming available. As an intermediate
step, formalized techniques for stepwise integration into the life cycle need to be -
developed with eventual verification in mind, and disciplined, systematic management
techniques continue to be used to assure that the software is “visually” (statically) correct
to the same extent as we achieve today.

Formal verification is the highest technological approach to increasing assurance in the
correct functioning of computer software today. Unfortunately, it is viewed by many as
the only means by that the highest level of assurance can be obtained. To such people,
other approaches, such as testing, configuration management, development methodology,
etc. may have their benefits and places, but only verification alone can provide absolute
assurance. This has resulted in the unfortunate position that verification has become an
) a]l—or—nothing proposition for software development requiring stratospheric levels of

assurance [PREST]. Such mentality has not served to bolster the application of formal
verification technology. As we will note later, the need for formal verification belies the
inability to place a high degree of reliance on the transformational development of objects
in the life cycle; essentially verification is a backward looking step!

The formal verification process consists of preparing, prior to the development of
software, the formal specification of a model of the intended behavior of the software.
Some effort may be placed (as described previously) in the analysis of the specifications
to ascertain their completeness and internal consistency. Then, following the software
development methodology, designs and implementations at the various levels of the
software are completed, and formal correspondence with the specification is performed,
resulting in proofs of correctness of the implementation with respect to the specification.
The specification can be written in a non-procedural transformation language, while the
implementation is provided in a procedural implementation language. The formal proof
of correctness consists of showing that the two separate, hopefully somewhat orthogonal,
descriptions have a proper correspondence. That is, showing that the transformation
process is correct. Research is still ongoing to find means by which requirements and
specification, which are in narrative terms, can be formalized. Unless some means can
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be created to transform requirements into specifications and specifications into design,
verifiably correct programs can be inconsistent with the requirements. The extraction of
significant items from specifications and the constructions of a set of test criteria could
form the basis of formalizing narrative specifications.

One of the benefits of formal verification technology is its formality. This is an area that
seems to have varied amounts of support during the design of Ada. The syntax of the
language can be described by an LALR(1) grammar, allowing the development of syntax
parsers in as little as a few hours, given the current state of parser generator technology.
In the early requirements documents for the Ada language, verification was mentioned as
a desirable goal, but the language contains many constructs that prevent this goal. In
order to conduct formal proofs of consistency between the specification and the
implementation, a formal description of the language semantics is also necessary. Some
effort has been undertaken by the European Economic Community (EEC) in this area,
but it has not sufficiently matured to a stage where it can be utilized in formal
verification. Even the only viable specification language for Ada, ANNA, has been
geared more toward the utilization of run time assertion checks, rather than formal
verification, and has largely ignored the aspects of parallelism. At least one known effort
is involved in extending Anna to overcome these deficiencies. [PREST] has suggested
that the completion of a verification environment suited to the needs of NSA trusted
software requirements will require of the order of 30-60 man-years of effort. It is
expected by the plan developed here that a start can be made into this methodological
development that will produce results without waiting for the completion of the full
verification environment. Furthermore, specification languages were viewed both from
- the perspective of their necessity for formal code verification and from the perspective of
their applicability to other techniques, both formal and less formal, for increasing the
understanding of software. Research in application of formal methods to Ada outside of
the code verification domain was investigated also. Two specific areas are the application
of formal methods to specification analysis and to runtime assertions. From that it was
concluded that “Formality in software development should not be all or nothing.” This
report strongly agrees with this conclusion and suggests means by that a gradual
introduction of formalisms into the life cycle can be achieved.
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1.2 THE NEED FOR VERIFICATION

There are five “classical” methods of demonstrating various degrees of correctness of a
program:

1. N-version programming;

2. Post development testing;

3. Recomputation of the solution by an independent method;

4. Substitution of the generated results into the requirements specification; or
S. Formal verificatioﬁ.

N-version programming [CHEN] and post development testing can be considered to be
managerial approaches to correctness assurance that are performed during the life cycle
and that are independent of the run-time environment. However neither of these methods
yields a degree of confidence in the resulting software that is acceptable in “mission
critical systems”. Redundant computation of the solution by the use of an independent
algorithm, and the substitution of results into a quantified version of the requirements,
are both techniques that can be used to “instrument” the run-time program, and thus
‘continue to assure correctness. Both of these methods impose a burden that affects the
efficiency of the program, that may be intolerable in real-time systems. The National
Computer Security Center (NCSC) has defined criteria to certify trusted software.
Currently the highest designated level is “A1”, at which level the specification or design
must be proven to be correct by “formal methods”. On the other hand the relationship
between the specifications (or design) and the implemented code can be established
informally. In this context, it is to be assumed that “informality” still requires a high
level of discipline and structure, and is not entirely an ad hoc activity. NCSC also defines
a level of software beyond Al that requires formal verification throughout the
development process.

The formal verification process consists of preparing, prior t0 the development of
software, the formal specification of a mode! of the intended behavior of the software.
Such requirements will require that verification of correctness (i.e., proofs) be founded on
already well-founded descriptions and methods. That is, it will be impractical to start
such a formal process from “scratch” for each system being developed. The tools for
formal verification:

° A basic algebra or formalism,
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o A description of the language of specification, design or implementation,

° A transformation process between successive elements of the development
system (from specification to design, design to implementation, etc), and

° A theorem “prover”,

need to be developed in advance, to be shown to be “trusted”, and preferably to have
been used elsewhere in operationally accepted systems. For example, the existence of a
formal description of the programming language Ada is of little consequence to a
- program written in the language unless there is some means of “compiling” a formal
description of the program that will be input to a system based on formal technology.
Similarly, proofs of correctness are only viable if there are two ends to the proof:

° The conjecture (that the given program is correct), and
. The specification of correctness in terms of set of desired properties.

Both these elements need to be expressible in a common language, or at least a pair of
languages between which there is a well-formed transformation.

Irrespective of the requirements for “trusted software” established by NCSC, the overall
requirement for developing verified software surpasses the bounds of defense and
strategic systems. The same processes of program development and verification should
be as applicable to domestic systems as mission critical systems. However, the cost of
complete verification may be beyond the means of domestic ventures. As stated by
[PREST] “the application of this advanced technology requires such significant amounts
of available computing resources as to dwarf other methods of increasing assurance.”
Moreover [PREST]: “the use of application of this technology will also increase the
difficulty of project management.”

1.3 THE ISSUES FOR RESOLUTION

As a guide to this study, the following issues were raised and are answered in the
succeeding sections:

1. What is the objective/purpose of using formalisms?
2. How formal is formal?
3. Can a meaningful progression from the informal (disciplined procedural

approach) to the formal {mathematical) be developed?

a. Is the progression of transformation of processes continuous or
~ discrete?



Is there a hierarchy or structure to progressive formalism
application?

Does the formalism exist throughout the transition from procedural
to mathematical approaches?

If the eventual goal is a completely mathematically formal approach,
can a first step towards that goal be meaningfully procedural?

Would it be better to consider establishing a procedural approach
that would then be overlayed with a mathematical formalism, or
would the formalism replace the procedures?

In an approach that uses the overlay methodology, does the
procedural component stay the same or does it change as formalism
is added to the overlay?

Can certain eclements of the procedural model be formalized
independently of other elements? Or does the formalization have to
take place in layers throughout the whole model?

Is formalism just another “tool” to be used in conjunction with other
models? What other choices exist?

Does everything have to be formalized?

Can procedural formalisms be developed that are mutable to
mathematical formalisms?

Where in the life cycle can formalisms be applied?

a.

b.

Can mathematical formalisms be melded in a life cycle (such as
Software Development Specification MIL-STD-2167-A) or is it an
additional layer?

If so how?

Can formalism (procedural or mathematical) be assisted, guided, and/or

imposed by tools?

a.

What tools currently exist at any level of formalism?
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b. Can a section be added to each element of the guide that is
concerned with formalisms, or is it a separate issue?

c. Can the formal definition of a programming language be used to
create a check list of items to be investigated when using a particular
language construct? -

13. If so, to what effect?

4. What degree of training will be needed for those who will manage a formal
development process, program within this domain, perform V&V in this
domain, perform maintenance activities in the domain, or accept products

from the domain?

15. What can be accomplished through formalisms that cannot be accomplished
by other means?

1.4 FORMALISM IN THE LIFE CYCLE

If we are to accept the premise that the development of a verification system will require
30-60 man-years of effort, then we must also recognize that the insertion of that
technology into the “software factory” will also require additional considerable effort.
The transformation from a disciplined program development environment to a formal
System cannot be accomplished instantaneously. Nor would it be appropriate to throw out
existing informal methodologies and thus lose contact between intuitive (humanistic)
concepts and the (automated) formal systems. Experience with the application of new
technology in the past has taught us to use the human approach as a validation check for
some time after the formal system has been installed.

1.5 CONVERTING THE LIFE CYCLE TO A FORMAL APPROACH

We anticipate that a completely (and solely) formal life cycle of program development is
so far in the future as not to be worthy of consideration here, except as an ultimate
concept. Thus it will be necessary to design a program development life cycle that
encompasses the concepts of procedural quality assurance but that progessively supports
more and more of the elements of the model by formal means.

1.6 OVERVIEW OF THE REMAINDER OF THE REPORT

The studies of formatl description techniques (including a subjective evaluation of the
applicability of the techniques to verification activities) and verification support tools, that
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10.

11.

12.

Can existing tools:

a. Meet the requirements of this task?
b. Be modified to accompiish the goals of introducing formalisms?
c. Be combined in an environment to fulfill the goals that they cannot

individually meet?

Is the formal definition of a programming language useful?

a. To language processor implementors?
b. To program developers?

c. To verification activities?

d. ‘ If not, why not?

e. If so, how?

Is the formalism for a programming language (such as VDM) equally
appropriate to: '

a. The description of programs written in the language?
b. The process of writing programs in the language?
c. The specification of processes for writing programs in the language?

Is the application of formalisms to Ada any different to the application to
any other (similar) programming language?

Or conversely, if there exists a formalism for Ada, can it applied to
other programming systems?

Does the Hoare [HOAR1], [HOAR2] or Bornat [BORNA] approach to
correct program development have an application beyond “toy”
programs?

Can formalisms be merely added to programming guidelines?

a. Can a formalized approach exist within a single element of a life
cvele without flowing outward (or inward)?
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formed the core of the background studies for this report, are included in the appendices.
The studies of the application of formalisms in verification activities is presented in the
next two sections:

1. The Application of Formalisms to the Life Cycle
2. Phasing Formalisms into the Life Cycle

The responses to the issues raised earlier in this section are then answered in the
Conclusions section, followed by the Recommendations for further work in this area, that
concludes the report. '

This work did not include an appraisal of the variety of life cycles which might form the
basis of a formalized development model. As will be shown in the next section, emphasis
is placed on SDS 2167 as the the vehicle through which to introduce formalisms into the
software development process.



20 THE APPLICATION OF FORMALISMS TO THE LIFE CYCLE

An examination of the various life cycles [BALZE], [BLUM], [BOEHM], [GIDDI],
[LEHMA}, [ROYCE], {TULLY] reveals that each is constructed from the basic building
block that is shown in Figure 2-1. Life cycles vary mainly in the “epicycles” that are

transformation

Stage n

A

A 4

Stage n+1

verification

Figure 2-1: Basic Element of a Life Cycle

added to the straight line sequence of program development from requirements, through
- specifications (or top-level design), detailed design and implementation, to delivery and
maintenance. Fundamentally, pairs of life cycle objects are joined in the forward
direction by a transformational process, and in the reverse direction by a verification
activity. Each stage is composed of an essential object that in turn is identified by a
document, and accompanied by a number of other documents that provide plans and
goals for later stages. Each of these documents epitomizes a substage in one of the
sub-branches of the life cycle and is subject to same transformation and verification
processes as the major stages. In essence each document is both’ an output from a
milestone stage as well as being the input to the next or later stage. Irrespective of the
epicycles or sub-branches contained in a life cycle, the basic building block is the same.
Currently this basic building block of each life cycle has four elements that are candidates
for the application of formalisms. These are:

° The source object, such as the set of system specifications,

®  The target object, such as the code for the implementation,
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° The transformation process from source to target, and

. The verification process, which confirms that the transformation process
has accurately reflected the properties of the source in the target.

At the present time, the verification activities receive the greatest attention with respect to
formal systems. That is, attention has been paid to the review process in that the
accuracy of the target is compared to the properties suggested by the source. In the same
manner as the compiler (as a transformation implementation) has replaced hand coding
of machine language programs without the need for verification, so it must be expected
that the transformational processes within the life cycle can be similarly replaced. The
major advantage of such an application of formal processes will be the lessening of the
dependence on post-transformational verification. Automatic programming has been the
hope of many computer scientists since the beginning of the field to preclude such
dependence. '

The term has been applied to a widely varying set of technologies, but they always seem
to be what is just over the horizon. As an example, in the 1950’s, FORTRAN was called
an automatic programming tool. In many ways it did automate the programming of
arithmetic formulae. Many errors were eliminated, optimizations could be done by the
translating software, and consequently higher confidence could be placed in the result.
There was still considerable opportunity for error —— misused operator precedence and
parentheses for example. These kinds of errors could not be caught by the compiler
because these were correct programs, just not the ones intended. The attempt to answer
this issue drew attention in two different directions. One was toward testing and the other
was toward an even higher level specification of the program.

The purpose of testing was to demonstrate the functional performance of the software.
The development of these tests rei]uircd as much, if not more, analysis and development
work as the program itself. It was also clear that testing could uncover only a limited
number of errors. On the other hand, it is much easier to justify testing as a prelude to
debugging and to quantify testing success in terms of errors located and bugs fixed. Test
results could be compared with the expected results and thereby determine if the program
- was (partially) correct. In particular if the original problem was misunderstood, it was
possible for both the programming and testing teams to do their jobs differently and
incorrectly. Sometimes they would catch each other, but sometimes they would make
consistent misinterpretations.
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This motivated the other approach —- to move to higher level languages that would be
closer to the original problem and hopefully understandable by the people with the
problem to be solved. By using a higher level language, the number of interpretation (and
thereby potentially error causing) steps between the problem statement and the solution
specification could be reduced. This is similar to the motivation behind prototyping. The
general hope is that written at the proper level, it will be possible for the original
réquestors to determine if it is the correct program. Then the actual program could be
automatically derived through a series of transformations, program generation, and
ccompilation steps.

Much of the work on program proving is closely connected to this approach. By putting
assertions about the program into the code itself, it is hoped that the program -can be
automatically proved to conform to these assertions and it is also hoped that these
assertions will be more directly linkable to the requirements and specifications of the
original problem.

Because of the close linkage of these two approaches, it is unlikely that one will succeed
without the other. Current approaches in automatic programming are along the lines of
automating the generation of programs starting from very high level specifications. These
very high level specifications are very much like the high level assertions used in the
program proving and verification approach.

Research and development work going on now should emphasize some of the common
features of the two approaches and start providing the programmer tools and interfaces
that would be useful -- for example, some kind of advanced editor that would help build
high level assertions and link them to the high level specifications and requirements that
are supposed to be answered by the code under development. This kind of tool could be
immediately useful in the context of traditional IV&V where requirements, specification
and code must be linked. It will also be useful in developing code that has a high
probability of fitting into any automatic verification environment developed in the future.

Some of the work on program transformations has already been applied in unstructured to
structured code converters and in recursion removal optimizers. Many other
transformations could be used to assist programmers. The programmer’s assistant kind
of work is really just a high level program building tool, but it still requires an expert
programmer and and expert in the tool to use it effectively. It is doubtful whether in the
very near future that a completely trusted transformational system can be built between
specifications and top-level design. Thus it must be expected that those elements of
transformation that cannot be formalized must be subjected to verification. This scenario
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also provides a paradigm for the transition from a systematic life cycle to a fully
formalized system.

The following section reviews the current approaches to formal description, as they can be
applied to the the objects at each stage of the life cycle.

2.1 OVERVIEW OF CURRENT APPROACHES TO FORMAL DESCRIPTION

The choice of formal description techniques for the objects of each stage of the life cycle
will depend on our ability to demonstrate the interrelationships between the descriptions
in successive stages. That is, a pair of formalisms that are not susceptible to either
transformation or verification are not suited for use in a coordinated life cycle. Using a
top down approach to program development, it is not necessary that all formal descriptive
techniques have applicability throughout the whole domain of the system under
development.

At the present time, software system specifications are done in the English language.
While using English as a specification language has the advantage of providing easily
readable, easily composed specifications there are some probiems inherent with the use of
English. The English language often contains inconsistencies and ambiguities that inhibit
exact interpretations of the specifications. The transiation required from specification
language to coding is so broad due to the vast difference in media as to create transitional
errors in all but the most detailed, trivial or exhaustively used system. The use of a formal
language, such as Ada, to describe such specifications would greatly reduce the number
of translational errors and the effort required in coding numbers. This could be used as
an important first step in developing trusted verifiable software.

The use of Ada as a specification language enables the specification to be read and
interpreted by a compiler-like consistency checker that is able to enforce internal
consistency within the semantics. Taken to a higher level, the consistency checker may be
used to check the consistency between different levels of specification. In this manner the
integrity of the initial specification may be checked, level by level, down to the actual
code. 1If the compiler being used is a trusted compiler then the consistency of all
specification level transitions have been verified from the most abstract levei to the actual
code.

2.1.1 A COORDINATED, COMPREHENSIVE FORMALISM FOR PROGRAM
DEVELOPMENT

Six differing forms of descriptive systems have been developed in the past 20 years, each
of which has individualistic capabilities and applicabilities. These six (Petri Nets,
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temporal logic, algebraic semantics, denotational semantics, axiomatic semantics, and
operational semantics) are described below, and in greater detail in Appendix A.

Petri nets can be used to specify both functionality (correctness) and performance (time
constraints) of computer systems. They have a simple graphical representation so that
they are comparatively easy to understand, to learn and to use, and are executable so that
the simulation and prototyping of a target system can be undertaken. Since Petri nets are
abstractions they can be used in a stepwise refinement methodology. However to avoid
producing very large, unstructured descriptions of computer systems, it is necessary to
analyze the nets to identify certain undesirable properties. Petri nets should not be used at
a very low level.

Temporal logic has been widely used in specifying and verifying many program properties
such as safety (partial correctness, clean behavior, mutual exclusion, deadlock freedom)
and liveness (total correctness, accessibility, fairness). It has been especially useful in
specifying and verifying concurrent programs, distributed systems and network protocols.
Temporal logic is abstract, precise and machine processable, but lacks compositionality
and is too detailed for some applications. Higher level temporal operators of interval
logic are needed.

The algebraic approach is well suited to specifying and verifying abstract data types. It is
mathematically well-defined so that formal analysis and proof can be performed on
descriptions of program modules. Various transformations can be made automatically
according to algebraic laws and equations in the same specification framework. Since the
approach is abstract and modular, information hiding can be achieved, and
compositionality is possible. The algebraic approach is particularly useful in describing
the interfaces between modules. It is machine processable but the approach is not well
suited to defining control structures and concurrency. Neither is it appropriate to be used
at very high level.

Denotational semantic formalisms are well suited to specifying and verifying sequential
entities in programming systems. They are especially useful in describing functional
relations, and is mathematically precise so that formal proofs and transformations can be
performed. Like the algebraic approach, denotational formalisms are abstract and
compositional so that stepwise refinement and modularity can be achieved. They are
difficult to use in connection with with concurrency; several attempts have been made to
use denotational approaches to this problem but have resulted in complicated descriptions
that are difficult to understand. Thus, it is not appropriate to be used at very high level.
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The axiomatic model is well suited for specifying and verifying sequential program
properties. It is abstract and easy to understand. The principle is so simple that it can be
used directly by programmers at very low level; on the other hand the ability to identify
appropriate, complete and consistent axioms is difficult! When a proof system is
constructed, correctness verification can be performed automatically. On the other hand,
it is not appropriate for describing concurrency, and it is very hard to find invariants for
complicated structures. Thus, it is better to be used locally at low level. The majority of
currently developed formal verification systems utilize this methodolbgy.

Operational semantics is one of the earliest approaches to formal description that had
practical application. This is perhaps because it is similar to a programming language
itself and thus more likely to be acceptable to programmers. The operational approach is
best suited to describing the functionality of an implementation. It is comparatively easy
to learn and to use. It has been widely applied in many software specifications and is the
basis of the only existing formal programming language standard. While it is machine
processable, it is low level and subject to the same problems of verification as the
implementations it is intended to describe! The style of an operational description may be
more acceptable to programmers but it can only be used in low level design and must be
supplemented by other verification techniques.

Based upon the above analysis and comparison, a software development model is
presented in Figure 2-2. It utilizes all the above mentioned formal specification
techniques and elaborates the waterfall model.

At very high levels, Petri nets are used to abstract and formalize customers informal
requirements in a graphical manner. Validation, prototyping and simulation can be
performed at this stage. Petri nets should be combined with temporal logic formulae for
verification purposes. At the succeeding level of detailing, Petri nets can be further
refined so that the control structure of the whole system can be constructed and the
interfaces between various modules can be specified. Within each major component of
the Petri net, modules can be designed by using the algebraic approach for data
abstraction and the denotational approach for functional abstraction. Various
transformations, rewriting and correctness proving can be carried out formally as this
detailing is continued. At the lowest level, modules can be further refined using the
operational approach and axiomatic formalisms to replace higher level algebraic and
denotational definitions. Initially these transformations will be required to be formally
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verified, but as the transformational process is itself formalized, verification will be less
and less important.

The ability to interface the various specification techniques and the design of automated
tools (structural editor, term rewriting system and transformer, theorem prover) remain to
be investigated. Results and experiences from the CIP, VDM, and Balzer’s projects will
be useful in constructing this coordinated approach.

Software quality assurance can at least be partially carried out during the whole software
development process in this model. Correctness has the first priority; correctness can be
validated, verified and proved during each stage down to the implementation level.
Performance criteria can also be simulated by Petri nets and may be verified throughout
the whole development process. Comprehensibility can be better achieved by the high
level structural module and interface design. It is still a open research area as to how well
formalisms can guarantee software quality.

2.1.2 IMPLEMENTATION AND RUN-TIME CONSIDERATIONS

[PREST] analyzed each individual component of the Ada programming language and
provided some clues as to the difficulties that have been created for formal verification by
the complexity and the language. This approach was based on “traditional” axiomatic
verification, though it is doubtful whether the conclusions would be too different for other
techniques. As is suggested in appendix A, the axiomatic approach is probably best
suited to this element of the life cycle. It is possible that a number of Ada programming
language constructs will not be amenable to formal verification. This is a problem that is
similar to that faced by the software engineering community in the late 1960’s when
structured programming was being introduced. The cultural issues of using unstructured
code were eventually outweighed by the “sensibility” of the Bohm-Jacopini constructs
[BOHM] on the basis of cleanliness rather than verifiability!

The Anna specification language developed at Stanford University seems to have its
greatest applicability in the area of validation of the run-time behavior of Ada programs.
Such technology is not as “high tech” as formal verification, but has significantly greater
potential for use and application by ordinary programmers unskilled in the formal
methods, and can be applied using today’s technologies and tools, while the formal
verification process (and tools) remain in the future.
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2.1.3 A CONCURRENCY, EXCEPTIONS, AND FORMALISMS

In the section above we have briefly provided an overview of the applicability of
formalisms to the concurrent aspects of program development and implementation.

Far and away, concurrency is one of the most hazardous obstacles in the way of applying
formal verification technology to the Ada language. By restricting the use of tasking, it
appears that concurrency in Ada can be made included in the constructs to which
verification can be applied. Some of the techniques employed in Communicating
Sequential Processors (CSP) [BARRI] appears to be a promising possibility while other
research indicates that restriction of communication to only buffers (a la Gypsy)
[YOUNG] to only scalars [ODYSS], or to only those entry points in that pre-condition
and postcondition assertions have been specified [TRIPA] would alleviate many of the
inherent difficulties in applying formal verification technology to the Ada concurrency
problems. '

Several researchers [ODYSS] and [PNEUL] have recommended that access pointers to
tasks not be allowed. They have also indicated that in the absence of dynamic creation of
tasks, proof rules can be obtained for tasking. However, it is unlikely that this limitation
will be readily accepted, particularly in the systems programming arena.

The approach used by Owicki and Gries [OWICK] to verify communicating sequential
processes, Hoare's language framework for concurrent programming, is readily adapted
to verification of Ada tasks. This approach consists of two distinct steps: internal
verification and external verification. Internal verification consists of proving that the
task is an isolated, sequential program. External verification consists of proving that,
with the exception of entries, tasks do not affect any subprograms, tasks, or variables
declared outside of the task being verified. External verification also requires proof that
the task in question is not affected by any subprograms, tasks, or variables declared
outside of the task. Again, entries are the exception to this rule. External verification is
performed in two states:

1. I/O assertions on entries are made and shared variables are restricted; and
2. A proof against deadlocks and starvation is made.

Deadlock and starvation avoidance proofs are prevalent throughout parallel processing
literature.
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The verification of tasks also assumes the following:
1. All constructs terminate 'normally;
2 Subprogram calls have no side effects;
3. Assignments have no side effects; and
4 Tasks may not be assailed.

The major difficulty with exceptions [TRIPA] in the Ada language from the point of view
of verification is the dynamic manner in which exceptions are propagated, and the
resulting complexity that derives from attempting analysis during symbolic execution of
programs in the verification step. This complexity is furthered by the fact that exceptions
are propagated “as is,” that could cause an unhandled exception to propagate from
several levels down to a routine that has no understanding of the meaning of the
exception. For example, a stack package with a private implementation that raises
INDEX_ERROR in the environment of the calling procedure would be totally unexpected
and either unhandied or mishandled.

Through adequate containment of the exceptions —- conversion of unhandled exceptions,
to some ROUTINE_ERROR on exit from a block (within a package or not), or explicit use
of “OTHERS” clauses at all possible junctions (not a convenient approach) —- the
complexity should be reduced.

Another matter of concern of exceptions is due to the non-specificity of the language with
respect to modes of parameter passing. If a compiler passes an IN OUT variable by copy
on entry and on exit, the variable may never be updated if the routine raises an exception,
whereas if the variable is passed by reference, changes to the local variable may actuaily
change the passed variable, and the value will have been updated in the presence of a
raised exception.

2.2 PHASING FORMALISMS INTO THE LIFE CYCLE

One of the earliest pioneers of the introduction of formalisms into program description
states that “... cértain arguments given for using particular formal modes of expression in
developing and proving programs correct are invalid. Emphasis on formalization is
shown to have harmful effects on program development, such as the neglect of informal
precision and simple formalizations.”2 A study undertaken [GEHAN} deals with the
introduction of formalisms at one specific level with some moderate degree of success,

2 Naur, Peter: “Formalization in Program Development”, BIT, Vol. 22, 1982, pp. 437-453.
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be acceptable in a well-established life cycle environment: a progressive, well-planned
introduction of formalisms is necessary, irrespective of its immediate usefulness.

Their solution consists of introducing “trust domains
to demonstrate that the System and its components satisfy a well-defined set of

As discussed previously, there are two philosophies that should be observed in the
transitional process from the systematic life cycle to the fyji formal approach:

1. The formalisms of ljfe cycle object description should not replace the
Systematic elements, but instead should work alongside “manual” methods,
and

2. The progression of introduction of formal methods can be accomplished in

& stepwise manner.

fuller use:

1 The use of formal descriptions of Programming languages in the place of
reference manuals;

2. The use of assertions in program modules, and insert assertions (with
appropriate cross checking) in the configuration management support for
program development;

3. The formalization of the contents of documentation wherever possible;

4. The use of software metrics wherever possible to provide an orthogonal set
of measures of the quality of the software under configuration management;
and

5. The development of the necessary 1ools to support these concepts.

The ultimate goal is to supplement each life cycle stage with a formalism that wifl
appropriately “capture” the essential elements of that stage that should be tracked
throughout the design process. This process will be effective if carried out in a orderly
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and moreover in a “real” environment. The conclusions state, however, “... formal
specifications of large systems is somewhat impractical at the moment, [but] experience
in using formal specifications can lead to {a] better informal specifications. The use of
algebraic specifications requires practice and experience.” This is a somewhat pessimistic
view, one that we believe can be overcome by the use of a multiplicity of formalisms at
different levels of detail. Just as the problems of program development have been
materiaily assisted by the use of the top-down approach, with structured development,
taking every advantage of the algorithmic method of “divide and conquer” (aka
successive refinement), so such approaches can be usefully employed in the introduction
of formalisms. It should not be assumed that the whole life cycle can be supported by one
formal descriptive technique, mor should it be assumed that the whole system under

development is to be described in a single object! Programs can be described adequately-

in pieces (modules) and be shown 10 be consistent (interfaceable) with upper levels of
communication and structure.

We are aware of several other efforts to formalize the program 'development
methodology, but only two that specifically took the objective of using formalisms within
the life cycle. [NEELY] deals with the rigorous integration of “sources of assurance”
while [LOGIC] restricted themselves to rigorous [but] informal verification techniques.
The latter proposed inserting an assertive strategy between the constraints of a
specification and the software implementation. The exampie given is somewhat small and
little advanced from the style of [HOAR1], [HOAR2], [BORNA]. On the other hand the
recommendations for further work include: :

1. A system development methodology for an entire system life cycle.
2. A guide to the development and use of assertions.

3. A detailed example of rigorous, informal verification in practice.
4. Use of complexity analyzers for path analysis.

While [LOGICO] does not emphasize the use of software metrics, the last
recommendation suggests the use of metrics as an ancillary assurance tool.

[NEELY] states that “a development process incorporating [formal] verification is an
all-or-nothing proposition. If one tried to apply a “little dose” of the techniques then
there is little to be gained. In fact, it may be money not well spent. Once a formal
verification process has been applied to a system, major portions of the system are off
limits to any further changes.” It is doubtful whether this all-or-nothing approach would
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module should be derived from the definition of the language, and the assertions be
shown to:

1. Be consistent with the compiled description, and
2. Be valid transformations of the axioms.

Working backward through the life cycle in this manner would appear to us t0 be more
likely to succeed on the basis of demonstrated need (though admittedly being a
bottom-up approach), that is useful at all times, than to insert the formalisms top—down.
The danger in this approach is that (for example) the axioms derived from the design
have not been verified against the requirements from the previous stage until all previous
stages have been converted to a formal description.  However the experience with using
the formalisms will have immediate effects in raising the level of discipline needed at that
particular stage and, thus, raising the quality assurance of that stage.

The classes of tools needed for support of this development environment will include:

. Formal description “compilers” —- tools that given a description of an
object (or the properties of an object) in terms of a specific language,
construct a formal description in generic terms. For example, given a
description of (say) Ada in VDM, a compiler would develop a description of
a module in VDM.

. Cross referencing theorem provers —— tools that will verify (at least) the
consistency of the successive descriptions of the life cycle objects in
differing formalisms.

® An enhanced configuration management system -—- that will ensure the
consistency of interfaces between the various elements of the program.
This will include interfaces between successive objects in the life cycle (for
example between the design specifications and an implementation), and
between components of the implementation (driver—stub relationships).

. Symbolic executors -- that will demonstrate the correctness of
implementations at various levels, thereby providing a rapid prototyping
capability as well as providing a further tool for the verification of
assertions —— even to the point of deriving assertions and invariants for
comparison to requirements.

Consideration must be given to the impact of the introduction of formalisms in the
development process. Will it be necessary, for example to modify the existing
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development mode! in order to accommodate formalisms or can the existing system exist
side-by-side with the formal approach?

2.2.1 FORMAL ASSISTANTS

The Stanford University research has focused mostly on the development of a
specification language, Anna, and the development of tools to support its use in the area
of run time assertion checks. The language was compieted several years ago, and is being
used by a number of contractors and other researchers, both in real world applications
and in further research. The automated support tools themselves are written in Ada, and
run on a number of different hardware architectures. Neither the language, nor the
support tools have been designed specifically for use in a verification environment,
although much of the effort that has been completed would provide a starting basis for
- such an environment,

Computational Logic, Inc. is investigating the underlying logic necessary to support an
Ada verification environment. Leveraging their background with the Gypsy Verification
Environment, the Boyer-Moore theorem prover, and the beginning research on the
underlying logic for the Rose language (a Gypsy successor), various constructs in the Ada
language are to be analyzed to determine underlying logic structure necessary to support
such a verification environment. This effort is more directed at preparing the underlying
formalisms, and understanding the relationship between those formalism and the
programming language semantics than upon the development of any additional
specification languages or automated support tools.

Odyssey Research Associates, Inc. is involved in research and development of a prototype
Ada verification environment. The major thrust of the effort is the extension of Anna to
support real-world programs. Anna will be extended by applying it to known examples,
finding and fixing the shortcomings in each of these applications. Additional effort is
planned to design and develop a prototype verification environment supporting the Anna
extensions with a theorem prover and proof rules and formal semantics for that portion of
the Ada language being utilized.

As these various approaches to formal verification with the Ada language are progressing,
it will be necessary to apply the resulting technology in order to gain experience with
them and to evaluate their feasibility for development of large scale projects. To date,
applications of verification technology has been performed by small groups of people on
small tasks, with rather despairing results in terms of both costs and quantity of software.
This situation will be no different in application of formal verification technology to the
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Ada language. The community of individuals trained in the use and application of formal
verification techniques is small, and the intersection of those individuals with the limited
pool of talent proficient in the Ada language continues to reduce the available labor.
Existing verification projects have been small in size, because that has been the only
manner in that to maintain control of the complexity of the project, and to be able to
support the project with automated support tools. Advances in hardware technology will
improve the utility of support tools, but can not solve the personnel problem.

Once the remaining theoretical obstacles have been overcome, it will be necessary to
develop automated support tools for the transformation and verification process. A survey
of some of the tools under development for the support of program development
environments is given in Appendix B.



3.0

CONCLUSIONS

In an earlier section we raised a number of issues that required attention. These can now

be answered.

1.

What is the objective/purpose of using formalisms?

It is generally believed that the introduction of discipline to the software life
cycle will provide an improvement in the reliability of the resulting
software. The use of formal description techniques is expected to provide
the ultimate discipline and thus provide the greatest expectation of
correctness.

How formal is formal?3

a.

At a minimum it would seem that formal can merely mean discipline
and order, such as would be expected in a formalized development
process, as might be derived from SDS 2167. The major component
of such a formal approach would be the clear definition of
milestones and review points at that go-no go decisions can be
made.

Can “formal” imply procedurally formal or must it always imply
mathematically formal?

A well defined life cycle model is a clear example of a procedurally
formal system. Additional formalism can be applied layer by layer
to the life cycle so as to transition to a completely mathematically
formal methodology.

At a maxihmm, formal methods implies some form of mathematical
approach by that the “correctness” of the product can be assured
throughout the development cycle.

Can a meaningful progression from the informal (disciplined procedural
approach) to the formal (mathematical) be developed?

Yes, through abstraction and stepwise refinement such as from
informal requirements to formal requirements specification.

3

Bjorner [BJORS] suggests that there are three levels of formalism: formal (totally mathematical),
rigorous {formal but without supporting proofs), and systematic (based on formalisms but without
proofs or conjectures).



Is the progression of transformation of processes continuous or discrete?

It cannot be continuous, as some radical changes must take place in
the transition from a high level (specification) language to low level
(implementation) language. Even in those instances in which the
same programming language is intended to be both the specification
and the implementation language, much of the functional capabilities
are included in comments that cannot be directly transformed into
code.

Is there a hierarchy or structure to progressive formalism application?

Apparently several researchers believe this to be the case and this
report substantiates this expectation.

Does the same formalism exist throughout the transition Jfrom procedural
to mathematical approaches?

With the proper planning, elements of formalisms, such as the pre-
and post-conditions of an axiomatic system can be used in advance
of the existence of a formal proof mechanism. It would not be
counterproductive to use different mechanisms at intermediate stages
of the transitional process.

If the eventual goal is a completely mathematically formal approach, can
a first step towards that goal be meaningfully procedural?

The ultimate goal must be reliable, correct software. A
mathematically formal approach is only the means to achieve such a
goal. The plan proposed here does not seek a new mathematically
formal approach but instead proposes to use existing approaches.

Would it be better to consider establishing a procedural approach that
would then be overlayed with a mathematical formalism, or would the
Jormalism replace the procedures?

Ideally, replacement would be better, but the background of software
participants are different and their perceptions of software qualities
are different, thus overlaying is more appropriate. Moreover, there
are some benefits to a disciplined management approach that should
not be wasted - such as intuition and common sense.
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In an approach that uses the overlay methodology, does the procedural
component stay the same or does it change as Jormalism is added to the
overlay?

This is a topic that requires further study.

Can ceriain elements of the procedural model be formalized independently
of other elements? Or does_ the formalization have to take Place in layers
throughout the whole model?

Using an abstract, modular approach, combined with information
hiding, formalism can be applied in a strategic manner as the
abilities of the developer community improves.

Is formalism just another “tool” o be used in conjunction with other
models? What other choices exist?

Much of current research concentrates on the formal verification
process; an alternative approach must be the formalization of the
transformational process(es) between successive stages in the life
cycle.

Does everything have to be Jormalized?

Not necessarily, as long as the life cycle objects can be expressed in
a language that can be subjected to formalized tools.

Can procedural formalisms be developed that are mutable 1o
mathematical formalisms?

Hopefuily.

Where in the life cycle can formalisms be applied?

a.

Can mathematical formalisms be melded in a life cycle (such as
MIL-STD-2167A) or is it an additional layer?

The model proposed in this report could accommodate either of
these applications. It would be expected that a layered approach
would be used initially as a parallel system that would be integrated
into the life cycle at a later stage. If complete verifiability and proof
of correctness are to be achieved formalisms will have to be
integrated into all phases of the software development life cycle,
Currently, the goal of provably correct software in Ada for other than
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trivial examples is not realizable. Neither the methods nor the tools
exist that can provide an environment where this is achievable.
Since this is the ultimate goal of introducing formalisms into the
software development life cycle, formalisms should be introduced at
all stages. Formalisms should become a part of each stage of
software development. If formalisms are kept totally separate then
the value of introducing formalisms will in large measure be lost.
Then proofs of correspondence between the informal and the formal
would be required to reach the ultimate goal. Verification
technology is at a point where some formalisms can be introduced in
the first stages of the life cycle and carried through at each level. As
research identifies new ways of introducing formalisms they can be
incorporated into the complete life cycle.

If so how?

The CIP project and VDM approach provide some clues as the
means by which the integration of formalisms into a developmental
system can be accomplished.

Can formalism (procedural or mathematical) be assisted, guided, and/or imposed
by tools?

- Formalism can be assisted and guided by tools. Both Anna and BYRON are

examples of program design languages where different levels of formalism
can be introduced. Particularly, in Anna mathematical formalism
introduction is facilitated by a wide range of tools. Some of these tools are
available now, some are being developed. Introduction of formalisms will,
because of tool availability and the “state-of-art”, be a phased process.
However, enough tools are available now to begin.

a.

1)

What tools currently exist at any level of formalism?

A number of tools, with varying levels of usefulness, are available

and applicable to Ada. A summary of these is given in Appendix B.

These include:

Programming Design Languages and Program Design Environments:

ANNA
BYRON
PAMELA
RAISE
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. LARCH
° MAVEN -

2) Theorem Prover Based Systems (Verification)

. AFFIRM
GYPSY
SDVS

Ina Jo
VERUS
ABEL

EVES

Z

Prolog

HDM

VDM

PVS

CPS =
Boyer-Moore

The following concepts are also to be considered:

3) Automatic Test Generators

4) Automatic Documentation Systems
5) Requirements Tracking

6) Configuration Management Tools
7} Symbolic execution systems

8) Software metrics

Can existing tools:

a. Meet the requirements of this task?
Potentially.

b. Be modified to accomplish the goals of introducing formalisms?
Possibly.
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c. Be combined in an environment to fulfill the goals that they cannot
individually meet?

Our review of existing tools shows that there is already a tendency to
create systems that cover much of the life cycle. Thus it will be
difficult to combine tools due to their extensive overlap. However,
some considerable attention should be paid to smaller more well
targeted tools that can be integrated into a complete life cycle
support system.

Is the formal definition of a programming language useful?
a. To language processor implementors?

Automatic compiler derivation and implementation guidance has
been enhanced by the existence of a formal definition (VDL, VDM).

b. To program developers?

Experienced program developers can use a formal definition as a
language reference manual, but this requires a large degree of
previous knowledge.

c. To verification activities?

Definitely, some form of definition is a necessary condition for
verification; without a formal definition, no correctness can be
verified.

d. If so, how?

The experiences in VDM indicate that this is a worthwhile approach
to program development and verification.

Is the formalism for a programming language (such as VDM) equally appropriate
to: '

a. The description of program written in the language?

Yes. “Compilers” of program descriptors have been written for
several formal systems.

b. The specification of processes for writing programs in the languages?

Possibly; the most useful portion of a formal description will be the
meta-description of the description itself! That 1is, the
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11.

meta-description will provide a more precise description of the
semantics of the elements of the language that will be available to
the programmer.

c. The process of writing programs in the language?

As in the previous question — possibly. For example, VDM has _
developed into a software development methodology rather than a
single meta-language.

Is the application of formalisms to Adg any different to the application to any
other (similar) programming language?

Definitely, Ada has more features than other languages such variety of type
concepts, generic, concurrency, exception/interrupt handling, separate
compilation.

Or conversely, if there exists a Jormalism for Ada, can it be applied to other
programming systems?

Yes, for the same kind of von Neumann language (conventional).

One of the major deficiencies of the Ada language with respect to
verification is the lack of a concise formal definition of the semantics. The
recently developed VDM description is reputed to require eight linear feet
of shelf space! That is an expansion factor of two orders of magnitude over
the ARM. Although the ARM may be considered to provide somewhat of
an operational semantics, it is not sufficiently formal to be applied in the
use of formal verification technology. A complete semantics of the language
will be necessary to develop proof rules for the language constructs, and to
complete verification condition generators and other automated support
technology for performing proofs. An effort is currently under way to
provide a formal definition [EEC] that will hopefully provide the
mathematical foundation of language semantics. Once this foundation has
been laid, attention can then be turned to the development of proof rules for
the constructs in the language, that are vital for the application of formal
verification technology.

Does the Hoare or Bornat approach to correct program development have an
application beyond “toy” programs?

It is most likely that these approaches will be useful at a low level for the
design of modules in a system, and as a basis for the training of
programmers. Even though [HOAR2] discusses several different
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approaches to formalisms, they are all applied at the same level of detail in
his single example.

Can formalisms be merely added to programming guidelines?

[PREST] has pointed out with respect to the programming language Ada
that the association of parameters at subprogram cail points would be the
ideal location to exclude aliasing [GOOD]. :

Although there might be a loss of efficiency, the fact that aliasing is-
unnecessary and complicates application of formal verification technology
[YOUNG] would seem to be sufficient reason for its elimination.

The major concern in the use of access types is the possibility of aliasing
(see [ODYSS] for a lengthy discussion of the matter). One possible
solution to the aliasing problem with access types, presented in [TRIPA], is
to define a new operator for access types that performs component copying,
rather than pointer duplication. This solution is appealing with the advent
of the evaluation of the Ada language, due in the latter part of the 1980s,
when changes and updates based on several years of working experience
with the language will be incorporated into the language. However,
restrictions on parameter passing ([ODYSS], [YOUNG]) would appear to
provide the same benefit with fewer changes.

If a function performs input or output or accesses non-local variables, it is
said to cause “side effects.” If function subprograms are truly functional
they will not include side effects. If Ada functions are restricted to exclude
side effects, they can be verified similarly to Gypsy function subprograms,
in that these restrictions are enforced by the language.

Shared variables are the major construct in tasking that will have to be
restricted (although perhaps simulated through use of other constructs using
synchronization) in order to apply formal verification technology to Ada.
On this matter, there is no disagreement among the researchers (J[COHEN],
[GOOD], [ODYSS], [TRIPA)).

a. Can a formalized approach exist within a single element of a life cycle
without flowing outward (or inward)?

If the integration of formalisms into the life cycle impacts the basic
life cycle itself, then it is more than likely that these impacts will be
reflected in the relationships between the modified stages. Thus an
inwardly modified stage will have an outward effect on its.
neighboring stages.
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b. Can a section be added to each element of the [programming] guide that
Is concerned with formalisms, or is it q Separate issue?

Once the formalism has been designed, it may be possible to provide
guidelines at the implementation level that will materially assist the
transformation and/or verification processes. Prior to this any
attempts to put formalism into the guide may be dangerous.

c. Can the formal definition of a programming language be used to create a
check list of items to be investigated when using a particular language
construct?

Possibly. This would be worthy of further investigation.

13. If s0, to what effect?

14.  What degree of training will be needed for those who will manage a formal
development process, program within this domain, perform V&V in this domain,
perform maintenance activities in the domain, or accept products from the
domain?

The integration of formalisms into the life cycle may have the same
impact on the need for training at the beginning level as the
introduction of the life cycle itself has had. On the other hand, the
degree of new training will depend on the formalisms to be used and
the tools that support those formalisms. Developers in different
domains should learn and use the different formalisms that are best
suited for their purposes. Of course, some people may need to
understand more than one formalism to communicate with other
developers.

15. What can be accomplished through formalisms that cannot be accomplished by
other means?

Highly assured reliability, correctness, and productivity.
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4.0 RECOMMENDATIONS

It is patently clear that the introduction of formalisms into the life cycle must be planned.
To this point in time, formalisms have been applied to almost all of the individual
elernents of the life cycle activity, and tools have been or are being developed to assist in
certain elements of those activities. What is left (that is still a major project) is to
examine the interfaces between the methodologies and tools, just the same way as we
examine the interfaces in a major system. A formalized program development
~ methodology is a large system itself and should be designed as such, using its own
methods of assurance, transformation and verification. It must be assumed that the
starting point is an acceptable life cycle model. Irrespective of the varieties and niceties of
various models, it is almost a foregone conclusion that the one to be chosen will be a
tailored version of MIL-STD-2167-A. This plan should include three major elements:

1. The identification of the appropriate formalisms to be used at each stage of
the life cycle, the information to be transferred (and transformed) from
stage to stage, and the interfacing requirements necessary to integrate the
formalisms into the overall life cycle model;

2. The identification of the most appropriate software development tools and
environments that will serve as the carriers for the formal components, and
the potential impact of the introduction of the formalisms into the tools and
environments; and

3 The production of a complete software development system.

Immediate benefits can result from this planning activity that can be introduced into a
development model rapidly:

1. A detailed example of rigorous, informal verification in practice;

2. A guide to the development and use of assertions for run—time verification
in a fault-tolerant system;

3. The introduction of assertions and constraints (similar to the approach in
[NEELY]) into the configuration management system; and

4. Use of complexity analyzers for path analysis.



As discussed previously, there are two philosophies that should be observed in the
transitional process from the systematic life cycle to the full formal approach:

1.

The formalisms of life cycle object description should not replace the
systematic elements, but instead should work alongside “manual” methods,
and

The progression of introduction of formal methods can be accomplished in
a stepwise manner. '

Five uses of formalisms in the life cycle can be identified that would lead to their later

fuller use:

1.

The use of formal descriptions of programming languages in the place of
reference manuals;

The use of assertions in program modules, and insert of assertions (with
appropriate cross checking) in the configuration management support for
program development;

The formalization of the contents of documentation wherever possible;

The use of software metrics wherever possible to provide an orthogonal set
of measures of the quality of the software under configuration management;
and

The development of the necessary tools to support these concepts.
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APPENDIX A: SURVi:IY OF FORMAL DEFINITION METHODS

A.1 SOFTWARE LIFE CYCLE

The Software life cycle is the description of the process of software development from user
requirements through design and implementation to delivery and maintenance. There are
several software life cycle models [11], [29], [174] but the most popular one is the
waterfall model which captures the main phases during a software development. The
waterfall model is presented in Figure A-1, though many variants can be found.

A.1l.1 SOFTWARE QUALITY

Software quality is one of the the measures of the product of software development. There
are many criteria by which to measure the software product {142}, which can be divided
into three categories: '

e  functionality,
] performance, and
L comprehensibility.

Functionality includes correctness, reliability, robustness. Performance concerns efficiency,
cost-effectiveness, constraint satisfaction, and reusability. Comprehensibility refers to
maintainability, understandability and usability. These quality criteria are not necessarily
maintained in any intermediate product, but must be assured by the intermediate phases.

A.1.2 SOFTWARE DEVELOPMENT PARTICIPANTS

Software development participants can be divided into different groups according to the
phases of software life cycle: customers (those making requirements), requirements
engineers (those formalizing requirements), system designers (those designing system
structure and interfaces), module designers (those designing modules), programmers
(people implementing algorithms and data structures), maintainers (those installing and
maintaining the software product), and users (those using the software product, who also
may be customers). People belonging to different groups may have different perceptions
of the software process and software product. Usually, those at phase n are only
responsible for the quality of intermediate product for phase n+/ , and concern about the
quality of intermediate product from phase n-I1.
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A.2 ANALYSIS OF SPECIFICATION TECHNIQUES
- A.2.1 REQUIREMENTS FOR SPECIFICATION TECHNIQUES

Specification as a process, is the activity undertaken during the software development
process to specify software properties. It runs through several phases: requirements
engineering, system design, and module design.

Specification as a product is the precise description of the result of each of the above
phases. According to [77], we have requirement specification, system specification, and
module specification in chronological order. Specification can also be classified as
functional specification which describes the effects of a piece of software on its external
environment and performance specification which describes the constraints on the speed
and resources utilization of a piece of software [93]. Regardless whether specification
refers to a process or a product, it has to be written in some kind language (notation). We
can identify several requirements for specification techniques (languages) [10], [14],
{141}, which in turn can be divided into:

o foundation -- formal, precise;

) applicability -- abstract, expressive, modular and compositional,
parallel/sequential, adaptable, machine processable, verifiable; and

] comprehensibility -~ understandable, learnable, and usable.
A.2.2 INTRODUCTION TO SPECIFICATION TECHNIQUES

In the following sections, various specification techniques will be briefly introduced, more
additional tutorials are given separately.

A Petri Net can be defined as a triple (P, T, A) where P is a set of places which are usually
represented by circles, T is a set of transitions which are usually represented by bars, and
A is a set of arcs which connect places to transitions and transitions to places. A Petri Net
is often marked with dots at various places. The execution of a marked Petri Net is by
firing a sequence of enabled transitions. A timed Petri net is one in which time information
is associated with each transition. The time information specifies the minimum time units
which have to elapse before the associated transition can fire and the maximum time
units before which the associated transition must fire. In this approach, the meaning of a
program is modeled by the behaviors of Petri Nets [130], [149].

Temporal logic is a kind of modal logic which deals with time concepts. It is first order logic
plus some temporal operators such as always (represented by a square), sometimes
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(represented by a diamond), next (represented by a circle) and until (represented by a U ).
In temporal logic, the meaning of a program is specified by temporal formulas over the
state transitions of computation sequences. The most popular temporal logic is linear time
temporal logic. Others are:

° branching time temporal logic and
® interval temporal logic
[40], [100], [112], [133], [145], [152].

Algebraic approach is based on Birkhoff’s heterogeneous algebra and was first developed by
Guttag, Zilles and ADJ group [56], {64], [93]. In algebraic approach, every (abstract)
data type is treated as an algebra which consists of a set of values (domains and range), a
set of operations upon the domains and equations relating various operations. The
meanings of entities are given implicitly via the various relationships among the
operations [46], [121].

The Denotational approach, previously named mathematical semantics, is based on Lambda
Calculus and Scott’s domain theory. In the denotational approach, entities in software are
mapped onto mathematical objects (list, tuple, set, function, predicate etc.) In such a
- definition, three parts are identified [59], [108], [158], [160]:

1. syntactic domains,
2. semantic domains and
3. semantic functions which map objects in syntactic domains to those in

semantic domains.

The Axiomatic approach is based on the principles of Hoare logic [73] which has a set of
axioms and inference rules. The meaning of a construct {expression, statement etc.) is
defined by the pre-conditions which must be satisfied initially and post-conditions which
must be satisfied after the evaluation or execution of the construct. One of the best known
formalisms of this approach-is the predicate transformer that was first developed by
Dijkstra and later augmented by Gries [43], [62].

The Operational approach is the earliest formalism developed in specifying software. It is
based on the theory of computation process (state transitions). The meanings of programs
are defined in terms of state transitions upon an abstract machine which interprets the
programs. The best known formalism of this approach is VDL [89], [168].
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A.2.3 APPLICABILITY OF SPECIFICATION TECHNIQUES

Petri Nets can be used to specify both functionality (correctness) and performance (time
constraints) of computer systems [2], [31], [72], [78], [117], [143], [148]. Having a
simple graphical representation, Petri Nets are easier to understand, to learn and to use.
They are executable so that simulation and prototyping can be performed {131]. As they
are abstract Petri Nets can be used in a stepwise refinement methodology. [96]. To avoid
producing very large, unstructured descriptions of computer systems and to avoid large
computations to analyze the nets for some properties, Petri Nets should not be used at
very low level. Some modification of representation of Petri Nets is needed to achieve
more concise representation and to provide more information [14].

Temporal logic has been widely used to specify and verify program properties such as
safety (partial correctness, clean behavior, mutual exclusion, deadlock freedom) and
liveness (total correctness, accessibility, fairness) {13]. It is especially useful in specifying
and verifying concurrent programs, distributed systems and network protocols [65], [66],
[87], [98], [99], [100], [135]. It is abstract, precise and machine processable [118], but
tacks compositionality and is useful at too low a jevel [14], [144]. Higher level temporal
operators of interval logic are needed [88], [104], [112], [136], [152].

The Algebraic approach is well suited for specifying and verifying abstract data types [56],
[64], [115]. Since it is mathematically well-defined, formal analysis can be performed
and proofs or correctness can be constructed. Various transformations can be made
automatically according to algebraic laws and equations in the same specification
framework [114]. Abstraction and modularity provide a mean by which information
hiding can be achieved {47], [51], [94], and the method is very useful for describing the
interfaces between modules. It is machine processable [90], [111], but is not well suited
for defining control structures and concurrency. Similarly it is not appropriate for use at a
very high level of development.

The Denotational approach is well suited of specifying and verifying sequential entities
[18], 123], [59], and especially in describing functional relations and recursive functions.
It is precise and mathematical so that formal proof and transformation can be performed
[106], [137], [158]. Like other methods it is abstract and compositional so that stepwise
refinement and modular design can be achieved [26], [160]. However many attempts to
deal with concurrency have resulted in complicated descriptions that are difficult to
understand [8], [21], [33], [83]. Thus, the method is not appropriate to be used at a very
high developmental level.



The Axiomatic approach is well suited for specifying and verifying the properties of
sequential programs [3], {4], {73]. The method is abstract and easy to understand — well
meeting the principle of least astonishment. The principle is as simple as to make it suited
for use by programmers at a comparatively low developmental level. When a proof
system is constructed, correctness proving can be performed automatically [60], [105],
[106]. However it is not appropriate for describing concurrency [14], [32] and it is very
hard to find invariants for complicated structures — post facto. Consequently its use is
best at low developmental leveis. |

The Operational approach is very useful to derive the description of an impiementation

[103]. Since the style of description is very much like that of a programming language, it
is easy to learn and to use [3], [139]. The Vienna Definition Language (VDL) has been
widely applied in many software specifications [91], [168], [174], and is machine =~
processable. Implementations have been constructed to be directly executable [175]. -

However the method is low level and difficult to verify. Thus, it is best used at a low level . -

of design and supported with other verification techniques.
A.3 THE MODEL FOR SOFTWARE DEVELOPMENT
A3.1 COMPARISON OF SPECIFICATION TECHNIQUES

Let us evaluate the various specification techniques against the requirements for
specification languages provided above. Values of 1, 2 and 3 have been assigned to each
methodology in terms of the degree of conformance to each requirement, with 1 implying
poor, and 3 for very good. The assignments are rather subjective, being based on our own
experience, biased by study of the literature. The results of study are summarized in
Tables A-1, A-2 and A-3. '

A3.2 THE MODEL AND THE METHOD

Based upon the above analysis and comparison, a software development model is
presented in Figure A-2. It utilizes all the above mentioned formal specification
techniques and elaborates the waterfail model. At very high level in this model, Petri Nets
are used to abstract and formalize customers informal requirements as part of the
requirements analysis resulting in top-level specifications. Prototyping and simulation can
be performed at this stage and the output with temporal logic formulas for verification
purposes. At next level, the Petri Nets are further refined so that the control structure of
the whole system can be constructed and the interfaces between various modules can be
analyzed. At the next level, the modules can be detailed by using algebraic approach for
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Petri Temporal  ‘Algebraic Denotational Axiomatic Operational
Nets Logic Approach Approach Approach Approach
.| Formal 2 3 3 3 3 1
Precise 3 3 3 3 3 2
Table A~1: Foundation
Petri Temporal  Algebraic Denotational Axiomatic Operational
Nets Logic Approach Approach Approach Approach
Abstract 3 3 3 2 3 1
E:cpressive 3 3 4 4 4 3
Modular/ 2 1 2 3 1 3
Compositional _
Sequential 3 3 3 3 3 3
Parallel 3 3 1 2 2 3
Executable 3 1 1 2 1 3
Verifiable 2 3 3 3 3 1
Table A~2: Applicability
Petri Temporal Algebraic Denotational Axiomatic Operational
Nets Logic Approach Approach Approach Approach
Understandable 3 2 1 1 3 1
Learnable 3 2 1 1 2 3
Usable 3 2 1 1 2 3

Table A-3: Comprehensibility
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data abstraction and denotational approach for functional abstraction, Various
transformations, term rewriting and correctness proving can be carried out. At lowest
level, modules are further refined using operational and axiomatic approaches to replace
upper level algebraic and denotational definitions. At each level verification can be
undertaken, provided that the relationship between successive formalistns can be well
defined. For example, the uppermost level of control structure must be maintained
throughout the development model, and properties developed through (say) algebraic
concepts be reflected in operational descriptions.

The interfacing of various specification techniques and automatic tooi designing
(structural editor, term rewriting system and transformer, theorem prover) are remained
to be investigated. At least some results and experiences from the CIP project in Munich,
[39], the VDM project, now based at the Dansk Datamatik Center [23], [26], [27], {79},
[80] and Balzer’s project [11] can be useful.

Formal software quality assurance can be partially carried out during the whole software
development process in this model. Correctness as the first priority is apparently to be
validated, verified and proved during each Stage down to the implementation level.
Performance criteria can also be simulated by Petri Nets and may be carried throughout
the whole development process. Comprehensibility can be better achieved by the high
level structural module and interface design. It is still a open research area how well
formalisms can guarantee software quality. '

A4 DISCUSSION

This appendix has presented a formal software development model which employs
- various formal specification techniques (Petri Nets, temporal logic, and the algebraic,
denotational, axiomatic and operational approaches). Though many research activities
have attempted to combine various formalisms, they have dealt only with very small
examples and have few implications for whole software development process. This model
relates all aspects of software development: software [ife cycle, software quality and
software participants. Research projects like CIP and VDM could have great influence on
this model.

The application of formalisms in software development seems to be the right way to
achieve more reliable software and to increase the software productivity as is believed and
advocated by many well-known computer scientists [17], [27], (34], [44], [76], [79].
[102], {107), [108], [176]. Several activities are putting these premises into practice [11],
[20], [22], [27], [37], [38], [391], [63], [79], [80]. More research activities, educatjonal
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efforts and practical implementations are needed to develop a feasible and practical
formalistic software development methodology. '
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A.6 OVERVIEWS OF FORMAL DESCRIPTION TECHNIQUES
A.6.1 PETRI NETS AS A HIGH LEVEL SPECIFICATION TOOL
A.6.1.1 GENERAL CONCEPTS

Petri Nets are a graphical methodology for the description of a high level of detail of
sequential and concurrent processes in which actions are “triggered” as the result of the
existance of predefined conditions. A Petri Net can be defined as a triple (P,T,A) where P
is a set of places which are usually represented by circles, T is a set of transitions which
are usually represented by bars, and A is a set of arcs which connect places to transitions
and transitions to places. A net can be marked with dots in various places, the execution
of which is by the firing a sequence of enabled transitions. A timed Petri Net is a one in
which timing information is associated with each transition. The timing information
specifies the minimum number of time units which must elapse before the associated
transition can fire and the maximum number of time units before which the associated
transition must fire. An example that explains these concepts can be found in Figure A-3.

A.6.1.2 CHARACTERISTICS OF PETRI NETS

Petri Nets are precise specification tools. They have a well-founded mathematical base
and their semantics are well-defined [PN17], [PN21}, [PN23], {PN25]. On the other
hand, the principle of a Petri Net is so simple that there cannot be any room for
misunderstanding.

Petri Nets have very powerful expressive ability. Their computation power is almost
equivalent to that of Turing Machine [PN9], such that they have been widely used in
modeling computer architectures, computer networks and software systems [PN1], [PN3],
[PN4], [PN18], [PN26].

The very simple graphical representation of Petri Nets makes them especially attractive.
They are easily understood, learned and used.

A.6.1.3 APPLICABILITY OF PETRI NETS

Petri Nets are especially well suited for specifying control structures of computer systems
[PN14], [PN20]. The firing rules of marked Petri nets allow all potential asynchronous
actions. Thus, a parallel program can be divided into many interacting sub-processes
which execute concurrently. Figure A-4 shows the Dijkstra’s Five Philosophers Problem.
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(a) An unmarked Petri net (b) A marked Petri
. net
t1 is enabled

(c) After t1 fired (d) After t2 fired
t2 is enabled ' t3 is enabled

pl

max = 10
(e) A timed Petri net

p2

Figure A-3: Petri Net Examples
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Figure A-4: Dijkstra’s Five Philosophers Problem

Petri Nets are very useful in abstracting the structures of systems [PN14], [PN24]. Each
place and transition can be another complicated Petri Net so that stepwise refinement can
be made until to user desired level of hierarchy. Example, let

P = P1{[P2||...|[Pn

be a parallel program, then the top level structure of P can be represented by Figure A-S.
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Figure A-5: Parallelism Using Petri Nets

Petri Nets are also excellent tools for énaiyzing the properties of computer systems. Such
properties as liveness (deadlock free) and reachability can be formally verified. There are
a variety of theoretical techniques for analyzing Petri Nets [PN12], [PN19].

Timed Petri Nets have another big advantage for simulating the performance of real-time
systems. Prototyping models can be built by using Petri Nets which are natural to use and
can economize a lot of resources [PN10], [PN13}.

A.6.1.4 A HIGH LEVEL SPECIFICATION TOOL

From user to machine, there is a very wide gap. Human languages differ so greatly from
machine languages that very few attempts have been made to bridge the gap. Though
many specification languages are designed to alleviate the probiem, they are generally
very low level, too procedural and possess applicabilities which are only appropriate to a
small portion of the problem. Hence, a variety of specification languages at different
abstract levels is needed to solve this dilemma.

If one believes that a picture saves a thousand words, then a graphical representation is
even better than a natural language for human understanding. Petri Nets with a precise
graphical representation are a natural to be chosen as a top level specification language.
One tool is based on this concept, embedded in a Smalitalk 80 environment [PN27].
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An Ada program consists of many concurrently executing tasks which communicate each
other [PN2], [PN5], [PN15]. Thus, at the top level, only control structure and flow need to
be specified. A program consisting of two tasks T1 and T2 is specified by Figure A-6

T1 T2

Figure A-6: Control Structure

where each task is represented by a place and the communication is represented by

transitions. A further refinement is shown in Figure A-7. The diagram is not only useful

Figure A-7: Rendezvous Mechanism

for programmers to derive implementations, but also understandable to customers; hence
the requirements are more likely to be met.
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A.6.2 TEMPORAL LOGIC AS A HIGH LEVEL VERIFICATION TOOL
A.6.2.1 GENERAL CONCEPTS

Temporal logic is a kind of modal logic which deals with time concepts [TL35], based on
first order logic [TL38] plus some temporal operators such as the unary operators:

® always (represented by 0O),
L sometimes (represented by <),
L next (represented by o)
and the binary operator until (represented by U).

Temporal terms are first order logic terms - constants, individual variables and function
applications such as f(x1, x2, ..., xn), and ot where t is a first order logic term. The
meaning of o0t is the next value of t.

Temporal formulae are constructed from first order logic formulas (truth values,
propositions, predicates and applications of negation -, disjunction or, conjunction and,
implication —, identity =, and quantifiers v and 3 ) and the application of the above
temporal operators. For example:

O ((x>35)and {(y<10))

is a temporal formula. A formula without temporal operators is said to be ordinary (static,
classic).

Temporal logic formulas can be interpreted over sequences of program states. where a
state is a mapping which assigns values to all individual variables. Therefore, temporal
logic describes the dynamic properties of a process while ordinary first order logic gives
the static interpretation of a formula over a single state.

Let o : sp, s1, S2 , ... be an infinite state sequence and ¢ (x) be a k-shifted sequence:
s(k), s(k+1), ... If u, v, w are ordinary first order formulas, then the meanings of temporal
operators can be explained as follows:

O w holds on o iff w is satisfied in all states in o.
< w holds on o iff w is satisfied by at least one state in o.

o w holds on ¢ iff w is satisfied by a o(1)
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u U v holds on o iff sometimes v holds and until then u holds continuously.

There are three kinds temporal logic: linear time temporal logic [TL3}, [TL11], [TL18§],
{TL21] branching time temporal logic {TL6], [TL8] and interval temporal logic [TL26],
[TL37]. The differences between these systems can be seen in the structures of the state
sequence which are allowed. In linear time temporal logic, each state in the sequence can
have one and only one successor state. In branching time temporal logic, each state in the
sequence can have more than one successor state so that the state sequence can be a tree
structure. In interval temporal logic, the temporal formula is interpreted over a specified
interval of the state sequence.

A.6.2.2 CHARACI‘ERISTICS OF TEMPORAL LOGIC

Temporal Logic is a very precise formalism. It is based on first order logic, and thus has a
well-founded mathematical base [TL35], [TL38].

Temporal Logic has very powerful expressive ability. It can express anything which is
definable in first order logic. Its computation power is equivalent to that of first order
logic. It has been widely applied in specifying and verifying computer architectures,
network protocols, software systems and various program properties [TL4], [TLé],
[TL11], [TL12], [TL16], [TL18], [TL20], [TL28], [TL30], [TL31], [TL36].

A.6.2.3 APPLICABILITY OF TEMPORAL LOGIC

Teniijoral logic is especially well suited for specifying dynamic properties of computer
systems such as concurrency and various control structures [TL3}, [TL4], [TL11],
[TL15], [TL18], [TL20], [TL21], [TL28], [TL30], [TL33], [TL36). The temporal
formulas are so powerful that all potential asynchronous actions can be described.

Temporal logic is directly machine provable. Many program properties such as safety
(partial correctness, clean behavior, mutual exclusion, deadlock freedom) and liveness
(total correctness, accessibility, responsiveness, fairness) can be specified and verified in
the same temporal logic framework {TL22], [TL31].

Interval temporal logic can be used to defining and verifying various constraints of
real-time systems [TL16], [TL26], [TL36].

" A.6.2.4 A HIGH LEVEL VERIFICATION TOOL

There are two basic ways to specify a software
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1. By an abstract program that describes its behavior such as using Petri nets.
This kind specification is usually easier to be understood but harder to be
verified (proved).

2. By a collection of properties that it must satisfy such as using temporal
logic. This kind specification has a big advantage that the specification is
directly verifiable (provable) in the same kind of framework.

Therefore, temporal logic is an excellent verification tool. It can be used at top level to
specify and verify various properties between processes. If a proof system is constructed,
these program properties can be automatically verified (proved).

In the following section, a temporal logic specification of Dijkstra’s Five Philosopher
Problem is given. Input (?) and output (!) communication commands of Hoare’s CSP
[TL14] are used in the definition.

(synchronizer). Each process Pi communicates with S by four operations:

Let Pi be a process for philosopher i (1 £ i < 5) and S be a process for forks

Slpicki - pick up fork i
Slpicki@®¢ - pick up fork i1
Stputi ~ put down fork i
Slputi:@+1 - put down fork il

(& denotes addition modulo 5 and ~ denotes subtraction modulo 5).

The specification for each process Pi, i=1,...,5 is:
0 (((Slpick) and (S!picki®1)) — ((S!put) and (S'put:®1)))

The specification for S is:

O(((Pipicki) and (Pilpicki®1)) —
((( ~ Pi-1?picki) and (= PiD17picki®1)) U ((Pi?puti) and (Ppuri®1)))).
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A.6.3 THE AXIOMATIC APPROACH AS A LOW LEVEL VERIFICATION TOOL
A.6.3.1 GENERAL CONCEPTS

The Axiomatic approach is based on the principle of Hoare logic [AX13] which utilizes a
set of axioms and inference rules. The inference rule usually has the following form:.

Hi, Ho, ..., Ha

H

where Hy, ..., Hx and H are generalized assertions. The meaning of the formula is that:
given Hy, ..., Ha are true, then it can be deduced that H is true.

The meaning of a construct S (expression, statement etc.) is defined by the pre-condition
P which must be satisfied initially and post-condition Q which must be satisfied after the
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evaluation or execution of the construction. The definition is usually represented by

{r} S {Q}.

For example:
{(x=2) and (y=1)} z:=x+y; {z=3}

meaning that the pre-conditions x=2 and y=1 of assignment statement z:=x+y guarimtee
the validity of post-condition z=3 after its execution. Thus the meaning of the assignment
statement is specified by the assertions.

One of the best known formalisms of this approach is Predicate Transformer which was
first developed by Dijkstra [AX7] and augmented by Gries [AX12].

A.6.3.2 CHARACTERISTICS OF AXTOMATIC APPROACH

The axiomatic approach has a very well-founded mathematical base. The pre- and
post-conditions are basically expressed by first order logic formulas. The axioms and
inference rules are or may be confirmed by first order logic. Therefore, the system is very
precise [AX1], [AX4], [AX6], [AX11].

The axiomatic approach is very 'powerful. The axioms and inference rules can be
constructed to express anything which can be expressed in first order logic. There are
many examples of the practical use of the approach [AX1], [AX2], [AX3], [AXS],
[AX9], [AX10], [AX14], [AX17], [AX18], [AX21], [AX27].

The axiomatic approach is basically very simple. Besides the ordinary first order logic
symbols and computation and reasoning rules, the pre- and post-conditions are
constructed from program variables and propositions. Therefore, they can be used by
programmers at very low level [AX8], [AX9], [AX12], [AX13], [AX22], [AX27].
However, the confirmation that the pre- and post-conditions are necessary or sufficient is
often beyond their capabilities. ' '

A.6.3.3 APPLICABILITY OF AXIOMATIC APPROACH

The Axiomatic approach is well suited for specifying and verifying sequential program
properties. It is particularly useful in proving the partial correctness of programs [AX3],
[AX4], [AX10], [AX14], [AX21], [AX25], [AX26].

The Axiomatic approach is abstract. Not only is there no explicit abstract machine or
computation sequence concept, but even the concept of state is implicit. The meaning of a
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software construct is specified entirely in terms of the external observable effect of
evaluating or executing it. This can be construed as providing a flexibility in description
which can be tuned to the prevailing environment or by lacking a underlying common
model, as being difficult to move across boundaries in reusabie software environments.

The notation and principle is so simple and easy to be understood that it can be used
directly by programmers at very low level.

The Axiomatic description is machine processable. Tools can be built to find some
invariants, which are the basis of the verification of the correctness of pre- and
post-conditions. Theorem provers can aiso be constructed to prove the partial correctness
of programs defined in this manner [AX19].

A.6.3.4 A LOW LEVEL VERIFICATION TOOL

Like temporal logic, the axiomatic approach specifies the meaning of a program construct
by a collection of properties. Thus it is well suited for verification purposes. Further it is
easily understood, learned and used. However, this may be one of its fallibilities, since
unless combined with a automatic theorem prover its incorrect usage may be masked by
its apparent formality! Though easy to write, meaningful pre- and post-conditions are not
necessarily easy to generate. Automatic theorem provers can be built when axiomatic
apprbach is used at low level since axiom system and inference rules can generally be
found and constructed.

Though the axiomatic approach can be used at high level for specification purposes. It is
very hard to find a consistent and complete axiom system. It is very difficult to find
concise invariants for large structures. The pre- and post-conditions at high level are
either too abstract to be useful or too complicated to be undérstood due to the lack of
compositionality of axiomatic approach [AX20], [AX28]. As a consequence the axiomatic
approach is better to be used locally at a low level of detail.

The foliowing example gives the inference rules in axiomatic approach for the if
statement: if B then S1 else S2 and the while statement: while B do S.

The rules therefore define the meanings of the statements.

{P and B} S1 {Q}, {P and not B} S2 {Q}
{P}f B then S1 else S2 {Q}

where P is the pre-condition and Q is the post-condition.
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{P and B} S {P}
{P} while B do S {P and not B}

where P is the pre-condition.
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A.6.4 OPERATIONAL SEMANTICS AS A LOW LEVEL SPECIFICATION TOOL
A.6.4.1 GENERAL CONCEPTS

The Operational approach is the earliest formalism that has been deveioped for specifying
the semantics of programming languages and software. It is based on the theory of
computation processes (state transitions). The meanings of programs are defined in terms
of state transitions of an abstract machine which interprets the programs. A machine
consists of a set of states (containing two distinguished subsets - the initial states and the
end states), a set of transition functions and a function which maps programs and their
input data into initial states. The best known formalism of this approach is the Vienna
Definition Language (VDL) which has been widely used in various applications [OP5],
[OP8], [OP19].

A.6.4.2 CHARACTERISTICS OF OPERATIONAL SEMANTICS

The operational approach is a precise specification formalism, but unlike other
formalisms having verv well-founded mathematical bases, does not have a
mathematically defined semantics. More like a Turing machine or finite automaton, the
abstract machine and a set of instructions are constructed to define the meaning of
software [OP4], [OP10]. The machine is intended to be so simple that there can be no
possible misunderstanding how it works. _

The operational approach is very powerful. It can be used to simuiate a Turing machine
[OP12] and has been widely used in defining the semantics of various programming
languages {OP2], [OP7], [OP8], [OP13], [OP16] and software systems [OP20], [OP21]. It
has been successfully applied to treat parallelism [OP6], [OP7], {OP16].

A.6.4.3 APPLICABILITY OF THE OPERATIONAL APPROACH

The operational approach is well suited for specifying the semantics of programming
languages and software systems. It simulates the actual execution sequences and
interprets the meaning of software on an abstract machine. Thus, it is particularly useful
for deriving an implementation from the specification [OP11], [OP18], [OP21].

The operational approach is well suited in specifying concurrency, nondeterminancy and
real-time requirements.

The approach is very procedural and constructive and resembles the common
programming concepts. Thus, it is easy to learn and to use for inexperienced designers
and programmers. Further it is machine processable or even directly executable so that it
can be used in simulating and prototyping of software systems.
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A.6.44 A LOW LEVEL SPECIFICATION TOOL

In the operational approach, programs are viewed as computation sequences (state
transitions) and the sequence of intermediate states is explicitly given by the definition.
Thus, it is very low level and full of details. The meaning of a software is defined by
mimicking its behavior on an abstract machine. Hence, the operational approach is not
appropriate for verification purposes, except that it can be considered to be a form of
N-version programming if the program and its description are developed independently.
On the other hand, it is precise and especially useful for deriving a model of an
implementation. Consequently the operational approach is well suited as a low level
specification tool. |

The following is an example of the semantic description of a simple language with two
statement forms: the assignment and if statements. In VDL notation, s- is used as a
component selector and is- is used as a predicate identifier.

THE ABSTRACT MACHINE

is-{ = ( <s-program : is-abstract-program>,
<s-control : is-control>,
<s-storage : is-value-list,
<s-input : is-integer-list,
<s-output : is-integer-list)

The state of an abstract machine in the VDL definition consists of five components:

1. The program : the abstract program,;

2. The control : defining the part of the abstract program currently being
interpreted;

3. The store : the storage part of the abstract machine;

4. The input file; and
5. The _output file;

THE ABSTRACT PROGRAM (SYNTAX)
is-abstract-program = is-statement-list.

is-statement = is-assignment-statement | is-if-statement.
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is-assignment-statement= (<s-variable: is-variable>, <s-expression: is-expression>).

is~if-statement = (<s-compare: is-comparison>,
<s-then~clause: is-statement-list,
<s-else-clause: is-statement-list).

is-comparison =  (<s-left-operand: is—operand>,
<s-operator: is-comparison-operator>,
<s~right-operand: is—operand>).

is-expression = is-integer | is-variable | is-infix-expression.

is-infix-expression = (<s-left-operand: is-operand>,
<s-operator: is-arithmetic-operator>,
<s-right-operand: is—operand>).

is-operand = is-integer | is-variable | is-expression

is-comparison-operator = is-LT
| is-EQ
| is-NE
| is-GT.

is-arithmetic-operator = is-PLUS -
| is=-MINUS.

is-variable = (<s-address: is—integer>)
THE INTERPRETER
Some of the evaluation functions are shown below:

exec-stmt-seq(sequence) =
is—<> — T — exec-stmt-seq(tail(sequence)) A
exec-stmt(head(sequence)).

exec-stmt(stmt) =
is-assign-stmt(stmt) — exec-assign-stmt(stmt)
is-if-stmt(stmt) — exec-if-stmt(stmt).

exec-assign-stmt(stmt) =
store{s-address.s-variable(stmt), value)
value: eval-expr(s-expression(stmt))
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A.6.5 DENOTATIONAL APPROACH AS A SPECIFICATION AND VERIFICATION

TOOL _

A.6.5.1 GENERAL CONCEPTS |

The Denotational approach (semantics) was called mathematical semantics previously and is

based on Lambda Calculus and Scott’s domain theory. In denctational approach, entities in

software are mapped onto mathematical objects (list, tuple, set, function, predicate etc.).
In such a definition, three parts are identified: :

° syntactic domains,
. semantic domains, and
L semantic functions that map objects in syntactic domains to those in

semantic domains.

One important ‘aspect of this approach is that the meaning of a composite structure is
composed from the meanings of its components [DN3], [DN5], [DN19].

A.6.5.2 CHARACTERISTICS OF THE DENOTATIONAL APPROACH

Denotational semantics have a well-founded mathematical base in Lambda Calculus and
Domain Theory [DN5], [DN31], and thus is a very precise specification method. The
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methodology is very powerful and can be used to represent anything which is also
definable in Lambda-Calculus. It has been very successfully applied in defining the
formal semantics of various programming languages [DN1], [DN2], [DN10], [DN19],
[DN34], [DN36] and software systems [DN4], [DN11], [DN12], [DN16], [DN21],
[DN22].

A.6.5.3 APPLICABILITY

The approach is well suited for specifying and verifying squential software entities [DN6],
[DN8], [DN11]}, [DN13], [DN27] and is especially suited to describe functional relations
and recursion. It has also been used in dealing with concurrency [DN4], [DN7], [DN15],
[DN16], [DN26]. Since the methodology is precise and mathematical, formal proof and
transformation can be undertaken [DN27], [DN36]. Similarly the denotational approach is
abstract and compositional so that stepwise refinement and modular design can be
utilized [DN11], [DN21]. Moreover, the approach is machine processable and
implementations can be derived from the definitions [DN17], {DN22], {DN28], [DN29],
[DN35].

A.6.5.4 A SPECIFICATION AND VERIFICATION TOOL

As stated previously, the denotational approach is highly mathematical and was
previously named mathematical semantics. The original Oxford notations are very
difficult to understand, but syntactic modifications such as the Vienna Development
Method (VDM) alleviate the readability problem. While VDM has been proposed as
method over the complete development cycle, in our opinion it is still not appropriate to
be used at very high level. It is abstract, constructive and very formal so that it is well
suited to intermediate level specification and verification methods.
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The following example shows a piece (incomplete) of denotational definition of
assignment statement and while statement:

Let the semantic domain {state) be the map from ID (identifier set) to VAL (value set):.
8: ID — VAL.

Denotational semantics define 8:. Let ¥ be the set of all states and M[DNs] be the
denotation of structure s, then for expression e and statement st, we have:

Mle] : T -+ VAL
Mist]: = X
The denotational semantics for assignment statement and while statement is as following:.

Mlid:=e](0) = assign(c, id, M[e](a))
where assign(co, id, val) = o’ and

o'(x) = { val ~when x = id
{ o(x) when x # id

M{while e do s}(0) = { M[while e do s](M[s](o)) if Mle](o)
{o if -M[e](0)
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A.6.6 ALGEBRAIC APPROACH AS A SPECIFICATION AND TRANSFORMATION
TOOL

A.6.6.1 GENERAL CONCEPTS

The Algebraic approach is based on Birkhoff’s Heterogenous (many-sorted) algebra and was
first developed by Zilles [AL21], Guttag and ADJ-group [AL15], [AL18]. In the algebraic
approach, every software construct is treated as an algebra that consists of a set of values
(domains and range), a set of operations upon the domains and equations relating various
operations. '

A.6.6.2 CHARACTERISTICS OF ALGEBRAIC APPROACH

The algebraic approach has a well-founded mathematical base —— heterogenous algebra
and category theory. Its own semantics is well defined and is very precise [ALS], [AL9],
[AL15], [AL23]. All total functions can be specified by this methodology which has been
widely used in specifying software systems and data abstraction [AL2], {AL3], [AL10],
[AL11], [AL12], [AL13], [AL18], [AL24], [AL25].

A.6.6.3 APPLICABILITY

The approach is well suited for specifying and verifying software systems [AL2], [AL3],
{AL10], [AL12], is especially appropriate for data abstraction and has been widely used
for the description of abstract data types [AL1], [AL4], [AL8], [AL11], [AL13], [AL15],
[AL18]. The method is well suited for transformations and correctness proofs.
Equational systems and term rewriting systems can be constructed to prove equivalence
between formal definitions and to derive low level specifications [AL11], [AL1 7], [AL20],
[AL24], [AL26], [AL28]. Like several other methodologies it is machine processable and
direct implementations can be derived from the specification [AL1], [AL18], [AL22]. As
with other methodologies, it is abstract so that hierarchical decomposition of specification
can be achieved [AL3], [ALS], [ALS6], {AL7], [AL27].

A.6.64 AN INTERMEDIATE LEVEL SPECIFICATION AND VERIFICATION
TOOL

Being highly formal, the method is not appropriate for use at very high level. Similarly,
the Algebraic approach is very precise so that transformations and correctness proofs can
be carried out formally or even automatically. Therefore, it is well suited as an
intermediate level specification and verification method.

The following example gives an outline as to how an algebraic specification appears. The
notation is from (Munich) CIP project, though many variants can be found in literature.
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The specification defines a SET upon a base domain DATA with the operations add and
delete and hidden functions isempty and iselem. '

type SET =
basedom DATA
sort set,
Junc set empty,
Junc (set, data) set add,
func (set, data) set delete,
func (set) bool isempty,
Junc (set, data) bool iselem,

isempty(empty) = true,
isempty(add(s, x)) = false,

delete{empty, x) = empty,
delete(add(s, x), y) = delete(s, y) if x=y,
add(delete(s, y), x}) if x /y,

iselem(empty, X) = false,
iselem(add(s, x), y) = true if x=y,
iselem(s,y) if x4y,

add(add(s, x), y) = add(add(s,y),x),
add(s, x) =x if iselem(s,x)=true
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APPENDIX B: A SURVEY OF POTENTIAL TOOLS

B.1 PROGRAM DESIGN LANGUAGES

Several program design languages are now available to be used with Ada. Each of these
FDL’s can help to introduce “formalism” into the software development process.
However, the use of any or all of these systems will not result in verifiably correct
programs. In the following review of these systems an effort will be made to point out the
applicability and limitations of each of these program design languages. Since the effort
to introduce formalism into the software development process is in its early stages, plans
for future development of these languages will be discussed.

B.1.1 ANNA

ANNA (ANNotated Ada) is a specification language designed for use with Ada that can
provide machine processable information about various aspects of the program. [PD6,
PD7, PD8, PD9, PD13, PD14] This system is being developed by the Program Analysis
and Verification Group at Stanford University. ANNA provided extensions to Ada fall
into three categories,

1. generalizations of explanatory constructs already in Ada,

2. additional new kinds of constructs, mostly declarative, dealing with
exceptions, context clauses, and subprograms, and

3. additional specification constructs, mainly to specify the semantics of
packages and the use of composite and access types.

A significant part of the ANNA language definition is devoted to defining a
transformation of specifications into run-time checks. ANNA annotations are added to
an Ada program as comment Statements, but may generate executable statements if the
ANNA compiler is used. The current version of the Transformer, the program which
converts ANNA comments into run-time checks, can transform a subset of ANNA. Types
and objects that can be annotated have been restricted to scalars only. Object
annotations, subtype annotations, statement annotations and subprogram annotations are
included in the subset of ANNA which can currently be transformed. Special ANNA
attributes have been excluded, and the attribute DEFINED is always assumed to be
TRUE. All ANNA expressions are permitted with the exception of those that include
quantified expressions or states. Therefore, ANNA membership tests and conditional
expressions are inciuded in the subset which can be transformed. Virtual Ada text can be
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used but the transformer does not include any checks to insure the correctness of this
text.

Programs are first put to the transformer. The resulting transformed programs are then
compiled by a validated Ada compiler to test for syntactic and semantic correctness.
Syntactic errors are found by the ANNA parser, while the transformer detects semantic
errors within the annotations. Current diagnostic capability is an error message that
reports which annotation was violated, and the line number locating the position of the -
violation. A robust interface to the transformer is being developed which will initially
consist of a major enhancement of the diagnostic information provided during execution
of a transformed program, including the location with the source text at which a
constraint was violated as well as the location of the corresponding annotation(s). In
addition, a symbolic debugger will be added to the system. This will allow the user to
query during execution of a transformed program the state of the program that caused an
ANNA constraint to be violated. ANNA developers continue to aim at providing a
comprehensive system capable of providing support for integrating formal specifications
into all phases of software development for Ada.

ANNA is a complex system, which, when complete, will provide a full range of tools to
support the development of formally specified and verifiable Ada prdgrams. The initial
subset implementations of ANNA appear to have achieved good results. ANNA would be
useful now in introducing some formalism into the development of Ada software. It
would be possible to implement the ANNA system in a sequence of phases. Each phase
would either extend the range of applicability as ANNA is enlarged or it would extend the
ANNA concepts of formal specification to another step in the software development cycle.
However, since the development of ANNA is likely to extend over the next several years,
it does not appear that ANNA alone could be used to verify existing software or to build a
library of verified software modules. The use of ANNA is very CPU intensive, not only in
the execution time of the resulting software, but also in the execution time of the
automated tools. The lack of speed in these tools is due in part to their use of somewhat
dated compilez: technology, as well as the fact that they are implemented in Ada, where
compiler maturity is not at a sufficient level to produce quality code comparable to other
languages. This drawback might prevent its application in environments that are unable
to provide a sufficient hardware base for development environments, although the benefit
of the choice of Ada has allowed transition among available hardware configurations
which provide Ada software development environments.
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B.i.2 PAMELA

PAMELA [PD1] (Process Abstraction Method for Embedded Large Applications), is a
program design method which was developed at Thought Tools, Inc. over the last three
years. It features a graphical specification of design and a systematic means for
transforming the graphical specification and its elements into Ada program units and their
elements.

PAMELA is an Ada-specific software development method. It provides guiding principles
and systematic procedures for transforming a software requirements specification into a

graphical design and transforming this graphical design into the expressive notations of -

the Ada programming language. PAMELA is especially suited to real-time, concurrent,
and parallel applications, relies on abstract data types for their benefits of information
hiding, and introduces abstract processes and abstract data types in a manner natural and
understandabie to software engineers. PAMELA is object-oriented.

PAMELA is based on a high-level, graphical program design and description language,

PAL (for Process Abstraction Language). PAL has icons for modules (ab_stract data types,

abstract processes, abstract procedures, and abstract functions) and for the interfaces
between modules. The analyst uses these icons to describe the design by dréwing process,
subprogram, and abstract data type graphs. These graphs have nodes (the modules) and
edges (the calls). AdaGRAPH is a tool that supports PAMELA. It does so in two ways.

. It is a syntax-directed editor for drawing and editing PAMELA graphs and storing
them in a data base in an object-oriented representation.

. It is a compiler from PAL into Ada source code to be subsequently compiled by

any Ada compiler to target object code.

The PAMELA development cycle contains three steps. Step 1 transforms the software
requirements specification into a set of PAMELA graphs. There are three kinds of
PAMELA graphs: process graphs (to capture the concurrent and asynchronous processing
of the design), subprogram graphs (to capture the sequential processing of the design),
and abstract data type graphs (to capture the processing of abstract data types). Step 1
results in a graphical specification (the PAMELA graphs) of a software architecture that
satisfies the software requirements. Step 1 identifies the design’s major modules (abstract
processes, data types, procedures, and functions) and their interconnections.

Step 2 transforms the graphs and their elements to Ada source code. The AdaGRAPH
tool performs this step automatically. The first-level process graph is transformed to the
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Ada main program. Each lower-level process graph to an Ada package. Each abstract
data type is also transformed to an Ada package. This step represents the PAMELA
graphs as Ada source code, primarily the declarations, which form the outline of the
software. |

Step 3 transforms the specifications of the tasks and subprograms to the bodies of these
units. At this time the majority of this task must be done manually.

After this review PAMELA appears to be primarily a top and intermediate level design
tool. Certainly, the graphics and first level transformation is of value at this level of the
design process. In terms of building a more consistent design process this tool would be
of great use. However, it does not support the more detailed and maintenance steps in
the software development process. Also, it does not address the issue of verification.

B.1.3 BYRON

BYRON [PD4, PDS5, PD11, PD12] is a program development language (PDL), designed to
provide an efficient mechanism for capturing much of the information produced in the
course of engineering a large software system. The BYRON package includes tools that
store this information in a structured database and that analyze and extract information
from this database to make it available as needed. BYRON was specifically designed to
support software development of Ada programs but can be used with other programming
languages as well. BYRON does introduce formalism in terms of providing an
environment and tools so that consistent and detailed documentation can be built. BYRON
does not provide support for program verification and can not provide a basis for
introducing mathematical formalism into the software development life cycle. The
following information is taken from the BYRON Program Development Language and
Document Generator User’s Manual. PD4]. '

The BYRON PDL differs from the Ada language in two important respects. First, it
provides a mechanism that associates information about Ada declarations with the
declarations themselves. Second, BYRON tools can produce useful output from even the
incomplete and inconsistent code that characterizes the early stages of program
development. BYRON is used in all phases of the software development process, from
specification through maintenance.

BYRON is desighed to express information that cannot be expressed in Ada in order to
support the software development process. The BYRON PDL includes all of the
constructs that are valid in Ada and defines new ones that are used to express this
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additional information. Comments in Ada begin with “~-" and continue to the end of the
line. In order to remain compatible. with Ada syntax, all BYRON language constructs
begin with “~-|”. Since an Ada compiler treats such a construct as a comment, the same
source file can be processed by both the BYRON analyzer and the Ada compiler. The
Byron PDL, helps to keep a program and its documentation consistent; since they are kept
in the same source file, it is easy to update them together. The special PDL constructs
are used only for information that cannot be expressed in Ada. This eliminates
redundancy, saving time and removing a potential source of inconsistency.

BYRON provides two general mechanisms for producing documentation based on
information stored in the program library. Both of these mechanisms rely on a set of
instructions written by document designers to describe the content and format of their
documents. In one case these instructions are simple macro interpreted commands.
Alternatively these instructions may be Ada source code which is compiled and executed
to produce the desired document. The BYRON document generator, BYDOC, processes
macro commands to access both BYRON information and Ada semantic information
stored in the program library. The macro or “template” language provides a document
designer with variables, operators, procedures, data structures, and control statements to
express his design. The chief advantages of the template language are that it is easy to
learn and use, and that it does not have to be compiled each time a change is made.

There are limitations to using the template language, however, which may make it
difficult to describe very complex documents. For example, string operations, arithmetic
expressions, and counted loops are some of the features that are no well supported.
Rather than adding these features to the template language, which was never intended ag
a formal programming language, BYRON provides a mechanism for writing Ada
programs to access the program library. This mechanism is called the Program Library
Access Package (PLAP). Both the PLAP and BYDOC provide useful mechanisms for
generating custom documentation. Document designers should weigh requirements for
efficiency and complexity before selecting one of these methods.

The tools provided with the BYRON package are:

BYANA Invokes the BYRON PDL analyzer to check a source file for Ada syntax,
semantics, and proper use of the BYRON constructs. If there are no errors, it stores a
representation of the source file in a program library for subsequent use by other tools

BYDOC Generates a document according to a template file that is specified when the
command is invoked. Standard templates are provided, and you can write your own
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templates to produce exactly the documentation you require. The foliowing list describes
the standard templates delivered with the BYRON package: '

CALLTREE Produces a report showing the procedures and functions a given
program unit calls, and the procedures and functions that call a program
unit.

DATADICT Produces a report showing declarations of types, objects,
subprograms, packages, tasks, and entries in a selected set of program
units, with a brief description of each.

DEPTAB  Produces a report showing the dependencies among program units in
the library. The report shows what units will be made obsolete if a given
unit is recompiled, the order in which program units would be recompiled,
and what program units a given program unit “withs” and is “with”ed by,
either directly or indirectly.

MAKECS  Produces a type C5 specification, as required by many military
contracts.

USERMAN Produces a report that describes the external interface to a package,
subprogram, or task in the program library. This document contains all of
the information essential to anyone who wishes to use a predefined program
unit. '

B.1.4 RAISE

RAISE {PD10] is an acronym for a “Rigorous Approach to Industrial Software
Engineering”. The aim of the RAISE project is to construct a method and a specification
language, based on mathematics, for the development of software in industry, together
with a collection of computer based tools supporting the specification language and the
method. '

A basic concept of RSL (RAISE Specification Language) is the structure. Structures are
the building blocks and abstraction units in RSL. Structures constitute the frame in which
the RSL entities types, values, variables, operations, and processes are defined.

RSL types can be defined by constructive type expressions similar to the domain
equations found in the meta~language of VDM (the Vienna Development Method). Types
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“can be used in the definition of named values. An important kind of value in RSL is the
function. A function can be defined in three different ways:

[ Explicit definition using the language of value expressions within RSL.

° Implicit definition defining a function by a predicate relating the function
result and the parameter.

° Axiomatic definition in which the function is defined through algebraic
axioms.

A structure may introduce a state through the declaration of variables, and different
instantiations of the state of a structure can be created through copying of such a
structure. The variables of a structure are not directly accessible outside the structure.
Instead, manipulations of the state of a structure is performed through calls of operations
defined in the structure. Operations can be thought of as “functions” with side-effects,
and an operation can be defined explicitly using the statements of RSL or implicitly by a
predicate.

Parallel activities are described through the introductions of processes in structures. RSL
processes are based on CSP [PD3]." Processes communicate through named channels.
They can be defined explicitly using RSL parallel combinators or implicitly through a
failure assertion which is a predicate describing the allowed sequences of communication.

B.1.5 LARCH

The Larch Project at MIT’s Laboratory for Computer Science and DEC’s Systermns
Research Center [PD2] is the continuation of collaborative research into the uses of
formal specifications. The project is developing both a family of specification languages
and a set of tools to support their use, including language-sensitive editors and semantic
checkers based on a powerful theorem prover.

The Larch approach is geared towards specifying program modules to be implemented in
particular programming languages. Predicate-oriented interface languages are used to
describe the intended behavior of procedures. Abstractions are formulated in the Shared
Language. Descriptions given in the interface languages are given in terms of those
abstractions and might also include descriptions of error-reactions and implementation
limits.

Similar in appearance to many algebraic specification languages, the Shared Language
can be used for specifying abstract data types, but its focus is on specifying “smaller”
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entities or properties (such as commutativity, group theory, and generic properties of
container-like types). Such entities are expressed as independent, tractable, and reusable
building blocks.

The Shared Language offers a simple, syntactic approach to modularization and
composition. Units of specifications, called traits, are combined by syntactic inclusion;
inclusions can be equipped with renaming rules. Traits are never explicitly
parameterized; the renaming mechanism makes any entity of a trait a potential
parameter. The meaning of a trait is a first-order theory. It is obtained as the
conservative union of the theories associated with included traits and the set of local
axioms of a trait. The local axioms are expressed as first-order, quantified equations.
The language allows (and the design philosophy encourages) redundant theorems to be
stated, thus enabling considerable amounts of consistency checking to be done (possibly
by mechanical theorem proving).

B.1.6 DISCUSSION

With the exception of LARCH, each of the program design languages in this section was
developed with the programming language Ada in mind. All three of the PDLs described
in the preceding summaries integrate some degree of “formalism” into the software
development process. Each of them has different points on which they focus. PAMELA
is primarily aimed at providing a more consistent, easier to use method of top level
design. BYRON is specifically aimed at semi-automatic generation of documentation of
Ada source code. Specifically, it can generate documentation reports required for
military and other government applications. ANNA is more generally applicable to the
entire software development process. Its use supports both more detailed documentation
and the inclusion of checking functions useful in the verification process. RAISE is a
different appi‘oach to the Ada program development problem, typified to some extent by
the locale of the effort. RAISE is dependent on the VDM forma description of Ada
developed at DDC. LARCH provides an algebraic language for specification. It is fair to
say that these PDL’s could be considered complementary rather than substitutes for each
other. In fact, since both BYRON and ANNA can be used with an underlying DIANA
representation of an Ada program it is feasible that they could be used together.
Certainly, fully verified Ada programs can not be developed via the use of these tools but
a significant level of “formalism” can be introduced by their use.
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B.2 FORMAL SOFTWARE ASSISTANTS

Because of the ever increasing size and operational criticality of computer systems, design
verification and formal proofs of correctness are being incorporated in the software
development life cycle. More specifically, design verification is the process of showing
that the design of a system expressed in a specification language satisfies the
requirements of the system [TP22]. Tools which will support the design verification
process are currently being developed. In the following the status of a number of these
systems is summarized. |

B.2.1 AFFIRM

A major concern of many recent research papers has been the development of
specification and verification methods that can take advantage of abstraction and
hierarchical structure.

AFFIRM [TP13, TP19, TP21] is being developed as an interactive system for specification
and verification. The AFFIRM system accepts data abstractions and programs in a
- specification language based on the algebraic axioms method and in a programming
language based mainly on Pascal.” The specification language provides a facility for
initially defining and successively refining a characterization of a user’s problem.
Specifications of data abstractions can be tested for consistency and completeness, and
specifications which pass these tests become part of the system data base. The AFFIRM
verification condition generator supports the standard inductive assertions method and the
subgoal assertions method.

AFFIRM also contains a natural deduction theorem prover for interactive proof of
verification conditions and properties of data abstractions. AFFIRM is capable of
organizing large specifications and collections of axiomatic and derived properties in an
on-line data base for easy retrieval. The AFFIRM system has been successfully used to
specify and prove the verification of a symbol table abstraction and its implementation by
a stack of hash tables, the correctness of an implementation of Queues in terms of
circular lists, and rules for types such as sequences, sets, and trees. Continued
development in the areas of axiomatic methods for top-level modeling of systems,
requirements analysis, and reusability are needed.

AFFIRM has been shown to be effective at interactive proof and verification for relatively
small examples. However, its development is not to the point where it would be
appropriate as a tool to help formalize the specifications for or prove the correctness of
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Ada programs. Certainly, it might be used to develop a Iibra_ry of “verified” software
modules”, but even in this use a translation from the pascal-like AFFIRM programming
language to Ada would have to be done.

B.2.2 PROLOG

A current research effort involves the reimplementation of the AFFIRM Specification and
Verification System [TP11] using Prolog. Prolog “programs/data bases” are sequences of
rules and facts, with a backtracking interpreter that unifies goals with the program and
data bases producing as many solutions as are feasible and requested. The attractiveness
of Prolog is its unification of formalisms such as relational data and production systems.
However, program development environments for Prolog are primitive at best and
modularity and other structural issues are only starting to be addressed. The new
implementation of AFFIRM has been successfully used to prove a previously used
benchmark set of lemmas. Performance is comparable to the old InterLisp
implementation but has reduced resource requirements. The new Prolog may provide
impetus to solve problems in the verification field because of its direction towards use of
new architectures, unifying formalism of “logic programming”, and the ability of Prolog
to naturally express models of problems and organize knowledge.

B.2.3 GYPSY

The following description of the Gypsy Verification Environment (GVE) is taken from
“Using the Gypsy Methodology” [TP14].

The Gypsy [TP1, TP14, TP22, TP25] methodology is an integrated system of methods,
languages, and tools for designing and building formally verified software systems. The
methods provide for the specification and coding of systems that can be rigorously
verified by logical deduction to always run according to specification. These
specification, programming, and verification methods dictated the design of the program
description language Gypsy. Gypsy consists of two intersecting components: a formal
specification language and a verifiable, high level programming language. These
component lariguages can be used separately or collectively. The most important
characteristic of Gypsy, however, is that it is fully verifiable. The entire Gypsy language
is designed so that there exist rigorous, deductive proof methods for proving the
consistency of specifications and programs. The methodology makes use of the Gypsy
Verification Environment (GVE) to provide automated support. The GVE is a large
interactive system that maintains a Gypsy program description library and provides a
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highly integrated set of tools for implementing the specification, programming, and
verification methods.

The Gypsy methodology may also be applied strictly to the design phase of system
development. For example in certain applications, particularly in the security domain, it
is considered desirable to prove that a system’s specifications possess specific properties.
In Gypsy these properties woulid typicaily be stated as lemmas or as the specifications on

-an abstract data type, and the verification of the design would consist of demonstrating .

that the high level specifications satisfy these lemmas and type specifications.

The effective range of applicatioﬁ of the methodology depends on the applicability of
Gypsy to a particular problem. Gypsy is suitable for a wide range of general and systems
programming applications. Gypsy was derived from Pascal and retains much of the wide
applicability of Pascal. One major exception is the absence of floating point in Gypsy.
Gypsy, however, does have major facilities for exception handling, data abstraction, and
concurrency that are not present in Pascal. During its development, the methodology has
been used successfully in several substantial experimental applications. These include
message switching systems, selected components of an air traffic control system,
communication protocols, security kernels, and monitoring of inter-process
communication.

The most recent enhancements to the system have been extensions to the theorem prover.
Pending enhancements include, a new data flow analysis tool, an updated algebraic
simplifier, and extensions to the theorem prover which will allow sequential termination
and the well-formedness of non-mutually recursive specification functions to be proven.

B.2.4 SDVS (STATE DELTA VERIFICATION SYSTEM)

This proof mechanism is designed to be an interactive program which assists in the
definition and verification of microcode. SDVS provides a formal language which is a
classical (unquantified) first-order predicate calculus which can be appended to the
description of a microcode. Each definition provides a set of pre- and post-conditions for
a piece of microcode which can then be verified through the use of a proof system. In
1985 [TP17] the SDVS was not complete, though several proofs were exhibited. It would
be hoped that by 1987 these have been added.

B.2.5 INAJO

Methods for decomposing large conjectures into smaller ones in order to make their proof
easier and for limiting the -amount of reproving that occurs when a specification is
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modified are critical parts of the verification process. The FDM (Formal Development
Method) is a method of arriving at a formal specification of a system which is verifiably
guaranteed to meet requirements that are also stated in the specification. Two of the
major obstacles in the iterative process of specification and verification are the size of the
conjectures to be proved and the major reproving required whenever a specification is
modified. The Ina Jo processor [TP2)] presented can decompose specifications written in
the Ina Jo specification language into a number of conjectures to be proven as theorems.
Proofs are accomplished by a human prover utilizing the ITP (interactive theorem prover).
A new proof manager is proposed which will be able to determine what reproving is
required when a change is made. The proof manager and and the simplifier are not yet
complete. The ITP and the processor still require significant modifications. The Ina Jo
system is being developed at the University of California by Daniel M. Berry.

B.2.6 VERUS

VERUS [TP23] is a design verification system developed by Gould Software Division.
VERUS is a general purpose system, but its primary intended application is to specify and
prove security properties of systems modeled as state machines. The VERUS language is
a dialect of the predicate calculus adapted to a software engineering environment. It
includes parser directives, iypes, definitions, and proof directives. Theorems are stated
and proved as an integral part of the specification. Each theorem is stated in a proof
outline, which includes supporting statements-and proof directives to’ guide the theorem
prover. The user composes proof outlines with a standard text editor and interacts with
the prover directly via the parser.

B.2.7 ABEL

ABEL (Abstraction Building, Educationat Language) [TP11, TP14) is designed to be an
integrated system for specification and programming. It contains a langljage for
constructive (algebraic) specification centered on the concepts of types and functions,
which can be viewed as an applicative programming language. For the purposes of
specification and reasoning, a version of typed first order predicate calculus that utilizes
partial functions is included, called Weak Logic, along with mechanisms for
non-constructive axiomatics. These language elements are “non-executable,” but are
supported by software for syntactic processing as well as certain kinds of
semi-mechanized reasoning. All language constructs can be combined in writing
imperative texts in terms of non-executable concepts, either for specification purposes or
as a step in a semi-formalized program development process. They may aiso be
combined in decorating imperative executable programs with pre- and post-conditions

B-13



and other assertions for Hoare-style reasoning. ABEL is still being developed as a
teaching tool at the Instiute of Informatics at the University of Oslo primarily by
Ole-Johan Dahl and Olaf Owe.

B.2.8 EVES

The principal goal of the EVES project [TP10, TP14] is the development of a program
verification system which will usefully support the production of formally verifiable code

written in a dialect of Euclid. Euclid is a Pascal-like language which has been modified. ...

in ways which have decreased the difficulty of deriving a Floyd-Hoare axiomatization of
the language. Research and development are continuing on the Euclid language, the
specification system and the theorem prover. EVES is being developed at L.P. Sharp
Associates by Dan Craigen, Mark Saaltink and their associates.

B.2.9 HDM

The Hierarchical Development Methodology (HDM) [TP18, TP22] and its associated tools
and specification language (known as SPECIAL), which were developed during the 70’s
have been widely used for the specification and verification of secure systems. A new
specification and verification environment that is substantially different from the old
HDM is being developed. New features included in the system are:

. Specifications in first order predicate calculus with second order capability,
. Strong type checking with overloading,

. Parameterized modules with semantic constraints,

. User interface based on multi-window screen-editor,

. Theorem proving by reduction to propositional calculus, with decision

procedures for common theories,
. Hoare sentences and code proof, and
e  Muitilevel security (MLS) checking by information flow analysis.

In contrast to systems which seek to automate the theorem proving process, this
verification system is designed to provide support for the expert user. In order to prove a
theorem, the user cites instances of axioms and previously-proved theorems from which
the result follows by propositional reasoning. The user is expected to provide appropriate
substitutions for the existentially quantified variables of the conclusion and for the
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universally quantified variables of the formulae cited as premises. The prover reduces
the user’s proof from first order into propositional calculus. The reduced formula is
submitted to the underlying prover. The new system includes an information flow
analyzer similar to the one used with SPECIAL.

B.2.10 VDM

The Vienna Development Method [TP3] was developed by D. Bjorner, W. Henhapl, C.B.
Jones, and P. Lucas. It is a systematic approach to the development of large computer
software systems. The three steps in the method are ‘Requirements, Formal Definition,
and Development. Between each step a justification must be provided. The aim of a
justification is to document why the proposed solution is believed to fulfill its
specification. Such justifications can be presented at different levels of formality.
Decomposition, correctness arguments, and the use of abstraction are key points in the
methodology.

A meta-language is used to formally describe specifications and to facilitate verification.
_All of the constructs of the meta-language. are.precisely defined. The meta-language
supports a denotational representation.

VDM started as a means to sYstematically develop a compiler from a language definition.
However, it has been shown to have a broad range of application.

B.2.11 PVS

The Practical Verification System (PVS) [TP26] is based on transformational verification.
It involves transforming specifications at one level of abstraction into specifications at a
lower level of abstraction and/or transforming specifications into programs. The
philosophy assumes that a programmer who correctly understands his assignment and
reliably employs sound implementation strategies will produce a correct program. The
System must contain meta-theorems which guarantee that if the system successfully
applies a transformation, then that transformation is mean refining. In the PVS system, the
user supplies design requirements in the form of an initial specification, written in the
user’s domain of discourse. This user-supplied information relies on high level concepts
stored in the PVS database, which contains formalized information about programming
and related subjects. The user then supplies transformations in a number of successive
steps. In parallel with this, the verification system executes these transformations,
obtaining a series of successively lower level specifications, and finally, a program. Since
the transformation between each successive specification is proved to be meaning
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refining, the result of these transformations is actually a verified program. Development

of the major modules in the PVS system is under way, the major problem is seen to be the

explicit reliance on automatic theorem proving. Improvements in this area over the
“state-of-the-art” are needed to build an effective efficient system.

Like SDVS, PVS was in the process of implementation in 1985 when presented at
VERkshop HI, with the goal of providing a transformational assistant for the development

of programs. The user provides a set of design requirements which are to be successively .- - -
transformed into a functional description, a detailed design and a source code program. -

Using a data base which contains “formalized information about programming and
related subjects”, the user must execute the transformational refinements in accordance
with predefined strategies thus avoiding mistakes of application. As the user inputs the
uppermost level specification, it is checked for syntactic correctness by a parse translator,
and for semantic validity by a command verifier, the main component of which is a
theorem prover. Once each transformational step has been verified, the command
interpreter performs the specified steps and the print translator visually provides user with
the results. [TP26] states that “work is currently under way to use the existing parse and
print translators as a basis for an interactive user environment ... for more-or-less
arbitrary interface languages [and] careful reformulation of the formal basis of the
internal logic is being followed by a reformulation of Pascal. Additions to the database
will include definitions of ... Ada, C, Euclid, Gypsy and/or LISP.”

‘B.2.12 BOYER-MOORE THEOREM PROVER

The Boyer-Moore Theorem Prover (THM) is unique among tools used in the formal
development process in that it has more often been applied in the realm of fundamental
mathematics, rather than program verification. The theorem prover was originally
developed to support the proof checking needs of the Hierarchical Development Method
(HDM) from Stanford Research Institute. However, it branched out from under HDM
and began to be used in a number of other applications. In [TP5], examples of its use
include application to the proof of verification conditions for FORTRAN [TP6], prime
factorization [TP7], Fermat's Little Theorem, the unsolvability of the halting problem
[TP8], and Godel’s incompieteness theorem [TP24].

THM uses the Boyer-Moore logic for expression of theorems, rather than a particular
programming language semantics. This logic is a quantifier—free first order logic, similar
to LISP [TP4]. Theorems are presented in the language of this logic, and then submitted
to the theorem prover, which acts as a high level proof checker. The individual
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4. While complete verification may be impossible with existing techniques,
partial verification or validation, involving the proof of one or more
properties of a module or program, is a useful indicator in providing a guide
of correct behavior.

Tools: To perform validation of a module of code it is suggested that a process similar to
the compilation of a module of code be used. The syntactic specification of a piece of
code should be validated before that piece of code’s body. This allows other modules that
call this module to be validated before the module is fully validated. The eventual
validation of the body includes maintaining the constraints defined by the syntactic
specifications.

Facilitating modular validation, an important construct with MAVEN, is the program
library. Syntactic specifications are stored in the program library where they are
accessible to module bodies being validated. Semantic specifications are stored in a
validation library. The semantic specification for a module consists of a set of
pre/postcondition pairs, one for normal termination and one for each exception that may
be raised.

To facilitate consistency within the verification process, MAVEN imposes restrictions on
the order in which units may be verified. Specifically a module’s semantic specification
must be entered into the validation library before any other module that references the
module, or the module itself, may be considered verified. The order of verification of
individual bodies or individual specifications is not considered, only that a specification
must be verified before a separate body that refers to it may be verified. Similar
restrictions apply to the re-validation of a program after modifications are made.

While the most powerful tools within MAVEN are the libraries (validation and program),
tHere are more verification tools within MAVEN. Some of these tools are specification
writer’s assistant, a software retrieval tool and a suite a testing tools. The specification
writer’s assistant is a knbwledge-based tool which, through interaction with the user,
produces formal specifications. The software-retrieval tool implies validation upon
reusable units of code assuming two conditions hold true:

1. The preconditions given in the design imply the corresponding preconditions
of the reusable unit.

2. The postconditions given in the design imply the corresponding
postconditions of the reusable unit.
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submitting the theorem has the opportunity to “guide” the theorem prover to follow
particular heuristics in the attempt to prove the correctness of the theorem.

The major research effort in developing THM has been the delineation of various
heuristics t0 mechanize mathematical induction. Other heuristics include selection of
axioms, definitions and lemmas for inclusion in proofs, and generalization of a problem
to a greater level [TP9)].

‘B.2.13 MAVEN

SofTech has proposed a set of requirements for tools to support the formal verification
and validation of Ada programs on a modular basis. This set of requirements is known as
the Modular Ada Validation Environment (MAVEN). This project is not being
implemented and is meant to serve as a set of guidelines for an Ada Program Support
Environment (APSE) that is to support formal verification and validation. SofTech makes-
the distinction between verification and validation by defining them as such: verification-
pertains to the formal proof of a piece of code through mathematical techniques,
validation pertains to the determination of a level of confidence in the software in
question through formal or informal methods.

Reggirenientg: The functionality of MAVEN is bésed on the establishing of several
requirements for the validation of Ada programs:

1. Formal proofs should be implementation independent. The behavior of a
specific environment that contains a validated Ada compiler should not
affect the performance of MAVEN.

2. The functional performance of MAVEN should be modular in nature. The
modification of a modular section of a program should not require the
re-validation of other modules of the same program as long as certain
pre/postconditions of the modified module are not changed.

3. Separate modules of a program may be validated by different techniques.
Different modules lend themselves to different validation techniques. While
one module may be formally verified without complications, another
module may require a less rigorous technique be used. This difference in
techniques should not affect the overall validation of the software. Some of
the possible techniques include formal and informal proof techniques, code
walkthroughs, unit testing, and historical acceptance based on trusted
performance.



Eﬁ%mwmkz While MAVEN is mostly applicable to the validation of

software, it provides support for a wide variety of topics over the entire life cycle. Only
those topics which are directly related to verification will be discussed here. Under
MAVEN, verification is not limited to a single do-or-die process, support is given to
verification of software throughout the life~cycle. The specification writer’s assistant is
useful in defining formally stated verifiable requirements. In addition, MAVEN plays four
roles in the design phase:

1. The validation library is used for storage of semantic specifications of each
design module. Again the specification writer’s assistant is used here.

2. During top level design module design plans are formulated and stored in
the validation library.

3. MAVEN contains catalog of reusable software including modules previously
placed there by the user. These modules are most easily integrated if their
formal specifications are stored in a library which is linked to the actual

-code through automated retrieval. As previously stated, re-validation of this
code is not required if the syntactic specifications validate within the scope
of the new program.

4. In the same way that standard Ada code is verified an Ada Program Design
Language (PDL) is subject to validation through MAVEN. This enables the
programmer to prove that top-level algorithms correctly meet the system
specifications. '

Logically, all verification techniques applicable to top level design are also applicable to
intermediate and low level designs.

MAVEN may be used to assure that, when modifications are made to the program for
maintenance, the initial specifications are not validated

B.2.14 DISCUSSION

A comglomerate of tools would provide an overlap of capabilities which could be tailored
to serve the needs of the formal life cycle. The Software Productivity Consortium has
already chosen to use the BYRON System as a basis of program development, and thus it
might be appropriate to investigate the means by which additional functionalities can be
added to that system to provide a broader toolset supportive of the formal life cycle.
Some diagrammatic approaches to the top level of design have already been incorporated
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into BYRON which could well be adapted and modified to operate over Petri Nets.
Similarly at a lower level, the comments in an Ada program can be used to incorporate
assertions regarding the properties of the program being described. This development is
intended to be a part of the further woek proposed in the main part of this report.
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