Implementing an Intelligent Retrieval System:
The CODER System, Version 1.0

Marybeth T. Weaver and Edward A. Fox

TR 88-6

Implementing an Intelligent Information Retrieval System
The CODER System, Versien 1.0
by
Marybeth Therese Weaver
Edward A. Fox, Chairman
Computer Science and Applications

(ABSTRACT)

For individuals requiring interactive access to online text, information storage and retrieval systeﬁs
provide a way to retrieve desired documents and/or text péssages. The CODER {(COmposite
Document Expert/effective/extended Retrieval) system is a testbed for determining how useful var-
ious artificial intelligence techniques are for increasing the effectivencss of information storage and
retrieval systems. The system, designed previously, has three components: an analysis subsystem
for analyzing and storing documen_t contents, a central spine for manipulation and storage of world
and domain knowledge, and a retrieval subsystem for maiching user queries to relevant documents.
© This thesis discusses the implementation of the retrieval subsystem and portions of the spine and
analysis subsystem. It illustrates that logic programming, specifically with the Prolog language, s
suitable for development of an intelligent information retreval system. Furthermore, it shows that
systern modularity provides a flexible research testbed, allowing many individuals to work on dif-

ferent parts of the system which may later be quickly integrated.

The retrieval subsystem has been implemented in a modular fashion so that new approaches tb
information retrieval can be easily compared to more traditional ones. A powerful knowledge
representation language, a comprehensive lexicon and individually tailored experts using standard-
ized blackboard modules for communication and control allowed rapid prototyping, incremental
development and ready adapiability to change. The system executes on a DEC VAX 11/785 run-
ning ULTRIX™, a variant of 4.2 BSD UNIX. It has been implemented as a set of MU-Prolog

and C modules communicating through TCP/IP sockets.

| Acknowledgements

" The Version 1.0 CODER system répr;:sents the éfforts.'of many Virginia Tech graduate students.
At last tally, nearly thirty students had contributed, in varying degrees, to the development of the
CODER system. The participation of these students, my colleagu'es and friends, is gratefull;;lz ac-
knowledged. The assistance, support and Iriendship of my advisor’s secretary, Joy Weiss, is also

much appreciated.

My office mates, Whay Lee, Qi Fan Chen Vand Robéﬂ France, deserve special thanks. Whay’s
expertise with the SMART retrieval systexﬁ and with C and UNIX have been invaluable on nu-
merous occasions. The diligence and cheerfulness of my counterpart Qi Fan Chen, the developer
of the analysis subsystem, have been a source of inspiration. Robert France, who contributed the
original design of CODER, deserves much credit for the cumrent implementation of the system. -
‘His experience, cooperation and perceptiveness have made him, to borrow one of his phrases, “a

much preferred co-worker.”

My committe membe_rs, Dr. Edward Fox, Dr. Terry Nutter and Dr. Debbie Hix, have been a highly
respected source of encouragement and assistance. I especially thank Drs. Nutt.er and Hix for the
eiamples that they set. As successful women in the field of Computer Science, they provide ex-
cellent role models for me. None of this work, however, would have been possible without the
genius and patience of my advisor and committee chairman, Dr. Edward Fox. [am continually
astounded by the breadth of his expertise, by his ability to quickly comprehend new ideas, and by
his tireless patience and helpfulness. I wish him rnany successes with the CODER system and with

all of his endeavors.

Acknowledgements iv

Finally, I thank those who are dearest to me, my family and friends. My parents, Marlyn and Mary
Clare Weaver, have encouraged and supported me in ways 100 numerous to mention. Likewise,
my sisters, brother and many friends, both old and new, have been an invaluable source of support.
Last but not least, I acknowledge someone special who knows nearly as much about the trials and
tribulations of this work as I do myself. Sincere thanks go to Paul Smith for his love and encour-

.agement.

This research was funded m part by grants from the National Science Foundation (IST-841887 and
IRI-8730580), the Virginia Center for Innovative Technology (INF-85-016 and INF-87-012) and

by AT&T equipment contributions.

Acknowledgements v

Table of Contents

LO Introduction i i e e I
L1 Motivationo e e I
R S 3
e L 7
2.0 Review of Related Literature ittt i, 9
2.1 Related ISR Systemsot 10
2.2 Frame Representation SYSIEmsot i4
2.3 Blackboard Architecturest 15
24 Inteliigent Information Retreval Functions' oo, 17
3.0 Methods BRI T S S 20
3.1 Systems and Programmingiit i e 20
311 Operating Systemottt 21
3.1.2 Programming Languages e . 2]
BL20 Prolog oo 22
3.1.22 The C Programming Language o0, 26
3.1.3 Directories, Files and Databases 26
3.2 Communications and Configuration, 39
3.2.1 Communications OVerVIEWottt e e 40
3.2.2 Enhancements ST e e 41
3.2.3 Prolog to C COMMUMCAtONS ..\ ovt ittt e e 44
3.24 Conhguration, Start-up and Termination 0. ..., R 46

Table of Contents vi

3.3 Module Development and Infcgration e 47

331 Developmentand Testing ..., ...ttt it 48
332 IMeEalion oo ettt e e 48
4.0 Imp!ementation 54
4.1 Prbtotyps O e e e e 55
4.2 Retrieval Subsystem Modules P 57
4.2.1 Blackboard/Strategist 58
4.2.2 Knowledge Adnﬁzﬁstra’tion Complex ... 72
42.2.] Type Managerso.uuuuiiiiniie e 73
4.2.2.2 Object Managersot 83
4.223 ‘Programsand Files 88
4.2.3 Input Analyst and Report Modules 89
4.2.3.1 Input Apalyst (JA) ... B 61
4232 Report Module 94
424 BrowsiZ ...t 100
424.1 Browsingthe HAI ... 101
4.2.42 Browsmgthe LEXiCOn ...\ ''iiuiee et 167
4.2.5 Problem Description Builder, 112
4.2.6 User Modelingo 121
4.2.7 Search and Query Fommulaliono 127
4.2.7.01 Search EXDPETt ..o 131
4.2.7.2 Query Formulatorot N 134
4.3 Version LOPrOtotype .. ooiititi ittt e e e 137
3.0 Discussion of Resubtsttt e e e e 139
5.1 Accomplishments 138
5.2 Micro-Level Evaluation e IEE‘

Tabie of Contents _ vil

522 Module Statisticst 145
60 Conclusions Cesee e Creeaaara Ceeaaeaaea 150
6.1 Limitationst e 181
6.2 Recommendalionsc.iuuiiiunnnenin . e | 153
6.3 Assessment e e :) I_57
Bibliography 158
Appendix A. Prolog Utilities List et e e 168
Appendix B. Prolog Programming Standard e e 7]
Appendix C. Testing Communications Extensions e it e 172
Appendix D. Implementation Schedule, June 1987ot n i 174
Appendix E. Modified Blackboard/Strategist Specifications0\0 ... | . 175
Appendix F. Frame Creation Sessionvuninn oo, . 7185
Appendix G. Frame Type Definitionsovuviunnn et ' 19_0
Appendix H. Performance Evaluation Tables 195
Appendix I. Sample CODER Retrieval SESSION . .vvverrnn s onise s 20z

Table of Contents ' ' : viii

List of Illustraﬁons

Figore 1. Original CODER Design 5
Figure 2. Implemented 'CODER Design ..o 6
Figure 3. CODER Retriaval Subsystem Directory Structure ..., 27
Figure 4. Generic User Interface 33
Figure 5. Menu File Formﬁt .. 34
Figore 6 Sample MénuFile 35
Figure 7. Sample Portion of the PromptFile 37
Figure 8. Configuraiion Map File Codes and Sample Map File 43
Figure 9. Adding Comxﬁum'caiions Extensions to C Programs 45
Figure 10. Simulated Integration of User Imerface with Report Module 49
Figure 11. Prolog Module Integration with Blackboard 51
Figure 12. Prolog Module Hypothesis Processing 52
Figore I3 Prototype I .o 56
Figure 14. Sequence of Calls to and from the Blackboard/Strategist 60
Figure 15. New Hypothesis Processing &3
Figure 16. Retracted Hypothesis P.rocessing &7
Figure 17 Modiﬁed Hypothesis Processing 69
Fgure 18, CODER Blackboard Aveas 71
Figure 19 Knowledge Adminisiration Complex Main Menw 74
Figure 20. EDT and Frame Type Bxamples 79
Figure 21. Relation TypeExamples ... 82
Figure 22. Sample Frame Objects o &5
Figure 23, Retrieval System Fromt-End ... 90
Pigue 24 Browse HALMenu 102
Figure 25. Browse HAI Table of Comtents Menw 105
List of INustrations X

Figure 26.
Figure 27.
Figure 28.
Fipure 29,
Figure 30.
Figure 31.
Figure 32,
Figure 33.

HAI Partial Table of Contents 106

Browse Lexicon Menu 109
Browse Related Words and Phrases Menu 111
Sample Problem Description Prompts/Menus 117
Rewneval State Diagram 119
User Model Frames 124
User Model Session Frames,........... 125
Version 1.0 Implementation 133

List of Hiustrations xi

List of Tables

Table
Table
Table
Table
Table
Table
Tabie
Table
Table
Tabie
Table
Table
Table
Table
Table
Table

I. EDT Restriction Inmheritancet 76
2, Input Analyst Callable Goals, 95
3. User Interface Manager Optionsuiiin e, 87
4. Report Generator Callable Goals v 99
5. HAI Resouree Manager Callable Goals v, 103
6. Browse Module Callable Goals, 108
7. Sample Message and Physical Document Relations 115
8. Problem Description Callable Goals , 120
9. Sample User Model Prompts and Menusc.uvueunernennnnn .. 126
10. User Stereotype Classification Heuristicsc.ouunirnnren... 128
11, User Model Callable Goals it 129
12. Search Module Callable GOals \ovs oo 135
13. Query Formulator Callable Goals, 136
14. Module Source Code Statisticsttt 146
15. Rule Base Statistics R 147
16. Approximate Statistics on External Knowledge Bases\t :i 149

List of Tables xil

1.0 Introduction

Research often starts from an idea, a question, or an
extension of a previous line of enquiry. The first
thoughis are aften vague and rather grandiose, rending
{0 overestimate the resources available and underestimate
the time needed to complete the project. However,
without oprimism ntuch research would never be siarted.

- Martin J. Kendall

- Clifford Hawkins, 1985

The first section of this chapter discusses how the suggested link between information storage and
reirieval systems and artificial intelligence has motivated this research. Section 1.2, Evolution, pro-
vides a historical background of the work described herein. The final section outlines the scope of

this research investigation.

1.1 Motivation

The growth of the information society is apparent in the expanding size and number of machine-
readable text collections. Many developments have propelied us toward W.F. Lancaster’s vision
of “paperless information systems” [LANC 78}; office information systems for storing correspond-
ence and documents, _desktap publishing, library systems and electronic mail systems are a few.
Moreover, increased storage capacity provided by media such as CDROM promotes development
of online versions of printed literature such as dictionaries, encvclopedia, reference manuals and

textbooks [FOXE 86c].

Introduction 1

For those requiring access .to online text, Information Storage and Retrieval (ISR) systems provide
a way to retrieve desired documents and/or text passages. In traditional ISR systems, a trained
searcher enters a query using a predefined query language; the system executes its search strategy
for matching the query to documents and displays the retrieved documents. Eazrly system designs
were simpler and were mnainly concerned with performance issues; they relied on human search
intermediaries who were trained to enter users’ queries in a manner that would hopefully result in
acceptable levels of recall and precision. However, the proliferation of available online information
has suggested the need for end users, unaided by search intermediaries, to search text coliections

directly.

Faced with the challenge of developing information storage and retrieval systems for direct user
access, researchers began to investigate the applicability of Artificial Intelligence (AI) methods
[SMIT 80]. Provision of ISR systems which perform like trained intermediaries prompied studies
of the functions of an intelligent ISR system [BELK 83]. Distinctions among users and their
searching methods suggested the importance of user modeling research [DANI 86, BORG 86, 87a,
87b]. Furthermore, realization of improvements in performance and effectiveness when Al tech-
niques are applied has been hypothesized. The CODER (COmposite Document
Expert/effective/extended Retreval) system was designed purposely to test the hypothesis that Al

techmiques can significantly upgrade the productivity of ISR systems [FOXE 85, 86a].

A variety of Al approaches have been incorporated into the CODER system design. Distribuied
rule-based experts centered around a blackboard/strategist complex perform separate functions,
such as browsing, query formulation or searching. Inferenfial reasoning is employed by modules
using the logic programming language Prolog. Knowledge about documents and users is stored in
frames in a Prolog frame-based knowledge representation system. Reasoning with uncertainty and
truth maintenance have been built into the CODER design. Finally, document parsing techniques
are used extensively during document analysis; however, natural language processing of queries has

not yet been implemented,

Introduction 2

Later versions of the CODER system will be capable of analyzing and retrieving domain-
independent documents; however, the target collection for the initial version of CODER is an ac-
cumulatioﬁ of issues of the ARPANET AIList Digest since April, 1983. The heterogeneous
documents contained in the collection vary in length, style, content and form. The CODER system
includes analysis of the structure and contents of documents, and subsequent retrieval including use
of canonical knowledge structures such as dates and names. Therefore, with diverse document
types such as those found in the AlList collection, the CODER system can be used to test the
hypothesis that retrieval employing structured knowledge provides better results than conventional

retrieval methods,

1.2 Evolution

Design of the CODER system began late in 1985, and is discussed in Robert France’s M.S. Thests,
“An Artificial Intelligence Environment for Information Retrieval Research.” [FRAN 86]. Addi-
tional description of the CODER design may be found in technical reports and publications written
by the principal investigator, Edward A. Fox [FOXE 85, 86a, 86b, 87]. As nearly as possible, the
CODER retrieval subsystem development has adhered to the original high-level design specifica-
tions. The knowledge representation language and blackboard/strategist functions, specified in de-
tail, have been minimally modified. Specifications for remaining modules were not provided;

therefore, module design and implementation techniques were undertaken as part of this research.

Many of the CODER modules envisaged in the archetype system illustrated in Figure 1 on page
5 have not been implemented and several new modules have been added. As the current retrieval
subsystem diagram in Figure 2 on page 6 depicts, implementation of CODER modules has

progressed somewhat differently than was originally planned. The work of Belkin et al. [BELK 83,

Introduction 3

84] influenced design development and led to some of the changes between the original and current

versions of the system.

The spine, composed of the knowledge administration complex, the document database and the
lexicon, has been implemented as pictured in Figure 1 on page 5. The classification specialists,
although relied upon by the analysis subsystem to derive structural and conceptual information
about documents [FOXE 87], have not been included in the current CODER retrieval subsystem.
Implementation of natural language query entry will prompt the inclusion of these specialists whose
functions include extracting classifications (frames) from natural Janguage queries and matching the
classifications to document frames. Additionally, the query parser module is not needed until na-

tural language queries can be analyzed.

The linguistic and cluster search specialists have not yet been incorporated. Current search strate-
gies include p-norm, boolean and vector searching. A guery fornmdator module has been added 1o
formulate a searchable query from explicitly specified user data as well as from system information.
The modules which receive and send information to the user interface manager, the input analyst
and report modules respectively, have been added to clarify the flow of information to and from the
user. Nonetheless, the overriding theme of distributed experts centered around a
blackboard/strategist complex remains. Moreover, the modularity of the CODER systemn, designed

as a research testbed, will permit rapid assimilation of modules to be added or enhanced later.

A complex, amiﬁtious endeavor, the dex-?eiopment of the CODER system has embodied the talents
of many graduate students at Virginia Tech. Master’s projects to develop the CODER communi-
cations functions [APTE 87a}, to create Prolog facts from the Collins Dictionary of the English
Language [WOHL 86] and to provide the initial user interface [KHAN 88] have aided the imple-
mentation of CODER. Qi Fan Chen, a doctoral student, has implemented most of the CODER
analysis subsysiem [FOXE §7). Additionally, graduate student projects for Dr. Edward Fox's In-
formation Storage & Retrieval class during Spring quarters, 1986 and 1987, offered insights regard-

ing the implementation of several modules.

Introduction 4

d3sn

BT YAAOD puwdug -y sy

13poL} }4adxy
Aasqy s

uah:m_ufnw
usijK suTag

Jasied
faang

abeue)y

EELJUE TS FE,

/N
)

safyspanay]
dopyruip joc)
g butuue|

Ebaens
feAafayay \

jA2dx3
Aaeqpad g

’

j4adxy
ydoeday

v}e(] paanjonayg
U |3y g SULIa |

"§,00Q JUeAsay

F\ lapaj4 hiany);

QY OEX0Y T8
TYARHLAY

sysye1aadg
arysnbuly

|
ydadxy
ydastion .H

L3 "y

Loyd s}y

sysijeronadg w 7

sbpamouy
Pt-ioM ,
¢ paugeloadg :

Yoy RINSINLD hN wm.ﬂ__.“wm___w.
ﬂfu W. _ {eaauag
[} yeadxy ._
adfy—oag : ~ Uoaixa)
il R ey
ey _ ARy oaLﬂ_m—.”_l_ _ m
aeq L

uuﬁu._—ﬁmom._m yaakag _ J

Abl.] auleldy _

Glie-y sHippy aBpalmoury

| |
m jHadxy L
o) sinbuty

wLIoN-d lf_%

g |

WILSASHNS TYAIIYLIY :

s

, ,_*_f..

e
© Aabeuryy

~f 95ef bpafmiiy .
JuaLNSey i

dabruepy
belo)g yxay,

ISR eq JusunIog

NS

on

Introduct

uBisaq Y909 prawunpwy -z aandgg

eseq)
lepop
lasp)

lsBieuepy

e3e|i8lu| las))

=)

i1sdleuy
Induy

.

-

10jelatieg)

yiodoyg

saps|inagy
VOO0

3 bupaue g
\\\\Iq:‘lil';llll.

1sifojeng
[EEYTRITHY|

sinsai
Blep painjanys
vopeinuro] deab
815 (woepqosd
vojidpasap wapgoid
" jBpoiu josn

s)sanbai tasn

w3y dn 1011,f

pieocpjae)g
JuA0| oy

by g
Aieng

ways{sqng

|eAa)nayy

]
'
'
'
!
!
v
[
'
'
'
'
)
|
!
'
!
\
i
'

“seppoid finnn Aq pasn sy xophuary wogegspgppy alipopioissy oy,

- e -

tofizuepy

altdg

16w xeg ' T
i TSI
' P
) .
pogejandg
= PR
jeajxan) '
'
) m_%c_g,o:x
N ' apis[nbug
B (LT .—\ |E10tEE)
. ! _ —
Y
D oy uooXa|
- .
i
ad BSMOI[” A
- Voot febeue ealnn
' ' UOjuu ' BN
1 e
=) |0
+ ' Jobeueyy odA g
—— 8pfing 1 ' Ok 1 e
A - uojjdpasog) " : HOfL oy)iy st
—:t_a_oh_ [p.rrln.-.._.!ll.l.-.arll
. : " vaprigupupy aBpojmou
N) :
A T gl ,
gliceg / ‘\ﬁ_ﬂa:nﬂ 6SE{]
alpapmonyy
JHGLIAGG(]

Introduction

1.3 Scope

This implementation of the CODER system addresses several hypotheses about the usefulness of

Al methods in information storage and retrieval systems:
* Logic programming is adapiable to information stovage and retrieval,

* The knowledge engineering paradigm can be applied to information storage and re-
trieval systems.

¢ System modularity provides a more flexible research testbed environment.

* Users can perform more effective rerrieval when structured knowledge is employed,
The hierarchical organization of documents as well as concepts such as names, dates,
and addresses represent structured forms of knowledge,

Specilically, this research aims to prove that the logic programming language Prolog is suitable for

the development of an intelligent information retrieval system; moreover, it dernonstrates that

system modularity simplifies implementation of an intelligent IR system, allowing participation of

many individuals without hampering implementation efforts.

Tﬁe research described here, carried out between January, 1986 and January, 1988, relates specifics
of the following: development and testing of the knowledge administration complex, a frame sys-
tem written in Prolog; development and testing of all retrieval subsystem inferential modules, also
written in Prolog; integration of inferential modules with the blackboard/stratcgist complex; inte-
gration of inferential modules with non-inferentiai modules, written in C and hereafter referrad to
as resource managers; and testing and enhancement of communication between retrieval subsystem
modules. The difficulties and highlights of the CODER retmieval subsystem implementation, a

micro-level system evaluation and a synopsis of resulting accomplishments are included.

A review of relevant literature reflecting the current interest in artificial intelligence as it applies to
Information Retrieval (IR) is provided in Chapter 2. The third chapter discusses technicat details
of the implementation: the computer svstems and 1ang1iages used, directories and files, communi-

cations and configuration issues and development and testing methods. Implementation specifics

intreduction -

are provided in Chapter 4: prototype development stages are described and each of the retrieval
subsystem modules is discussed in light of functions performed, callable predicates, system inte-
gration and heuristics adapted from information storage and retrieval literature. The final chapters
summarize results and accomplishments. System performance, validation of original hypotheses,
conclusions, and recommendations for future versions of CODER are addressed in Chapters 5 and

6.

Introduction 8

2.0 Review of Related Literature

Knowledge is of two kinds. We know a subject oursefves
or we know where we can Jind the information abow i,
- Dr. Samue! Johnson

Applications of Artificial Intelligence (AI) cross the boundaries of many domains. Similarly, In-
formation Storage and Retrieval (ISR) systems are used in diversified areas, for example, medicine,
law, electronic publishing, science and office mformation systems. Like the applications encom-
passed, the literature of Al and ISR is diverse and may be found in publications related to appli-
cation areas as well as in documents written for Al or ISR researchers. Given the relative newness
of Al in the field of information retrieval, most of the current literature regarding Al methods in
ISR may be found in publications refated to ISR systems. A general discussion of Al progress m

mformation retrieval and relevant literature has recently been published [SMIT 87b).

This chapter examines publications containing research and ideas which can be compared and
contrasted with those in the CODER System. Information and Library Science journals, confer- |
ences and textbooks are the source of the majority of the citations given. The focal points of this
chapter have been narrowed 1o 1) related ISR systems, 2) frame representation systems, 3) black-

board architectures and 4} functions of an inteiligent ISR system,

Review of Related Literature 9

2.1 Related ISR Systems

The CODER system is not the first ISR system to be designed and/or implemented using Al
methods. Experimentation with one or more expert modules aimed at simulating the performance
of & trained intermediary has been carried out by other researchers for nearly a decade. Many have
concenirated on particular functions of an intelligent ISR system: user interface issues [SMIT 87a,
MALO 87, GOLD 78, BREN 81}, natural language parsing and understanding [DOSZ 86, CHIA
87, GUID 83, METZ 85}, query processing and search [CHIA 87, SALT 83a, 83b], knowledge
representation schemes [PATE 84a, 84b, FICK 85, BRAC 83] or user modelling {DANI 86b,
BORG 86, 87a, 87b). Many designs for intelligent information systems have been proposed;

however, few have been fully implemented.

In 1981, a Master’s student at MIT proposed a single expert system module to aid inexperienced
users of bibliographic retrieval systems in the search process [YIP 81]. Simple LISP-like production
rules were suggested for knowledge representation and reasoning. Efforts at MIT have continued
and expanded with the ongoing development of the CONIT system [MARC 85], an experimental
study of heterogeneous system access through a common command-language (CCL) designed 1o
aid the construction of Boolean queries. For example, the 1986 version of CONIT could handle
three databases, Dialog, NLM and ORBIT, via its CCL. The proposed NISO standard language
for information retrieval [NISO 87] has been incorporated into the CODER Retrieval subsystem

as its “common command-language.”

A prototype Prolog system, PROBIB-S, is being developed for online bibliographic retrieval
[WATT 87]. The Canadian researchers involved examine the incorporation of special hardware and
extensions to the Prolog language to overcome the problems inherent in Prolog searching of large
databases. The CODER retrieval subsystem, also Prolog-based, has approached the concern with

unacceptable search response times differently. First, 2 Prolog version which already includes ex-

Review of Related Literature 3]

tensions to handle large databases was located. Melbourne University’s MU-Prolog 3.2db [NAIS
85), although it does not address special hardware, contains routines using superimposed coding for
storage and access of large external databases [RAMA 85]. Secondly, adaptation of searching rou-
tines from the SMART system [BUCK 85, FOXE 83a, 83b], developed at Cornell University and

written in C, has been undertaken.

Another Prolog-based document retrieval system, the CANSEARCH system [POLL 87, retrieves
cancer-therapy-related documents from the MEDLINE database. The syster acts as a front-end,

but performs no actual searches. Instead, it provides a menu-driven interface for narrowing and |
selecting MeSH query terms which are then formatted into query to be processed by the host
computer at the National Library of Medicine. CANSEARCH achieves its objective of eliminating
the user’s need to know query formulation specifics; moreover, it demonstrates the practicality and
usefulngss of an “intelligent” front-end. However, its limited scope allows it to ignore some of the
more advanced features of a retrieval system, such as user models, a natural language interface, term
expansion or search strategies. Therefore, use of Prolog and a blackboard for message communi-

cation are the two noteworthy similarities between CANSEARCH and CODER.,

The MICROARRAS system [SMIT 87a], z full-text retrieval and analysis system under develop-
ment at the University of North Carolina, focuses on databases distributed over differsnt hosts and
weﬁ-deﬁﬁed user interfaces to support intelligent dialogues. Correspondingly, the CODER system
uses TCP/IP protocols to handle databases and modules which exist on different hosts. The
modular design of the CODER system simplifies experimentation with several different user inter-
faces, also a goal'of the MICROARRAS system. Plans to develop a MacIntosh user interface for
CODER in addition to the current UNTX curses interface are already underway. The two database
search modes found in MICROARRAS, bibliographic and content, approximate CODER’s

Boolean/P-norm and structured knowiedge search modes respectively.

Review of Related Literature 11

The hypothesis CODER 1is being used to test, “Users can perform more effective retrieval when
structured knowledge is employed” is also a premise of The Information Lens [MALO 87}, a pro-

totype mtelligent information sharing system,

A rich set of semistructured message tppes (or frames} can form the basis for an intelligent
information-sharing system. For example, meeting announcements can be structured as templates that
include fields for "date,” "time,” "place,” "organizer,” and "topic”, as well as any edditional unstruc-
tured information.

Based on studies of information sharing in organizations, the researchers have explored cognitive,
social and economic information filtering designed to selectively filter the information that individual
users really want to see, for example in electronic mail systems. As in the CODER design, the re-
searchers involved i The Information Lens project have concluded that a f;amc tnheritance lattice
simplifies analysis and retrieval of messages. Analysis of document types in the CODER system

is similar 1o the message type analysis suggested in this study.

Natural language access to information retrieval systems, one of the most promising applications
of artificial intelligence to information retrieval, is the goal of many intelligent systems such as the
Natural Language Interface (NLI) [BISW 87] conceptualized and prototyped at the University of
South Carolina. IR-NLI (Information Retrieval - Natural Language Interface) [GUID 83}, an
Italian ressarch project designed in 1983, is organized around “...semantics-directed and goal-
oriented parsing”. Its modules include 1) understanding and dialogue, 2) reasoning about the user’s
equest and 3) a formalizer io formulate a searchable query. IRES (Information Retrieval Expert
Systemn) [DEFU 85, CHIA 87], developed in France, employs a separate query processing module
called IOTA which includes morphological and syntactic analysis of the guery. IRES also adapts
to user characteristics and to the state of processing during a retrieval session. Like IRES, CODER
pays special attention to the important distinction between domain and expert knowledge and the
need for the two to remain separate entities; user modeling capabilities are also found in both §ys-
tems. CODER does not yet include a natural language interface as does IRES, but does include a

docurmnent analysis component.

Review of Related Literature 12

Initial attempts to incorporate the CHAT-80 [PERE 83] Prolog-based front-end natural language
interface into the CODER retrieval subsystem [APTE 87b] indicated that implementation of na-
tural language query prolcessing should be handled as a separate graduate level project, Oanline
versions of the Collins Dictionary of the English Language as well as the Handbook of Artificial
Intelligence (HAI) allow users to “mark’ query terms or phrases during browsing so that they may
be added to queries later. These same fact bases were designed to aid natural language under-

standing and will be used when the planned natural language interface is developed.

The RUBRIC system [TONG 86a, 86b], a commercial system based on production rules and
written in CommonLisp, uses a manually built rule base to assist query construction and searching.
Likenesses to CODER are noted in its object-oriented paradigm for expert systems, use of relevance
values in the range [0,1] rather than in the set {0.1} and the availability of on-lin¢ help at any point

in the retrieval process.

The distributed ISR system developed by Croft and Thompson [THOM 83, 87a, CROF 871 most
closely resembles the retrieval portion of the CODER system. As in CODER, the architecture of
PR (Intelligent Interface for Information Retrieval) is based on a group of cooperating experts
centered around 2 blackboard/scheduler. User models, system state transitions, assignment of un-
e tamnty values to rules and on-line help/explanation exist in both systems. Application of some
of the research by Belkin, Brooks, Borgman and Daniels [BELK 83, 84, DANI 86b, BORG 85,
8€, 87a, 87b] regarding the functions of an information retrieval system and user modelling strategies
can be found in both systexﬁs. A user model builder, an interface manager, a search strategy module

and a browsing expert perform paraliel functions in the two svstems.

Where CODER uses a Prolog frame representation system for representing documents and domain
knowledge, I*R, written in CommonLisp, uses a relational database to represent documents, and
concept frames containing recognition rules to infer domain knowledge, mostly from the system’s
interaction with the user [CROF 87]. Differences in implementation of scheduling rules and expert

system rule bases also exist. A separate expert for state transitions and problem description building

Review of Related Literature 13

can be found in CODER as well. Although neither system has vet had its planned natural language
interface fully implemented, the CODER system has the advantage of an existing lexicon, frame-
based representation of document text to allow structured knowledge matching and online avail-

ability of domain knowledge via the HAL

2.2 Frame Representation Systems

In every intelligent ISR system, some formalism and corresponding notation with which to repre-
sent knowledge must exist. A variety of different knowledge representation (KR} schemes, for ex-
ample, logical, semantic network, procedural and frame-based schemes have been studied [MYLO
84, BRAC 85]. Smith and Warner limit their discussion of knowledge representation schermies to
those that are u_sed in ISR systems [SMIT 84]. The CODER system has adopted a frame-based
KR scheme to represent document, vser and query knowledge. Frame-based systems are used to
model entities where each entity is defined by a set of atiributes called slots. A complex lattice
structure defining the frame hierarchy may be found in a frame-based sysiem. The standard te:-
minology, methods and goals of generic fraﬁe-based svsitems [FIKE 85 HAYE 85, MINS 1] also

apply to the CODER frame system.

During the past decade, a variety of frame-based languages have been developed. Such languages
have included KANDOR [PATE 84a, 84b], KRL (Knowledge Representation Language) [BOBR
77], KL-ONE [BRAC 85], Krypton [BRAC 83, PIGM 84|, KEE (Knowledge Engineering Envi-
ronment) [NADO 87], and the languages in the CYC [LENA 86] and TOPIC [HAHN 86] systems.
several of the frame language developers have worked on more than one of the aforementioned

languages, and commonalities among the languages may be found.

Review of Related Literature 14

Many of the concepts in the CODER knowledge administration complex have roots in the
Krypton, KRL and K1-ONE representation schemes. For example, Krypton’s separation of two
representation languages, a terminological one called Thox and an assertional one termed Abox
[BRAC 83, PIGM 84} are parallelled by CODER’s segregation of Type Managers and Object
Managers for processing frame definitions and instantiations respectively. .The taxonomical struc-
ture of frames and strict inheritance found in KL-ONE and Krypton also exist in CODER. Most
of the frame representation languages have been developed using some version of LISP, although
frame-based languages written in PROLOG, like CODER, are beginning to appear [LEE 86, HUU
86]. One notable difference among the frame-based languages is their treatment of default values

INADO 87].

TOPIC [HAHN 86} and ARGON [PATE 84a, PATE 84b] are two knowledge-based text retrieval
systems that use frame representation schemes. Like CODER, they have incorporated concepts
from earlier frame systems; moreover, the representational structures of the frame languages used
carry over into the ISR systems and influence their appearance and functioning. The frame system
used in CODER is also evident in the capabilities of the system. Similarly, the blackboard archi-

tecture described in the next section influences the CODER system’s functions.

2.3 Blackboard Architectures

In distributed systems, “blackboards” provide a central location for storage of messages passed
among system modules. In addition, scheduling heuristics and control are centrally located within
the blackboard architecture. The first blackboard system, the HEARSAY-II specch understanding
system, was developed between 197! and 1976 [ERMA 80]. Blackboard architeciures since then
have been adopted not only for ISR systems, but for varied scientific and problem-solving appli-

cations: in the HASP system for ocean surveillance {NII 82]; in CRYSALIS for use by protein

Review of Related Literature 15

crystallographers [TERR 83); in TRICER_O to monitor airspace [WILL, 84]; in OPM to simulate
human cognitive processes in planning [HAYE 79]; and in CODER, IR [CROF 87] and
CANSEARCH [POLL 87] for information retrieval. Other blackboard systems, for example BB
[GARYV 87, HAYE 84, JOHN 87|, attempt to learn about their own behavior. Most of the fun-
damental concepts developed for the HEARSAY-II system are found in current blackboard sys-
tems. A comprehensive review of the framework of blackboard systems and the evolution of

blackboard architectures can be found in [NII 86a, 86b].

Corkill reviewed issues of flexibility, efficiency and generality in blackboard architectures [CORK
87). The GBB {Generic Biackboard) model that Corkill presents has implemented blackboard ab-
straction concepts in greater detail than is found in the CODER blackboard. Additionaily, the
ability 1o change the blackboard implementation without modifying knowledge sources is empha-
sized. Experiments with HEARSAY-II [ERMA 80 and DVMT (Distributed Vehicie Monitoring

Testbed) [LESS 83] have demonstrated that the efficiency of the blackboard implementation has a
significant effect where the interaction/computation ratio of expert modules is high. Currently in
the CODER system, that ratio is low; however, as the retrieval subsystem becomes more fully dé-

veloped, Corkill’s conclusion may be tested in the CODER systermn as well.

Of the three blackboard characterizations presented by Corkill [CORK 87}, the wunstructured
blackboard, the general-purpose kernel and the customized kernel, the CODER system most closely
models a general-purpose kemnel. When an unstructured blackboard exists, each module must
worry about the entire retrieval process, selecting and maintaining appropriate messages contained
in lists on the blackboard. At the other extreme, specialized mechanisms calied kernels filter
blackboard objects per module based on the application of the system to make module processing
more efficient. However, changes to the system may also require changes to the blackboard struc-
ture when customized kernels are employed. As in a general-purpose kernel blackboard, the
CODER blackboard “supports blackboard object retrieval based on the astributes of the objects”

and “the application implementers retrieve objects by writing queries in the retrieval language.” The

Review of Related Literature 16

blackboard object retrieval language used in the CODER system is described in Chapter 4, section

4.2.1.

Examinations of control strategies for distributed expert systems are also relevant to the CODER
project. Control issues for conflict resolution in rule-based systems such as ORBS (Oregon Rule-
Based System) are discussed by Fickas [FICK 85]. Agenda-based control strategies in ORBS are
similar to those in the CODER strategist. However, neither automation of the strategy con-
struction process nor dynamic alteration of scheduling rules exist in the CODER strategist. At a
recent conference on Distributed Artificial Intelligence {DAI) systems, one of the roundtable dis-
cussions focused on issues of communication and control between agents [SRID 87). Standard
functions required by agents were suggested: Inform, Request to Do, Reguest to Send, Command,
Reply, Acknowledge and No-acknowledge, Offer, Agree, Refuse,l Accept, Bid and Propose. In
addition, resource availability combined with the limitations on resource utilization was considered

one of the most crucial concerns for designers of DAI systems.

Belkin et al. also discuss issues of control for distributed expert information systems [BELK 83, 84].
Based on their model of intelligent functions in an information retrieval system, they conclude that
“a blackboard communication structure with modified distributed control seems optimum for sys-
tem mmplementation.” Comparing Belkin’s work 1o Pollitt’s CANSEARCH system, Sparck-Jones
contends that “building the all-singing, all-dancing expert intermediary is a major enterprise.”

[SPAR 87). Moreover, she suggests that control is a major problem with distributed systems.

2.4 Intelligent Information Retrieval Functions

One of the primary goals of the CODER system, as with any information retrieval system, 1s to

create a representation of the user’s problematic situation. Through observation and moniioring

Review of Related Literature 17

of human-computer interactions and user-intermediary dialogues, researchers have characterized the
functions required in an intelligent information retrieval system. Early work identified 29 search
tactics, moves made to further a search, and 17 idea factics which foster new ideas or solutions io

problems in information searching [BATE 79a, 79bl.

Five years later, Belkin et al. introduced the concept of an information provision mechanism (IPM)
[BELK 83, 84|, the combination of the search intermediary and knowledge resource elements of
an information systern. They identified 10 functions of the IPM: problem state, problem mode,
user model, problem description, dialogue model, relevant world builder, response generator, input
analyst, output generator and explanation. These functions were specified in the MONSTRAT
Model. Discourse analysis and observations of interactions between users and search intermediaries
supported the previously derived functions [BELK 88, DANI 85] and led to identification of
subgoals of those functions, Further research, also at the University of London, elaborated on the
MONSTRAT model and its incorporation into the PLEXUS expert system for referral JBROO
85, 87, VICK 87). Ina counter-proposal, Borgman suggests that “the generality of the model is
both its virtue and its weakness,” IBORG 87b]. She recommends that the broadness of the model
be narrowed based on the domain of users and the domain of questions in the information system.
The CODER retrieval subsystem has incorporated many of the ideas found in the aforementioned

research (see Chapter 4),

One of the \/IO\'STRAT model’s ten functions, the user model, has r.,c=ned much attention re-
centi} Borgman concludes that the user analysis tasks will offer the greatest challenge in the design
of sophisticated information retrieval systers [BORG 87b]. Her research includes studies 1o assess
the significance of a user’s academic major as a variable that indicates information retrieval aptitude
[BORG 86, 87a]. Daniels has augmented the user modeling function definition, identifying sub{-
unctions as status, goals, background and expenience, state of knowledge, and familiarity with IR
systems [IDANI 85, 86b]. Moreover, she concludes that a frame-type representation for the user
modelling subfunctions is most appropriate. User model frames in the CODER system have been

modelled after Daniel’s subfunctions.

Review of Related Literature i8

Study of cognitive models, the views that users have of themselves, cthers, the system and vice versa,
have been suggested as an aid to developing user models [DANI 86a, CHEN 87]. The importance
of the user interface and the variability of its use and effectiveness for different groups of users has
also been examined {INORM 86, HOLC 85, TAGU 87, EGAN 87). Research regarding the ac-
quisition of implicit and explicit data about users has been incorporated into CODER [RICH 79,
LOGA 86, FENI 81, BRAJ 87, KASS 87].

In conclusion, an abundance of literature has been collected and a broad spectrum of hypotheses
and heuristics from that literature cag be found throughout the CODER retrieval subsystem.
Particularly, the work of Belkin, Borgman, Brooks and Daniels has been incorporated inio the
problem mode/state/description and user mode] modules; ideas from the frame languages developed
by Bobrow, Brachman and Winograd are evident in the knowledge adminstration complex; Penny
Nii’s review of blackboard architectures provided valuable guidance during the development of the
blackboard/strategist complex; and reports by Tong, Croft and Thompson regarding the develop-
ment of the RUBRIC and IR systems allowed comparison and contrast between CODER and
other distributed ISR systems. The contributions from these and other researchers are gratefully

acknowledged.

Review of Related Literature : 19

3.0 Methods

Our amazing industrigl development kas been made possible
by the vast accumulation of scientific knowledge and technical
know-how, every single item of whick is a resuir of someone's
observing, thinking, and experimenting, that is, of research,
~-Ebenezer E. Reid

This chapter describes the tools and methods emploved 10 construct the CODER retrieval subsys-
tem. Its secondary objective is to provide a micro-level view of the programraing implementation
of an intelligent IR system. First, the computer systems and programming languages used are dis-
cussed. Delineation of files, directory structures and databases 1s included. Second, cormuni-
cations and configuration issues not covered by a previous Master’s project |APTE 87a] are
presented. Finally, the process of implementing modules and integrating them with CODER’s

blackboard architecture is reported.

3.1 Systems and Programming

The CODER system is structured as a group of communicating objects running under UNIX™.
using the TCP/IP protoco) [LEFF 84]. Inferential modules are written in MU-Prolog; non-

inferential programs are coded in C.

Metheds 20

3.1.1 Operating System

The retrieval subsystem consists of a set of modules distributed around a blackboard/strategist
complex. Modules communicate with the blackboard, and thereby with one another, via message
passing using the client/server model [COFF 87]. UNIX-based systems ofien provide a protocol,
TCP/IP, to support the client-servgr model; moreover a rich, produ.ctive programming environ-
ment has earned UNIX a reputation for its programmer-friendiiness. Because it is written in C, the
UNIX operating system is highly portable and easy to modify per particular system requirements

[KERN 84],

The availability of severai computers running UNIX operating systems supported the choice of
UNIX as the operational environment for CODER. The majority of the system has been devei-
oped on a DEC YAX 11/785 running ULTRIX-32™ Version 2.0, a variant of 4.2 BSD UNIX.
Early system modules, inciuding the first CODER prototype, were programmed and tested on a
SUN™ workstation, also running 4.2 BSD UNIX. Presently, the entire system resides on the VAX
11/785. Future versions of CODER running on an Apple Macintosh II™, also using TCP/IP,

have been proposed.

3.1.2 Programming Languages

Research using an artificial intelligence environment as a testbed for ISR systems suggests that
programs exhibiting some kind of intelligent behavior will be included in the system to model some
of the functions of a professional search intermediary. Al programming languages have been de-

veloped 1o support and test Al concepts, such as mampulatzon of arbitrary symbols, hst-proce$si11g
and pattern matching. At present, the two most widely used Al languages are the functional lan-

guage LISP and Prolog (PROgramming LOGic), a language based on first-order predicate calculus,

Methods 21

Invented by John McCarthy in 1958, LISP has been in existence longer than Prolog which was
conceived by R. Kowalski at Edinburg in the early 70's. Although LISP is more prevalent in the
United States, Prolog is more widely used in European countries. Furthermore, the J apanese have
targeted Prolog as the language of their fifth generation computers [SIMO 83, MARB 85]. Dialects
of both languages, including versions supporting compilation and/or concurrent programming, have
evolved [DEER 85]. Since Prolog and C are used extensively in CODER, more specifics are given

in the following sections.

3.1.2.1 Prolog

During the design phase of the CODER system, Prolog was selected as the language for coding of

inferential modules. Several factors influenced this decision:

* The Al language used had to be capable of searching large databases within an aceceptable pe-
rod of time. A version of Prolog running under UNIX, MU-Prolog, includes extensions to

handie large databases [NAIS §5].

* Availability of the C source code for the MU-Prolog interpreter allowed necessary in-house

modifications to the interpreter.

* List-processing and pattern matching abilities suggested that Prolog would be more apprepr-

ate for natural language processing.

¢ Prolog is especially suited for problems that involve objects, particulary structured objects, and

the relations between them [BRAT 86}

*

Prolog clauses are similar to rules; therefore, rule-based programming style is encouraged,

Methods 22

* The CODER designers’ affinity for Prolog also influenced the language selection Process.

Software Engineering Considerations: Use of Prolog as the primary language for module develop-
ment allowed rapid prototyping of modules and easy inclusion of rules to simulate mntelligent
functioning. A directory of over 100 common Prolog utilities was established (see Appendix A).
Some were written during the course of this research; most were adapted from public domain i-
braries made available through Projog Digest, an electronic mail digest, or from the growing supply
of Prolog textbooks [CLOC 84, BRAT 86, STER 86, SCHN 87]. Minor modifications were re-

quired so that utilities written for other versions of Prolog would run under MU-Prolog.

Only one program documentation standard for CODER's Prolog programs has been adopted. All
Prolog modules foliow a standard for identifying the status and placement of predicafe arpuments.

The standard, published by John Cugini in Prolog Digest [CUGI 86], appears in Appendix B.

Since all retrieval subsystem modules have been written and/or incorporated into CODER as part
of this research, modules currently contain identically structured program heading documentation
as well as similarly styled comments preceding predicate definitions. Rules for programming stvle
and technique, suggested by Ivan Bratko in “Prolog Programming for Anificial Intelbigence”
[BRAT 86} have been foliowed. For example, program layout, spacing, mndentation, clustering and
ordering of clauses, appropriate use of comments and IMNemonic naming conventions are consist-
ent. Program clauses and procedures have been kept short. Care has also been taken to fimit use
of Prolog operators which are inefficient such as if-then-else, assert and retract and 1o avoid oper-

ators like cut and not which may produce unpredictable resuits.

Obstacles: The use of Prolog as CODER’s Al language has not been without obstacles. Some

of the difficulties encountered and resolved {ollow.

¢ Implementation of MU-Prolog external databases proved 1o be cumbersome and inefficient.

Lack of documentation from the developers, incorrect documentation and difficulty assigning

Methods 23

proper masks for superimposed coding of index arguments [RAMA 85} resulted in poor re-
sponse times when external databases were accessed. A new version of MU-Prolog,
NU-Prolog [THOM 87b], has improved external database facilities as well as the ability to

compile Prolog programs.

¢ Host memory limitations prevented execution of CODER when more than approximately 10
Prolog processes were running concurrently. Two separate versions of MU-Prolog, a “small”
and a “big”, have been created [DATT 87). Prolog-s contains a goal stack length of 75K and
includes none of the external database facilitics. The normal MU-‘Prolog contains & goal stack
length of 500K and all database facilities. Prolog-b includes the external database facilities, but
has a reduced goal stack size of 200K. Most of the CODER modules are small and can be
processed with prolog-s. Prolog-b is required for modules such as the lexical expert which use
the external database facilities. Predicates developed for message passing between CODER
modules have been built into the prolog-s and prolog-b versions; thus, the DLOAD dynamic

loading facility could be removed, further reducing memory requirements.

¢ String length limitations required further modifications to the Prolog interpreter. Frequently,
messages passed by modules to and from the blackboard contain Prolog arguments which ex-

ceed the 199 character upper bound. String length has been increased to 32000 characters.

* Lack of floating point arithmetic in the selected version of MU-Prolog prevented computation
of query-document similarity values in the range {0,1} when p-norm searching, a “softer” form
of Boolean searching [FOXE 83a), was used. Floating point routines have been added to the
MU-Prolog interpreter IDATT 87]; in addition, the forthcoming version of NU-Prolog is
reported to contain floating point arithmetic, Incorporation of floating point routines required
other modifications to modules. Dotted pairs, such as {A.B) used for frame and relation
identification assignment, had to be rewritten as single items or as lists to avoid misinterpreta-

tion of the pair as a whole number, A, with decimal digits, B.

Methods 24

® Restrictions on the number of atorns aliowed in the Prolog dictionary required modifications
to large Prolog fact bases such as those associated with the Collins Dictionary of the English
Language or the Handbook of Artificial Intelligence. Atoms, enclosed in single quotes, had

to be replaced by character strings denoted by double quotes.

¢ Lack of compilation facilities for M{f—Prolog requires reconsulting of each Prolog module ev-
ery time the CODER retrieval subsystemn was started. Although start-up as well as execution
times are highly dependent on other system load factors, start-up frequently required over 5
minutes. Use of MU-Prolog’s built-in save predicate, which stores an image of a Prolog state,
reduced start-up time to less than 1 minute. However, several disadvantages arise from use of
the save predicate: additional storage capacity s required to store the Prolog save states (from
1K to 4K per module}, and modifications made to Prolog moduies are not operational until
modules are reconsulted and saved again. Compilation of Prolog modules would eliminate the
need to use Prolog save states or to consult modules during start-up. The new MU-Proiog
version, NU-Prolog, provides a compilation facility. Upgrading MU-Prolog to NU-Prolog
should result in even lower start-up time, significant speed increases and elimination of the

need to store Proiog save states,

* Prolog’s treatment of special characrers such as periods and single quotes demands extra
processing for passed messages. Special characters passed between Prolog and C modules are
converled so that data is processed and displayed properly. For example, single quotes within

Prolog strings are passed as carats and are converted by the C resource managers.

* As an interpreted language, MU-Prolog is inherently slow when searching Jarge local fac;t bases.
A system-defined predicate, clindex, allows a group of static facts with the same functor to be
indexed by a given argument. Based on some simple performance tests coinparing search re-
sponse times with and without the clindex clause, all CODER static iocal fact bases with over

20 facts are indexed with the clindex predicate to speed searching during computation.

Methods 25

3.1.2.2 The C Programming Language

Where modules are not required to exhibit intelligence, that ié, to reason inferentially, the C pro-
gramming language has been used.! Like UNIX, C is highly portable. Furthermore, “its absence
of restrictions and its generality make it more convenient and effective for many tasks than sup-
posedly more powerful languages.” [KERN 78]. Because the C programming language was ori-
ginally written for the UNIX operating system, C programs execute efficiently under UNIX and

can easily access standard UNIX routines which are also written in C,

CODER'’s resource managers have been developed using C. Resource managers include the user
interface manager and managers to extract text from the HAI and the document collection. Com-
munications routines and modifications to the Prolog interpreter have naturally been coded in C
also. Thus, the entire retrieval subsystem has been programmed vsing MU-Prolog, C, and UNIX

shell commands. The location of CODER'’s program source code is discussed in the next section.

3.1.3 Directories, Files and Databases

Directories: The majority of the programs and files used by the CODER retrieval subsystem reside
in user directory ~coder. Other directories include the ~muprolog direciory for Prolog interpreter
files and programs, the [tmp directory used during CODER execution for storage of all temporary

files, and the ~isr directory which stores the lexicon facts derived from the Collins dictionary.

As 1llustrated in Figure 3 the coder directory may be viewed as having two distinct levels. One level
contains all program and data files. The programs and data in the subdirectories at this level may

or may not be used during a retrieval session. Programs at this level may exist for prnting/auditing

! Although the original design of CODER suggested that the C+ + language be used, non-inferential
modules have been coded in standard C.

Methods : 26

5r) - s8jlj eieq
012 - 59yl weiboly
SVIOL

/861 ‘1aqiuadag] jo se aie
say pug swieiboud jo siaquuny

B OR OB OB oW o m w N W M R M OM W R W e e ek mow oW oM M M M M WM OMIOE W W Nt e e om e o o= ow =

wbd pz

pases

_

whd 2y

LR PN Y

~—

[]

g Liopan waslsqng sy ﬁ_QQU £ amdig

Efep 2 .
wid p . . shof 2
tq . a&[

Coamooss
2z

4-1-;--,,,:,4,4-,h;-ur¢f¢frrr;«:,-r,----;e;

Bep g | [EIEP 6 1501 + | [ETEP 90T EEpZ | [BlEPY | [_ _
wbd g wbd 9 wid g wbd g whd py bd g wibd ¢ wsip og|. Lo o4 Jrwewr py| | wbd g
YT :
j2alqo add; ixa) iBapxaj jBi dojupn| tiapown} [Aejdsp 1010} nuaw 2p03
i ’
— BIEp] : BIEp]
ubd poy whd g}’ wibd G witkd ¢ witid z
*Enwto:x_ LN sjUnuit03°2 _mmto._au_ _ iasn _ LT yoreas| _.‘DJ psiud

lapoo~

Methods

of CODER files or for the creation of ancillary files such as those containing frame definitions.
The other ievel of the directory structure contains execution modules and files. Many of the mod-
ules at this Ievel use program components and/or data from the aforementioned level. Configura-
tion files, run-time checking, execution modules and logged run-time output are stored in the
execution directories. Following is a slightly more detailed synopsis of the CODER. subdirectories

and their contents.

Program and Data Subdirectories: To simplify testing of modules, subdirectories have been created
to store both the programs and data that support specific functions in the CODER systern; for

example, all programs and fact bases which support the problem mode/state/description module

are stored in the pmsd subdirectory. In total, 190 files, including the 100 program files in the Prolog

utilities Library, contain program source code for both Prolog and C modules. Approximately 20
files contain prog:ram object code used when linking C modules. Due to software engineering
considerations which led to modular development of source code, the number of files containing
object and source code is far greater than the number of CODER modules: multiple objects may
be linked to form an executable C modele, and Prolog modules consult multiple files. Approxi-
mately 145 data files contain Prolog fact bases, textual data or iogged data, and another 100 files
contain menus, tutorials and files containing Information to be displayed to the user. Statistics re-

garding the sizes of the modules are provided in Chapter 5, section 5.1.2.

bbstrat This directory contains the blackboard module and all components of the strategist in-

cluding its scheduling rules.

browse The browse directory is divided into three subdirectories: lexicon, hai and text. The
subdirectories contain most of the programs, facts and text files needed to browse the
Collins Dictionary of the English Language, the HAI and the documents in the col-
lection being searched. These subdirectories are the largest in the CODER retrieval

system. For example, the hai subdirectory consists of 106 files containing the 3,984K

Methods 23

bytes of HAI text, and 10 files consisting of 293K bytes of Prolog facts representing key
termns and relationships in the HAL The majority of the lexicon facts, used in other
research projects as well as in CODER, are stored in a user directory called isr. How-
ever, programs and facts used only by CODER for browsing the dictionary are stored

in the lexicon subdirectory of the browse directory.

c.communic Special subroutines and files are required to create C programs which can communicate

10

with the rest of the CODER system via the message passing functions built into special
versions of MU-Prolog. Generic versions of those subroutines and files are stored in

the c.communic directory.

This directory contains programs and data used for mput/output between the user

" interface manager and the rest of the CODER system. Its four subdirectories contain

menu files, tutorial (help) files, display files and program code for the mput analyst and

report modules. The 10 directory and its subdirectories contain nearly 109 files.

know_adm The knowledge administration direciory consists of the programs and files used to define

pmsd

search

user

Methods

the knowledge representation types used in the CODER system. Subdirectories for type
and eohject managers, discussed in more detail in section 4.2.2, reside in this directory.
The type definition files, with the exception of those defining user frames, can be found

in the type subdirectory.

The problem mode/state/description directory contains the programs and faci bases

needed by the problem description module.

The p-norm, vector and boolcan search routines as well as the query formulation

module reside in this directory.

The user directory contains two subdirectores: one to support the user modeling

function and another containing the files and code needed by the user interface manager.

UTIL -

The buffer file for saving browsed terms to be used during query formulation and the

prompt file, both used by the user interface, reside in the user interface subdirectory.

This directory contains over 100 commonly used Prolog utilities.

Execution: Programs, files and shell scripts needed o run the retrieval subsystem are in the

~codet/run directory.

bin

log

SCrvers

Methods

This directory contamns the UNIX shell script code needed to execute the CODER
system. Files used to determine which modules are to be included and the hosts on

which they reside are found here.

When the retrieval subsystem is started, output from each module 1s directed to the log
directory; therefore, this directory contains one file per CODER module. Files are as-
signed the same names as the modules whose ouiput they contain; for example, the
umeode] file in the log directory contains all iogged output from the user modeling
module. Files in this directory should be reviewed periodically by the CODER system
administrator since system run-time warning messages and/or error diagnostics will ap-
pear here. These files are an invaluable aid during testing and debugging of integrated _

system modules.

Object code for C programs and MU-Prolog modules to be consuited during start_up
currently reside in this directory. Standardized location of all Prolog and C modules
greatly simplifies system start-up. A subdirectory within servers, saved, contains the
Prolog save states for any modules which have been saved. Thus, the modules in the

server directory may contain any one of the following:

1. Dynamic segments of Prolog code to be reconsulted. More stable portions of code

may be saved in a save state to speed loading of the module during system start-up.

30

For example, tested segments of code may be loaded from a save state while newly
developed code may be reconsulted during each system start-up so that as changes
are applied, the full module does not have to Se reconsulted. This option simplifies
testing during development stages when code is frequently modified. Note that
when the map file (see section 3.2.2) indicates that a Prolog save state is to be used,
the save state is loaded and any code in the module’s entry in the servers subdi-

rectory is reconsulted.

2. All Prolog code, but no fact bases as facts may be saved in the save state. For
example, the files containing the Prolog facts representing the contents of the
Handbook of Artificial Intelligence are saved in a save state while the code for the

expert which accesses the facts is reconsulted during system start-up.

3. All Prolog code and all fact bases, since a saved version of each module is not
mandatory. When modules and their cerresponding fact bases are relatively small,

use of a save state is not necessary.

Fuli program code for CODER modules always resides in the appropriate directory at
the previously described program and data level. Implementation of NU-Prolog’s
compilation facilities will make the saved directory unnecessary; instead, object versions

of all modules will reside in the servers directory.

Files: The data files used by the CODER retrieval subsystem contain Prolog fact bases, textual data,
menus, tutorials and other information to be displaved by the user interface manager. Prolog fact
bases will be detailed in later sections. However, design and use of the files used by modules to send
data to the nser merit additional explanation. Menu, tutorial, prompt and display files will be dis-

cussed briefly in this section,

Methods 31

Many of the files are needed by the user interface manager which has purposely been designed as
an unintelligent resource manager; its callable functions have no awareness of the CODER system
and its modules. Rather, the user interface accepls commands from the report module to display

prompts, menus, messages or other files. It performs the function requested, may optionally send

a user response to the input analyst and then waits to receive the next command issued to it This

design, depicted in Figure 4 has mandated standardization of menus and prompts to be issued by

the user interface manager.

Menus: The initial version of CODER relies heavily on menu-driven processing, largely as a result
of its unsophisticated user interface. When modules require that the user select one of a given
number of options, the module may request that a menu be displayed. The request is initiated by
posting the disp_menu hypothesis along with the menu name 1o the blackboard. Each menu is
stored in a separate file in the menu subdirectory. All menu file names are prefixed by “ui_menu’

and adhere to the format shown in Figure 5,

For each menu requested, the “options” appear in the designated window; the user may be in-
structed to scroll forward to view options that do not fit in the window requested. Following user
selection of an option, the “predicate_to_issue” is passed from the user interface manager to the
“module_to_receive_response.” Currently, all user responses are sent 1o the input apalyst (ia)
module. However, this parameter is provided for expernimentation with future versions of CODER
which could allow userrrssponses to bypass the input analyst, and instead be sent directly to ap-
propriate modules. A sample menu file appears 1n Figure 6. Eight options are listed under the
heading Browse Related Subjects. When the user selects one of the options, the user interface
manager sends the predicate listed at the end of the option line to the module Lsted, in this case the
input analyst {ia). For example, if the user chooses option 3, the input analvst receives the
hai__req(ﬁnd_hierarchy) predicate, converts it to an internal system form and posts it to the black-
board. The first five options are posted as requests to search the Handbook of Artificial Intelligence

using the given subject relations; the last three options result in display of previous menus.

Methods 32

Input
/ Analyst \

L3
remmna & '
i

- e om o mom om o w

. X
L e e m - -
' Blackboard/ | Knowledge |
v Strategist X \ Administration |
]
]

LI TR -

Report
Generator

cther
modules

Figure 4. Generic User Interface

User Interface
Manager

Iviethods

33

“Menu header”

Number_of_options

[“1. Option 17, module_to_receive_response, predicate_to_issue]

["2. Option 2, module_to_receive_response, predicate_to_issue]

[”3. Option 37, module_to_receive_response, predicate_to_issue]

{“4. Option 47, module_to_receive_response, predicate_to_issue]
efc.

Figure 5. Menu File Format

Methods 34

"Browse Related Subjects”

8

[* 1. Broader Topic”, ia, hai_req(get_supertopics). |

[” 2. Subtopics”, ia, hai_req(get_subtopics).]

[” 3. TOC Hierarchy”, ia, hai_req(find_hierarchy),]

[“ 4. For Italicized Entry”, ia, hai_req(get_italics_span). |

[” 5. For Index Entry”, 1a, hai_req(get_rel_subj). |

[6. Retumn to HAI Browse Menu”, ia, menu(ui_menu_hai).]
[7 7.

[8.

s

Return to Browse Menu”, ia, menu(ui_menu_browse).]
“ 8. Return to Main Menu”, ia, menu(vi_menu_main}. }

Figure 6, Sample Menu File

Methods

The disp_menu(X) hypothesis posted on the blackboard causes the strategist to schedule a task for
the report module. The report module “asks’ the user interface to display the indicated menu to the
user. When an option is seiected, the “predicate_to_issue” is channelled to the input analyst where
it is converted to an appropriate hypothesis to be posted to a blackboard arca. Following posting
to the blackboard, the strategist dispatches the expert(s) capable of processing the menu option

selected.

Prompts: Unlike menus, afl prompts are stored in a single file called prompts.dat in the
~coder/user/uinterface subdirectory. The location of certain prompt number ranges on the prompt
file is critical as ranges may be stored in facts used by the input analyst to determine how to post
user responses to the blackboard. For example, prompts numbered 150-200 are assumed to be
responses 1o user modeling questions while prompts between 100 and 150 are channelled to the
probiem description module. Specific prompt numbers are aiso used by the input analyst module.
For example, prompt 50 identifies user entry of a NISO command; prompt 51 identifies user entry
of a term for lexicon browsing. Certainly, prompts may be modified, added or deleted; however,
the person implementing such changes must be aware of the impact on other modules in the sys-

tem.

Prompt numbers are &lso used by modules to associate user responses to questions. For example,
when the user moaeimg expert is scheduled to process the message from the input analyst mdlca’fmg
that the user’s response to prompt 153 “Have you ever used a computer?” was 'y, its local fact base

tells it that this response will fill the frame slot called usedcomp in the user knowledge frame.

The current user interface requires that prompts be ordered by prompt number. Lines beginning
with an asterisk, "*’, represent comments, while fines beginning with the '@’ sign indicate the start
of the prompt string to be displayed. Foliowing the prompt string, the number of valid options

and those options, if any, appear. Figure 7 contains a portion of the prompt file.

Methods 36

* prompt 153 is for user knowledge frame
@ Have you ever used a computer? (y/n)

y
n

yes
no

* prompt 154 is for user knowledge frame
@ Have you taken any Computer Science courses? (y/m)
4

B

c8
Q

=]

* prompt 155 is for user knowledge frame
@ Have you taken any Information Storage & Retrieval courses? {v/n)
4 .

y
n

yes
no

* prompt 156 is for user knowledge frame
@ Are you familiar with Boolean logic? (y/n)

8% h

B

O

Figure 7. Sample Portion of the Prompt File

Methods

37

It 15 recommended that future versions of the user interface simplify prompt processing by adding
parameters similar to those found in menu files. That is, the name of the module to receive the

prompt response and the predicate to be posted should be attached 1o each prompt.

Display and Tutorial Files: Files to be displayed to the user reside in the ~goder/I0/display subdi-
rectory. These files, for example the CODER welcome and exit files, are unstructured and may
contain any type of data. Similarly, the CODER help files in ~coder/IO/tutor do not follow a
homogeneous format. Display of tutorial/help files may be activated when ihe user chooses the
Tutorials option from the main menu, or when the user enters the help command at any point

during the retrieval session.

Databases: Several existing databases also aided the development of the retrieval subsystem.

1. The Collins Dictionary of the English Language containing roughly 85,000 headword entries
has been provided in machine readable form. Lexical entries were analyzed and converted into
Prolog facts; twenty-one Prolog relations have been extracted [WOHL 86]. The lexicon is
availabie to the user for browsing and is also used for query term. expansion. When natural
language query processing is added, the lexicon will be used for morphological, syntactical and

semantic analysis.

2. The staff of the SUMEX project at the Stanford University Medical Center has provided the
machine readable version of the Handbook of Artificial Intelligence. The three volumes of taxt
were analyzed and Prolog facts containing key terms, phrases and names with references to text
passages were created [WENB 86]. The HAI is presently used only for browsing. However,

domain knowledge provided by the HAI may eventuaily be used to expand user queries.

3. AlList Digest issues have been collected and stosed at Virignia Tech. An archive of 1ssues,

from the digest’s inception in April 1983 until present, contains approximately 8000 messages.

Methods 38

The raw text, an inverted index of terms and a database of frames and relations generated by

the CODER analysis subsystem form CODER'’s document database.

4. 'The User Model database will consist of a set of frames and reations for each user of the
CODER system. The frames contain information about the user acquired both explicitly and
implicitly. The user modeling module uses the i{now]edge administration complex to build and
maintain user frames and relations. This database will be constructed and expanded as the
CODER retrieval system is used. The information contained within will enable evaluation of
system effectiveness and efficiency and will allow the system to tailor its processhlg to individ-

ual users.

3.2 Communications and Configuration

Programming of most of CODER’s communications predicates and routines was completed in
June 1987 as part of a Master’s project entitled “Communication in the CODER System” [APTE
87a]. Although an abbreviated overview of the communications layer supporting CODER will be
provided, this section will not rediscuss sockets, TCP/IP, deadlock handling or the C functions used
to provide prolog-to-prolog message passing within the CODER system. Rather, it wili describe
enhancements which were made as part of this research: revisions to the communications Dro-
grams, newly developed communications for message passing between C and Projog programs,
start-up and termination of the retrieval subsystem and instructions for modifying the CODER

configuration.

Methods 39

3.2.1 Communications Overview

Given limited machines with limited computational and storage capacities, the number of modules,
the need for real time operation and the amount of knowledge required by the CODER system
present implementation difficulties. Therefore, the communications layer supporting the CODER
system was designed to allow modules to reside on different host computers. Thus, where large
external knowledge bases must be accessed, modules may reside on machines having adequate
storage capacity; inferential modules may execute on machines with sufficient computational
power; and the user interface could reside on a separate workstation with bit-map display capa-

bilities,

Modules written in either Prolog or C can communicate with any other CODER module on the
same host or on a connected host supporting TCP/IP. The location of each module is transparent
to CODER implementors as well as to the user. During system start-up and execution, a map file
is consulied 1o determine the location of modules. The type of module, Prolog or C, is also indi-

cated on the map file.

The client-server model allows asymetric cormunication between CODER modules. For example,
all inferential modules act as servers, waiting for messages from the blackboard/strategist indicating
actions 1o be taken. - Modules also act as clients by sending messages to resource managers or 10
the blackboard/strategist. Queuing of messages to servers aliows concurrent requests to modules -

or requests to modules engaged in previously scheduled tasks.

In order to pass messages between ir,ferential_moduies, several predicates have been built inio the
MU-Prolog interpreters, prolog-s and prolog-b. The starr_service and stop_service calls, required
for initiation and termination of sockets, are used during the stari-up and termination of the system.
The reply and receive functions, transparent to moduie implémentors, are used in conjunction with

the ask predicate, the primary vehicle for communication among Prolog modules. When the

Methods 40

CODER system is configured, all servers enter a loop in which they repeatedly receive clauses,

prove those clauses and reply back to the module which issued the ask.

The ask predicate is coded into the Prolog modules as:
ask(Module,Clause).

where Module is the name of any other CODER module for which a socket has been created using
the start_service call, and Clause is any Prolog clause with instantiated and/or unins‘tantiated vari-
ables. The module receiving the clause attempts to prove the clause and to instantiate any unbound
vatables. If all arguments are instantiated, the clausé is returned immediately to the module which
issued tha. ask. When uninstantiated arguments exist, the clause is returned after it is proven and
uninstantiated arguments have been bound. The communications predicates built into the
MU-Prolog versions [APTE 87a] support message passing between Prolog modules. However,
minor enhancemenis to those predicates as well as creation of routines to support communication

between Prolog and C modules were required before the reirieval subsystem could be implemented.

3.2.2 Enhancements

As part of this research, modifications have been applied 1o the CODER map file used to index .
modules according {¢ the hosts on which they reside. Onginelly only Prolog modules were in-
cluded, all modules were assumed to run under standaré MU-Prolog and no Prolog save states were
used. Thus, the old map file contained two fields per inferential module: the name of the module
and the host on which it resides. A third field has been added to allow inclusion of modules writien

in C and to indicate the version of Prolog under which the inferential modules should operate.

The newly added fieid is used only during systern start-up to identify the type of environment to
be vsed for CODER modules. For example, Prolog modules may use either the prolog-s or

protog-b version of MU-Prolog. The code atso indicates whether a Prolog saved state will be used.

Methods 41

All moduies other than the user interface manager are executed in background mode, The added
codes and a sample map file appear in Figure 8. All consulted modules and C module object code
reside in the ~coder/run/servers directory. Where saved states are employed, modules must have

been previously saved using the same version of the interpreter indicated in the map fiie.

Other problems concerning the communications layer resulted in mipor modifications. These

changes are recorded here for the benefit of persons working on future versions of CODER.

¢ The directory structure defined for the first CODER prototype [APTE 87z] executed in Janu-

ary, 1987 has been streamlined. The new structure is described in section 3.1.3.

* System modifications/upgrades to the ULTRIX operating system caused incorrect addressing
of sockets. Such problems, once identified, were easily rectified. Should sockets malfunction

in the future, operating system modifications should be considered as a possible source of error.

* Socket names must be carefully assigned to server modules. Although nearly any name may
be assigned to a UNIX socket, consideration must be given to Prolog’s handling of particular
-names. Sockets onginally called time, name and user had to be renamed. The MU-Prolog

reference manual [NAIS 85] contains a list of Prolog reserved words.

¢ The server looping routines built into the CODER Prolog versions were modified so that
backtracking stacks were not saved when modules loop continuously awaiting clauses to be

proven.

* The server looping routines were further modified to prevent termination of modules which

were asked to process clauses they couid not prove.

In addition to the enhancements made to the existing communications functions, facilities were

created to allow message passing between C and Prolog modules.

Methods 42

Code Language/ Comment

Interpreter
c C resource manager written in C
5 prolog-s consult module using prolog-s
D prolog-s use saved state plus consult using prolog-s
b prolog-b consuit module using prolog-b
q prolog-b use saved state plus consult using prolog-b
f execute C program in foreground

.Sample Map File:
bboard host1

§
strategist hostl s
browse host2 q
lexical host2 q
ia host1 p
report hostl P
know_adm host!1 b
probmsd hostl p
search hostl b
user_interface host1 f
hai_mgr host2 o
gform host] §

Figure 8. Configuration Map File Codes and Sample Map File

Methods

43

3.2.3 Prolog to C Communications

To pass information between Prolog and C modules requires additional C functions. Impiemen-
tation of a C module as a CODER client/server requires extensions to a standard C program. The

tools provided to incorporate a C module into CODER are described in this section.

Four segments of code and a ".h” include file must be copied from the ~coder/c.communic directory
to the working directory to implement a C program as a client/server, those segments of code must
be integrated with the C program being implemented and some must be compiled with parameters

determined by the new C program. The code required includes:

comm_funcs.c TCP/IP communications functions such as servent, protocol, receive and reply;
these functions are used to start the C module socket and to send and receive data
between the C module and Prolog moduies;

Srv_main.c the ‘C’ program driver to be adapted by compiling it with a parameter identifying
the socket name assigned to the module;

SFY_proc.c interprets argument strings and makes function calls, returning previously
uninstantiated variables with values:

C program the ‘C’ program code which includes 21l functions needed;

srv_def.h definitions to be included in srv_main.c, srv_proc.c and the *C’ program.

To integrate the extensions with the C program, code modifications and/or compilations must oc-
cur for each of the four segments of code. Figure 9 contains instructions for adding the commu-

nications extensions to 2 C module. Thers are a few addizional considerations.

* At present, a maximum of 10 arguments is allowed for a function.

¢ Itis best if only 1 argument is uninstantiated.

A sample session testing the resuit of adding the communications extensions to a C moduie appears

in Appendix C.

Methods 44

comm_funcs.c

srv_main.c

srv_proc.c

C program

When all 4 portions of C code have been compiled, they can be linked. ..
cc -0 sockeiname Cprogramname.o STV_main.o SIv_proc.o commi_funes.o (...other objects)

Figure 9, Adding Communications Extensions to C Programs

compile (cc -c comm_funcs.c) OR copy comm_funcs.o into your working
directory.

compile as follows:

ce -c -DSNAME =\"server_name\” srv_main.c
where

DSNAME is set to the name of the socket.
€8, cc-c -DSNAME=\"hai_mgr\" srv_main.c

compile as follows:

cc ¢ -DNBRFCNS =integer srv_proc.c

where

DNBRFCNS indicates the number of callable functions in the C program.
e.g., cc-c-DNBRFCNS=4 srv_proc.c

1. should not have a “main()” routine (main is in srv;maizl.c)
2. should inctude srv_defh
3. should have added to program code, from ~coder/c.communic:

a. srv_table: must make entry for callable functions in PROC...) lines:
the PROC table identifies any functions in the C program which
may be called by other CODER sockets.

b. - srv_hello: must enter socket name in line of code containing
servername = ..,
The hello function is used by the CODER configuration
manager to insure that all modules in the configuration
map file have been properly started.

4. should have callable functions with;
a. function type: static int
b. function arguments defined as type PPTRC (defined in srv_defh)
¢. return of an imeger value indicating the number of arguments

5. should be compiled using: cc -¢ cprogramnarme.c

Methods

45

With development of the communications layer for C and Prolog message passing, nearly all tools
are availabie for integration of CODER modules. The final mechanisms required are the retrieval

system start-up and termination processes.

3.2.4 Configuration, Start-up and Termination

Before executing particular configurations of the CODER system, the map file must be edited. As
discussed earlier, the map file determines the host location and program environment for each
module. Addition of new modules or host relocation of modules may be effected by simpie edits
to the map file. When CODER modules reside on different host computers, the map file must exist
on each host so that the TCP/IP communications programs know where to locate sockets. Pres-

ently, the map file must be manually entered/edited on each host.

In the first CODER prototype, the retrieval system was started using two computer terminals: one
to start modules as background processes and another to send commands to the modules from
Prolog via the ask predicate. To verify that all system modules were ready and had been consulted,
a client connection check was entered for each module from the second terminal until modules re-
sponded as ready. System termination was later performed manually from the second terminal as
well. A UNIX configuration shell script has since been coded to automatically start the system,
execute the retrieval session and terminate the CODER processes, all from one terminal. If mod-
ules reside on different hosts, the host on which the user interface manager resides is the one from

which the configuration shell script must be executed.

To initiate a CODER retrieval session, the config shell in ~coder/run/bin must be executed. Based
on the map file, a Prolog process is created for each server executed in background mode and out-
put from that process is directed to the log directory. C modules other than the user interface

manager are also started in background mode. Next, a Prolog program uses the map file to deter-

Methods 46

mine when all modules have been consulted. This step 1s necessary because user entries via the user
interface manager cannot be properly processed until Prolog modules are ready to accept messages
from other modules. When all Prolog modules are ready, the user interface begins execution in the
foreground by displaying the CODER welcome. At the same time that the welcome is displayed,
the system establishes the system state as welcome and awaits the state transition welcome_done,

The retreval session is now underway.

When the user has finished the retrieval session, a final display file will appear, thanking the user.
After display of the exit file, the user interface manager will use the map file to send the stop_service
message 1o all other modules. The user interface then exits, terminating its own execution. Finally,
all temporary files created during the retrieval session are deleted. The CODER retreval session

is ended.

3.3 Module Development and Integration

‘The tools discussed thus far have included the operating system, programming languages, files and
communications functions. Before development and integration of other modules could proceed,
the knowledge adminstration (KA) complex had to be coded. The KA programs support ihe cre-
ation of elementary data types, frames and relations [WEAY 86c] and are described in Chapter 4,
section 4.2.2. These programs were required early in the CODER development so that modules
could build and maintain knowledge bases of frames and relations. Following implementation of
the knowledge administration compilex, other modules were developed, tested and integrated with

the rest of the CODER systern.

Methods 47

3.3.1 Development and Testing

Both Prolog and C modules were first developed and tested as stand-alone programs. In Prolog
- modules, the ask was simulated by using standard MU-Prolog which does not include the built-in
ask predicate. The ask predicate cannot be simulated using prolog-s or prolog-b because as a
built-in predicate it is protected by the interpreter and cannot be redefined. By including the
module asked with other consulted files, the ask could be simulated as follows:

ask{ Module,Clause) -
Clause.

For example, when developing the report module, calls to the user interface manager could be

 simulated by including the above predicate and a few lines of additional code to simulate the win-

dow predicate issued by the report module to the user interface manager. Figure 10 contains an

example of code that could be used to simulate the integration of the user izlterface manager With

the report module. Clauses to be proven by the blackboard, for example
ask(bboard,post_hyppothesis(|. Fact,Conf,Hyp,Expert,Depend] ,Avea)),

were also simulated. C programs included a main routine for testing of C functions. Some C

programs, for example the user interface, were prototyped in Prolog before being coded in C.

3.3.2 Integration

Prolog: To integrate a stand-alone Prolog module into the retrieval subsystem, Prolog goals must
be added to the module so that calls from the blackboard/strategist may be received and procassad.
Furthermore, the module must notify the blackboard when it has finished the processing which
was scheduled. A generic set of Prolog functions designed for modules to receive scheduling calls
from the strateigst has been developed. Those functions appear in Figure 11 and Figure 12. They
must be added to the new module and tajlored to include entry of the expert’s name as indicated

in calls to the blackboard. Callable goals must also be added to the process_goal function listed.

Methods 48

ask(Module,Clause):-

Clause.

window(Window,Header,FiEe"or _prompt,Option,Clear flag):-
write("'Window is),
writeln{Window),
writeln(Header),
disp_option(Option,Fﬂe_or _brompt).

disp_option(0,):-
witeln("Window being cleared’).

disp_option(1,Filename):-
write(’Display of),
write(Filename),
writein(” requested:”),
more(Filename).

disp_option(2,Menu}:-
write(’Display of %),
write(Menu),
writeln(’ requested:’),
more(Menu).

disp_option(3,Error):-
write("*ERROR* },
writeln(Error).

disp_option(4,Editfile):-
write("Edit of ")
wnte(Editfile),
wrteln(’ requested:),
more(Editfile).

disp_Option(S,Prompt):-
write('Prompt /)
write(Prompt),
writeln(” requested:”).

disp_option(6,):-
writeln('Do nothing in this window’}.

disp_option{7,Msg):-
writeln{Msg),

disp“option(()ption,Data):-
write("*Invalid* option N,
writeln(Option),
write("for Data),
writein(Data).

Figure 10.

Simulated integration of User Interface with Report Module

Methods

49

When the strategist dispatches a module to perform a task, that task will be either attend_to_area
or attempt_hyp. The functions listed aliow modules to recognize either of those tasks, view the
indicated area of the blackboard,‘ call appropriate local proéedurcs when goals exist for hypotheses,
inform the blackboard when specific hypotheses have been processed and notify the strategist when

all processing has been completed.

In addition to the integration code required in the Prolog module, two of the components of the
strategist must be modified. Note that the strategist consists of a total of four components: the
domain task scheduler for determining which modules are to be scheduled based on blackboard
hypothesis postings; the rask dispatcher for sending commands to the scheduled meodules when
they are available; the logic task scheduler for Imaintaining consistency of blackboard postings; and
the question/answer handler for processing questions and answers posted to the blackboard. The

first two of these are modified as follows:

1. To integrate a2 new CODER module, the scheduling rule base used by the domain task
scheduler must be modified. Any new rules required for scheduling of the new expert must
be incorporated.

2. The task dispatcher’s list of availabfe experts must be updated to include the new expert.

Finally, the configuration of CODER, discussed in section 3.2, must be updated to include the new
expert.

1. The system administrator of the host on which the module will reside must be notified to
create a new socket having the same name as the module,

2. The new module must be added to the configuration map file on the host from which the
CODER system will be started.

C Programs: Non-inferential programs are integrated by incorporating the C communications ex-
tensions as defined in section 3.2.3. C programs may be required 1o act as servers as well as clients,
For example, the user interface manager, written in C, is normally a server; however it may request
that the input analyst module PTOCESS user responses to prompts and menus. The ask predicate

may be used by Prolog modules only; when C programs need to send messages to other CODER

Methods 50

PZRLLLET 2 2 F A e

% ATTEND_TO_AREA

% Entry point for awakening of an expert. Initiates the

% retrieval of hypotheses from the blackboard and processing

% of any applicable hypothesis relations.

%

% Notes to implementor:

% 1. Replace all occurrences of ‘expert_name’ with your module name _
% 2. Modify the process _goal clause to include any

% - callable functions.

% Calls :

% View_area - to retrieve hypotheses from blackboard, via ‘ask’

% Process_hyp - to select hypotheses for which the module has goals
%o {see Figure 12)

% Finished - notifies the strategist that search task is complete
O/D****************#*******

% attend_to_area(+ Area)

attend_to_area(Area):- % check brand new hyps
ask(bboard,view_area{Area,new,expert__name,Hyp_set)),
process_hyp{Hyp_set,Found), %o always performed first
finished(Found).

% check area of bboard already
attend_to_area{Area):- % seen by other experts
ask(bboa:ci,view_area(Area,seen,expert__name,Hyp_set)),
process_hyp(Hyp_set,Found), % if no brand new hyps exist
finished(Found).

finished(yes):- % Valid goals found in area.
ask(straiegist,done(expert_name}).

finished(no):- % No valid goals found in area.

writeln("No task found to be processed by *expert name* expert’),
ask(strategist,done(expert_name)).

Yo ATTEMPT_HYP(Relation)
% Expert begins a processing cycle imited to attempting to produce
% hypotheses with the head rejation.
attempt_hyp(Relation):-
Relation,

Figure 11. Prolog Module Integration with Blackboard

Methods 51

O et ok s ok ook ook o o

% PROCESS HYP

“ Processes the hypothesis set retrieved from the blackboard.

% The hypothesis set must be recursively reviewed as it may contain
% multiple hypotheses which have been posted to the Area.

% Only those hypotheses with a goal (refation) contained in the expert
% will be processed.,

% The hypothesis set retrieved will contain a LIST of hypotheses:

Y% | {{Fact,Conﬁdence,Expert,l—iyp_id,Dependencies],Time,Area], etc.]

%

% Called By: attend_to_area (see Figure i

% Calls:

% process_goal - to process an applicable goal, if found

% itself - to recursively sefect additional applicable goals
*

%6***********************
% process_hyp{ + Hypothesis_set, -Found)

.process_hyp([],F ouﬁd):-
var(Found),
process_hyp([],no).

process_hyp([],Found). Yboundary case - no more hypotheses

process_hyp([{[Fact,Cnf,Exp,Hypid,Dep],Timc,Area]fResthyp},Found):-
process_goal({[Fact,Cnf,Exp,Hypid,Dep],Time,AreaD, % has a goal
time(Time proc),
ask(bboard,hyp _Processed{Hypid,expert_name, Time _proc)),
process_hyp(Resthyp,yes). :

process_hyp([Firsthyp}Resthyp},Found):- %hypothesis without a goal
process_hyp(Resthyp,Found).

O ook o ke s o okl ok ok oo o e o

% PROCESS_GOAL

% Selects and processes any applicable bboard hypotheses.

%o

% For Example: _

% process_goéi([[id_user(Timereq),Confv,Exp_id;Hyp_id,Dep],Time,Area}}:-
%o id_user.

% process_goa}([{um__req{Req,Timereq),Confv,Exp_id,Hyp_id,Dep]_.Time,Arsa]):-
%o um_reqg{Req). '

%

% Note to Implementor:

% The process goal procedure must be added to your module. Refer to the

% exampies above.
O o o oo o oo o s o o ko e

Figure 12, Prolog Module Hypothesis Processing

Methods 52

modules they use the protocol function, one of the low-level communications functions used in the
ask function definition.

protocol(Medule, Clause)
The protocol function is defined in the comm_funcs.c code (see Figure 9) which must be included
for a C program to be a CODER server. Following incorporation of the communicatlions exten-
sions in the C program, the configuration must be updated as described in section 3.3.2 for inte-
gration of a Prolog module. A socket must be added to the host’s services and the C module name

and location must be included in the configuration map file.

To remove 2 CODER expert, the steps followed to add the expert to the strategist components and
to the configuration simply need to be reversed. However, consideration must be given to the im-
pact that removal of a i)articular module may have on other System modules. For example, if the
user modeling expert were removed, all modules which tailor processing to the type of user would

have to be reviewed. _

In summary, the tools and methods described in this chapter supported all development of the
CODER retrieval subsystem. That is, the UNIX operating system, the Prolog and C programming
languages, various file structures, existing databases, an underlying communications layer and code
for integration of new moduies provided all of the tools needed to implement this version of the

CODER retrieval system.

Methods 53

4.0 Implementation

The implementation of the CODER retrieval subsystem has progressed in stages determined by the
mterdependencies of required modules and the availability of various segments of the communi-
cations layer. The earliest module, a p-norm search expert written in Prolog [WEAV 86a), was
implemented as a stand-alone module, was not integrated with a blackboard/strategist, and searched
a small test collection generated by the SMART system. Later, portions of the
blackboard/strategist complex were written; simulated calls to the blackboard/strategist were then
added 1o the search expert. Next, the knowledge administration complex was coded so that the
analysis subsyﬁtem implementation as well as development of modules requiring knowledge struc-
tures such as frames and relations could proceed. When the communications layer was developed,
Prolog moduies could pass messages to one another. Enhancements to the communications func-
tions allowed message passing between C and Prolog modules. As modules were written and tested,

they were integrated with existing modules.

This chapter describes the implementation stages that preceded the current version of CODER,
The first prototype will be discussed briefly. The functions performed by each module of the re-
trieval subsystem, as well as the incorporation of heuristics from ISR literature, will be presented.
Nearly all modules are prototypical modules and require enhancements before they can be C(-)n'sid-
ered fully developed. However, they provide the foundation for further research and experimenta-

tion. Finally, the configuration of the implemented systern will be illustrated.

Implementation 34

4.1 Prototype I

The objective of the earliest retrieval subsystem prototype, Prototype I, was to test the communi-
cations functions written for message passing between Prolog modules. Prototype I was a skeletal
implementation of the search expert and the blackboard/strategist complex. It demonstrated that
modules could communicate with one another on different hosts by using the TCP/IP communi-

cations protocol.

As depicted in Figure 13, Prototype I executed on three computers running 4.2 BSD UNIX.2 Six
processes with related. sockets were started, one each for the blackboard, strategist, scarch expert,
query_parser, user_interface and report expert. A simple C program containing the communi-
cations function, protocel, played the role of the “user_interface” manager and passed a pre-
structured p-norm query to the query_parser. No binding of variables or other cornmunication
between C and Prolog modules was mcluded. The “query _parser” module, not yet written, was
simulated by a few lines of Proiog code. The module posted a p-norm query entered by the
implementors in a pre-defined syntax with known concept numbers instead of terms. For example,

prompted by the user interface, the implementors might enter the fellowing.

Enter module > guery _parser
Enter clause > e}parse(p_rzorm,[},’,or,I,[565,?]_.[827,8] J.10).

where
query_parser was the name of the socket for the query parser module;
qparse was a callable Prolog function in the query_parser module;

p.norm was the function posted 1o the blackboard which resulted in scheduling of the search
expert;

EZ,or,I,[565,7}2[827,8H was the p-norm query where concept 565 with a weight of 7 was ored
- {using p value of 1} with concept 8§27 with 2 weight of 8 and was used to find and rank relevant
documents having the same concepts; and

the last argument, 10, indicated the number of documents desired.

* The configuration illustrated represents one of many that were tested.

implementation

Lh
Lh

SUN Workstation

(Gremlin)

e e W W TR W e e e e W W W W W W

Documeni
Vector
Database

SUN

Workstation

- o e m e W e e W e W e W e

User Interface

Query Parser.

. T R R R

Report

- R PR S

VAX-11/785
(VTOPUS)

Blackboard

S

Query
p_norm{Numdocs,Query)
Results
docliD1)
doc(ID10)
docs_posied

e - - -

Figure 13. Prototype I

Implementation

- Strategist <%

e o e e A e S W W R A o om

A &

e

Y

LR

56

The “report” module, also not written, was simulated by a small Prolog program which passed re-

treved document numbers posted on the blackboard 1o the display terminal.

The implementation of Prototype I, as limited as it was, indicated where modifications to original
design specifications for proper blackboard/strategist functioning were required. It verified that
Prolog modules residing on different host computers could communicate with one. a;nother effi-
ciently when the client/server model was employed. It demonstrated that small external knowledge
bases (EKB) could be easily accessed by moduies using the MU-Prolog 3.2db extensions. The
blackboard architecture was shown to be an effective architecture, at least for limited functioning
of an IR system. Moreover, Prototype I fostered establishment of the methods used 1o integrate

and test CODER Prolog modules.

4.2 Retrieval Subsystem Modules

Implementation of the retricval subsystem began in Spring, 1986 when graduate students in an In-
formation Storage & Retrieval class started to develop pieces of the CODER system to fulfill class
project reguirements. Although class projects served mainly as a pédagogical tool for students
learning how to program in Proiog, fragments of the CODER system began to appear. As students
became familiar with the CODER project, some continued their work on parts of the system to

fulfill Master’s or Doctoral degrée requirements.

The stand-alone p-norm search expert, the beginﬁings.of the blackboard [SEN 86}, 2 of 4 compo-
nents of the strategist [KOUS 86], and parts of the communications layer were written to satisfy
class requirements in 1986. The knowledge administration complex and a simplistic prototype user
model expert were developed and tested between June and December, 1986 as part of this research.

In 1987, class project work included prototyping of experts to browse the HAI and the lexicon.

Implementation : 57

Additionally, modifications to the MU-Prolog interpreter, parsers for the analysis subsystem, a
Boolean version of the search expert and a Boolean query formulation assistance program were
Initiated as class projects. By June 1987, bits and pieces of the CODER system, most only partially
developed and none integrated, were available. An optimistic Gantt chart was developed to target
wmplementation and integration of Version 1.0 retreval subsystern modules {see Appendix D).

Details of the implementation of each module are recorded in the following sections.

4.2.1 Blackboard/Strategist

Although the term blackboard/strategist is used throughout this thesis to denote the vehicle used
for storing messages and for scheduling and control of modules, the blackboard and the strategist
are in reality two distinct modules with scparate but integrated functions. The CODER blackboard
is an area for communication between modules. All messages from the community of experts are
posted to the blackboard. The strategist handles the scheduling and control of modules. When
messages are sent to the blackboard, the blackbeoard notiﬁés the strategist which in turn schedules

one or more experts to view the message(s) posted and to take appropriate action.

Communication between experts occurs primarily by means of posting and viewing hypothesss in
blackboard subject areas. A hypothesis is a 3-tuple structured knowledge form
< Fact, Confidence, Expert id, Hypothests id, Dependencies >
where
Fact is a hypothesized Prolog-type fact;

Confidence is an integer value in the range [0,100] representing the confidence the expert has
in the fact. Experts assign confidence values according to whatever knowledge aggregation
scheme is appropriate for the sst of constraints and the knowledge sources available.

Expert id is the module name of the expert posting the hypothesis,

Hypothesis id is a unique id number assigned to the hypothesis by the blackboard when the
hypothesis 15 posted.

Implementation : 58

Dependencies is a list of ids of other hypotheses which the expert has used to make this hy-
pothesis. The dependencies list allows truth maintenance functions to be performed when
hypotheses are retracted or confidence values are radically altered. This kst may be null.

Questions and answers may also be posted by modules. Although a quéstion/answer handler has
been written as part of this research, it 1s not used by any of the Version 1.0 modules, A gnestion
may be posted as a 4-tuple. Arguments are the same as those for the hypothesis tuple less the
confidence value. Like hypotheses, questions are posted as facts following Prolog syntax rules and
a unique id is assigned by the blackboard to each. Posted answers contain six arguments.

< Question id, Answer id, Answer, Expert id, Confidence, Justification >

where
Question id must match the id of a previously posted question;
Answer id 15 assigned by the blackboard;
Answer is a list of one or more Prolog-syntax facts which answer the question posted;
Expert id is the module name of the expert posting the answer;

Confidence is an integer value in the range [0,100] representing the confidence the expert has
in the answer; and

Justification is a list of Prolog facts whick support the expert’s answer. This list may be null.

Because new predicates have been added and nearly all of the predicates contained in the original
blackboard/strategist specifications have been altered at least slightly, a modified set of

blackboard/strategist functional specifications appears in Appendix E.

The Strategist: An iliustrative numbered sequence of calls by an expert to and from the
blackboard/strategist appears in Figure 14. Three more specific illustrations of blackboard prac-
essmg limited to new hypotheses, modified hypotheses and retracted hypotheses follow. In general,

the steps corresponding to those shown in Figure 14 occur as follows:

i. One of the modules in the CODER community of experts posts a hypothesis or a question
to the blackboard.

to

The blackboard informs the strategist of any new dependencies for the hypothesis or question
posted; for example, if the hypothesis posted has dependencies on other hypotheses, those
dependency relationships are retained by the strategist.

Implementation 59

ys1dajeng/preogyel 9y) woyy puw o) spEN) Jo asuanbog

w1 i

voysenb o) "puae
legre o] pushie
iy Tydnagye

uop

snony) yse |

4
{hieae
. at
-+
B;_mcwl;__m:@
(o spusdop ‘pejaritesdiy
E'E 58 Bies
s
, <4
peagidai™dAy
{")payos {)payos L iy mau
uogisenb " mau
VO Sid +
safouapiiadap mel
1sifisjeng . i
Kioisy) :
T

3

o=

anpwdspg ye) = g
aansuypionsang} = yi)
SnpAg yee g nioy = gy
3rpayag yiuf vy = g1q
A4y

{ iy euop

(g oeg)dy

(" “jouylddy

pivoqyoulg

possosoid iy

1

q;?:m:w 1sod’sjseifod Ay yavijan
fuagsenbTysod lspseiod.iy sed @

4
dAy maga

lsuopisanbTmepa

JeoduTMefA

.m_.mm:;m.\::, 150t

| u_.:__uos_
mv .:mcou

@ o]
m_: PO alpoou)
- HHG09 lLE.

18eimepy
BINOS0Y

60

Implementation

3. The blackboard sends the new hypothesis or new question information to the strategist. If the
hypothesis posted matches a previous hypothesis but has a higher confidence value, the
blackboard notifies the strategist with the hyp_replaced predicate.

4. The strategist places a task for the appropriate module(s) in the module’s task gueue, That
task will either be attend_to_area, atterpt_hyp or attend_to_question, depending on what was
posted. When the module is available for processing, it is dispatched by the strategist,

5. The module views the appropriate hypotheses or questions posted on the blackboard, as in-
dicated by the task assigned to it.

6. As hypotheses or questions are processed, other hypotheses, questions or answers may be
posted to or retracted from the blackboard.

7. The blackboard is informed of each hypothesis that the module has processed. At the same
time, the blackboard and strategist may be processing the postings of the previous step.

€. When the module completes its task, it notifies the strategist that it has finished its processing
and is available to perform another task.

As mentioned in chapter 3, the strategist consists of four components: the domain task scheduler
(DTS) for deterr_ninin}g whick modules are to be scheduled based on biackboard hypothesis
postings; the task dispatcher (TD) for sending commands to the scheduled modules when they are
 available; the logic task S.Cb_edylgr.(LTS)__.for...maintainiag -consistency- of-blackboard postirigs; ahd”

the guestion/answer handler (QA) for processing questions and answers posted to the blackboard.

Since the components of the strategist are each small (they contain from 30 to 135 lines of Prolog
code, 1 goal per line) and their functions arc non-overlapping, ail four elements have been imple-
mented as one module. Each module eXists as a separate file of Prolog functions. However, all files
are consulted in one Prb}og process. This strategy climinated the communications overhead costs
which would have been incurred if the -strategist coxﬁponents passed méssages to each other. Due
to the simplicity of the functions, little savings would have been realized as a result of concurrent
processing among strategist componenis. If future versions of CODER include expanded functions
within the elements of the strategist, for example enhanced scheduling strategies in the domain task
scheduler, separation of strategist components as distinct modules should be considered. Such
separation would require modification to asks made by the blackboard and other modules 1o the

strategist, as well as creation of a new socket(s) and editing of the configuration map file.

Implementation 61

The components of the strategist, although they are efficient and function properly, have been im-
plemented as prototypical elements. Enhancements to the DTS are required to incorporate a
pending hypothesis area of the blackboard to which hypotheses are moved when confidence values
reach absolute levels. The scheduling strategies presently do not consider the context of the phases
of the overall task in which the system is engaged. The TD does not inform the DTS when task
gueues are empty of when no tasks in a queue have priority greater than a certain threshold,
Methods required to imf;lement more complex control and scheduling strategies in this context are
presently vaguely understood and can be more clearly defined when functions requiring them are

- pinpointed.

The Blackboard: The Prolog program containing the blackboard module is also referred to as the
posting area manager. Initially prototyped in Spring 1986 [SEN 8¢] according to the blackboard
functional specifications of the original CODER design [FRAN 86], the blackboard module ? per-

forms several primary functions.
® It recetves and stores hypotheses ¢ posted by modules.

* It notifies the strategist when new hypotheses are posted, retracted or modified with new con-
fidence values.

¢ It maintains & local fact base containing a repository of messages grouped by areas available
for viewing by any module. ‘Thus, it represents an instantaneous snapshot of what the system
as a whele hypothesizes about the problem sitvation,

New Hypotheses: Figure 15 illustrates the flow of processing when new hypotheses are posted to

the blackboard. The following sections explain the steps shown in the figure.

} The blackboard has been implemented as the bboard module and socket.

4 For the remainder of this section, the term hypotheses also refers to posted questions and answers.

Impiementation 62

Bussanor g sisayiodf say gy auni;,

¥aiB 0] pliaje

10 dly dwaye

[48]

»| snanp yse) |

A S0 R

" _ :

' (" Iprat ‘

'

R alL :

” ysuj Moy :

' "

! '

H]

\

\ {)}peyas :

v 4

" Sia ' diy"mou
: :

: (o~ spuadap h

\

" 511 + m sapuepuodopTmeu

' Vi

N N

i1stbayung

[Kroisyp
T

anpedng ye L= g

ppagag o g 38y « g1

AAHpUYIS Lo [mowo(f = ¢ 1]
FED

{)d{y suop

F'y

ﬂ....W»..._—Umk_m»mFﬂ_-.

passoesond ™oy

'y

tiogsenbzadd
ssuipod iy ysod

(e) ddy

pleOau|

&mm_znaér_mea

Holu T MoA

spnpopw
L0100

alnpopy
HAAQ0D

0
0
(»)

GEPy
ulipojsiowuyy
Jeiingxzg

s

ioBeuyy
uINOSaY

63

Implementation

Step 1: To begin the sequence, one of the CODER modules posts a nmew hypothesis with the
post_kypothesis([Fact,Conf,Expert,Hypid,Depend] »Area} fact. The Area argument conceptually
indicates a structured pane] of the blackboard in which all hypotheses relevant to a hierarchical
section of the problem situation will be grouped. Hypotheses are stored in a Jocal Prolog fact base
contatning facts in the foliowing form:

hyp([Fact,Conf,Expert,H: ypid,Dependencies] , Time,Area)
where Time is a timestamp® assigned by the blackboard when the hypothesis is posted, and Area

is the area specified by the expert when the hypothesis was posted.

Step 2: After hypotheses are asserted into the hypothesis fact base, the blackboard sends the new
dependencies list to the strategist: -
ask{strategist,new_dependencies{ Hypid,F{ yp_functor, Expertid,Conf,Dep))
Since all arguments m the ask clause are instantiated at the time it is executed, the blackboard
continues its processing without waiting for a reply from the strategist. Thus, the blackboard and
the strategist modules execute concurrently. The new dependencies are logged in & local fact base
by the logic task scheduler code in the strategist module in case they are needed later for truth
maintenance. A fact for each dependency is created:
depends_on{ Hypid,Fact, Confidence,Expert,Depends_on_hypid;
This local fact base contains both parent and child dependencies; that s, for each hypothesis, the

hypotheses that it depended on and hypotheses that depend on i are separately represented.

Step 3: The blackboard next notifies the strategist that a new hypothesis has been posted.
ask(strategist,new_hyp{Hypid Hyp funcror,Dep,Conf) -
Again, parallel processing of the blackboard and strategist modules occurs. The domain task

scheduler portion of the strategist is triggered to schedule one or more experts capable of processing

5 A predicate, time(X), has been added to the Prolog interpreter. It returns the number of seconds since
January 1, 1987,

Implementation 64

the new hypothesis. If a question is posted instead of a hypothests, the question/answer handler
instead of the DTS is notified to schedule the expert(s) capable of answering the question. To de-
termine which expert should be scheduled, the DTS currently uses a local rule base of
antecedent/consequents. Approximately 50 rules contain the Version 1.0 scheduling heuvristics,
Consignment of scheduling strategies to a rule base allows modification of the strategies without
changing the blackboard implementation. Rules are of the form:

sched(Relation,Condition,Action)

where
Relation is the functor of the fact portion of a hypothesis.

Condition contains a pair of numbers representing absolute confidence and incremental confi-
dence. Before an expert is scheduled to view the blackboard, the confidence value assigned to
the new hypothesis must be greater than or equal to the absolute confidence. The incremental
confidence is included for future enhancements to the domain task scheduler, for example
varying the control or flexibiiity desired when scheduling modules.

Action is a list of lists of the form [expert id, task for expert, scheduling priority]. Expert id is
the name of a module capable of processing the hypothesis. The task scheduled for an expert
is either attempr_hyp or attend_to_area. Scheduling priority is an integer from 1 to 10 and is
used by the task dispatcher when ordering tasks within expert queves. The highest scheduling
priority is 1 and 10 1s the lowest.

Step 4: When the DTS determines which expert(s) to schedule, it issues the new_task command to
the task dispatcher component of ths strategist. Note that since all strategist components reside in
one module, the ask predicate is not used. The TD logs the task in an external history file, and
places it in a Jocal queus of tasks for the scheduled expert. Tasks are ordered by Scheduling prierty
or first-in, first-out (FIFQ) if more than one task has the same prorty. A fact,
avail(Expert, Availability), exists for every CODER expert to indicate whether the expert is cur-
rently available. All experts are available at the beginning of a retrieval session. As a task is
scheduled, the Availability parameter is set to no and the task is removed from the expert’s task
queue. When the expert notifies the strategist that it has finished performing the requested task, the

moduie again becomes available and the next task in the queue, if any, is dispatched.

Implementation 65

Steps 5 anﬁ' 6: When the strategist dispatches an expert, it issues the command
ask(Expert,Relation) where Expert is the name of the scheduled expert and Relation is either
artend_to_area or attempt_hyp. Recall that the attend_to_area and attempt_hyp functions must
be integrated into every CODER module to allow communication between the module and the
blackboard;strategist complex (reference chapter 3, section 3.3.2). The expert dispatched retrieves
hypotheses from the blackboard by issuing the view_area predicate and processing the hypothesis
set returned. Note that three categories of hypotheses may be retrieved: brand new hypotheses that
no expert has yet processed, hypotheses that other experts may have processed but this exper(has

not yet seen, and hypotheses with modified confidence values.

Steps 7 and §: During processing of hypotheses, the expert may post other hypotheses on the
blackboard using the post_hypothesis function in an ask to the bboard, For each hypothesis that
the expert processes, it informs the blackboard that it has processed the hypothesis by issuing
ask(bboard,hyp_processed(I ypid,Expert, Time)). The blackboard tags the hypothesis by creating
a done_hyp fact indicating that the hypothesis has been processed by the expert. This fact is refer-
enced when experts view areas of the blackboard since hypotheses in the area that the expert is
viewing may include some that the experi has already processed; the hyp_processed fact aliows

these facts to be filtered from the set being retrieved.

Step 9: When the expert has finished processing all applicable hypotheses, it notifies the sirategist
that it has completed its task with the command ask(strategist,done(Expert-name)), While an
expert 1s performing scheduled tasks, other experts may be performing tasks concurrently: the

blackboard and strategist modules will also continue to execute in parallel.

Retracted Hypotheses: Based on new information on the blackboard or in knowledge sources, an

expert may wish to retract a previously posted hypothesis. The vetract_hypothesis command exists

Implementation 66

e R r T r e rr T .-

Pajoeiel ere sjoe iy evop pus diy oy ,

Butssanon g sisyglod{yy pajannoy g amd),)

v

‘peinpaijases aie sasoyod{y wepvadap Ly,

iselun

v o) pusje

(e
Qi

L ¥SE) mau

G

{“Juo"spuadap
Sl

(~Ipoos

$1a

R JE I SR |

Isibajeng

apwdygyvg = g
Adnpayag yru g ¥y = ¢
kth.:h..l.f.u&: ﬂ.».t.h E.—Q-anh = M.hhu_

44X

. apnpop

| enanp yseg |

o

pojornasdfy @

siseijffodiy

(- zi9e iy

e gy

.-

Mou sof se
* L BluES

pivogyauig

<4

Aioysi|
T T

»

HAA0D

sisoiadiyoryor @

sisetod iy sod @

| efpopuots

dnpop
UAU0D

oSUE]

P
fruiop g ETRLENTY,

100

Implementat

to allow hypothesis removal. Only the expert that originally posted the hypothesis may retract i.
When a hypothesis is retracted, the blackboard informs the strategist and then removes the hy-
pothesis and any related facts from its local fact bases. Figure 16 iltustrates the sequence of calls

made when a hypothesis is retracted.

The logic task scheduler of the strategist deletes all dependency relations for the bypothesis. The
depends_on facts for hypotheses which list the retracted hypothesis as a dependency and for hy-
potheses on which the retracted hypothesis was dependent are removed from the dependency fact
base. The LTS reschedules hypotheses dependent on the retracted hypothesis by issuing the
new_task command so that the TD component can dispatch the expeﬁ who posted the hypothesis

which was dependent on the one retracied.

Priority for a reschedﬁled task is based on hypothesis confidence and number of dependents. The
heuristics used to determine scheduling priority have been arbitrarily determined. As the number
of dependencies for the hypothesis being rescheduled increases, the priority approaches 1. In con-
junction with a smaller number of dependencies, higher confidence values for the hypothesis being
rescheduled where that confidence excludes the retracted hypothesis, shift the priority closer to
10.5 For example, if a hypothesis dependent on only the retracted hypothesis has a confidence Valu.e
jess than or equal 1o 40 it is rescheduled with a priority of 6. If a hypethesis dependent on only the
retracted hypothesis has a confidence value greater than 70 it is rescheduled with a priomty of 10.
A bhypothesis with confidence valee less than 20 and dependent on 4 or more hypotheses is re-

scheduled with priority 2. Sixteen rules such as thess exist in the LTS for rescheduling.

- Modified Hypotheses: A previously posted hypothesis may be re-posted with a higher confidence
value. To insure proper control, only the expert that originallv posted the hypothesis may issue the

post_hypothesis for the existing hypothesis again. The confidence value assigned by the expert must

5 Recall that priority 1 is the highest scheduling priority while 10 is the lowest.

Implementation 68

Hussasor,[sisaod S pappoyy £ s

rsjsatioddy
aneidas ayy Jof paubissy aq Aviu sepuspusdop Meu 8US
oyvoipoid paseided Ul pur pojaenui iy egq yloq

ioj pepeyases e sesayodly Juopuadop iy,
Eajoi

apnp
HE!

[enenp ysey | s

gaiR 0] puele

(hypeas
B

L Y58l Meu

peogjdai~dAy
L}

oW
00

{zsp 1o DAy o

\.:‘:olnb:m&.....r
Sl ¢

sejpuepuadap mou

gg=eauspyuon ‘sisoioddy isod

pojzeijel”diy 4

{502 v gAY

R e et

{Ipayos
S14

- e e e W m v M e m o w

isjBaleig

O)

syseifjodiy .
Meu fof su

i

- e e

pieoqyouid

&

“Liaysi)
T

Laynedigy yeo [= @{

dzpapaysg yiu | 3)da] = $1

Ab___-ﬁh-—um. dvﬂ.m !mCE_Dﬁ.— = M«ﬁm
AdN .

oz =0suspyjuon ‘ssayjediyjsod

i

m_z_Jo.E
HIAUO0O

[3Hy
afipagaonyy
fruieyey

fabvupyy
WHAAS §

implementation

69

be higher than the previously assigned confidence or the posting will be ignored. If for some reason
an expert wished to lower the confidence value of a previousiy posted hypothesis, the
retract_hypothesis command must be issued first. Figure 17 illustrates the sequence of calls made

when the confidence value for an existing hypothesis is modified.

When the blackboard receives posting of a hypothesis with a higher confidence value it notifies the
strategist to retract the existing hypothesis. The logic task scheduler of the strategist proceeds to
delete all dependency relations for the old hypothesis and to perform any rescheduling indicated.
The blackboard, meanwhile, continues its processing by removing the old hypothesis from its local
fact base, and asserting the new hypothesis with the higher confidence. It then creates a fact,
med_hyp, to indicate that the hypothesi-s bas been modified. Finally, it notifies the strategist of any
new dépendences and issues a kyp_replaced command so that confidence values stored in the logic
task scheduler’s depends_on facts may be updated. Note that the done_hyp fact created by the
blackboard still exists if an expert processed the hypothesis previously. Therefore, if the expert is

rescheduled it may or may not wish to process the hypothesis, now with a higher confidence value.

Biackboard Areas: As mentioned earlier, conceptual panels of the blackboard are indicated by the
area argument of blackboard hypotheses. The blackboard areas used by this version of the
CODER system appear in Figure 18. The areas defined evolved as the CODER system was de-
veloped. To reduce the time needed to process large sets of hypotheses, the problem description
builder moduie peniodically issues the clear_hyps(List_of functors) predicate 1o the blackboard.
For example, many hypotheses requesting display of prompts or menus are posted to the black-
board. Such hypotheses are not used after the prompt is displayed; therefore, issuing
clear_hyps{|disp_prompt,disp_menu]} to the blackboard will result in retraction of all disp_prompt

and disp_menu hypotheses.

Implementation 70

AREA

user_req
problem

state

umodel

results

report

query

gform
structured data
cleanup

DESCRIPTION

Requests for menus and file displays from the user
Problem description information

Problem state data

User modeling information

Retrieved documents

Retrieved browse data

Queries formed for the search expert

Query formulation data

Frame and relation input by user

Used at end of sessicn

Figure 18. CODER Blackboard Areas

Implementation

71

4.2.2 Knowledge Administration Complex

As an Al retrieval system, CODER requires an approprate method for representing knowledge,
World knowledge and domain knowledge are provided in the Spine for the Collins Dictionary of
the English Language and the HAL. However, specific knowledge about entities in the problem
universe, information retrieval, is also needed. Entities include words, names, subjects and other
lexical items; documents and ficlds of documents; and users of the system. Mechanisms to facil-
itate representation of entities and their attributes and to allow inference and reasoning about entity
classes and relations is provided by the knowledge administration (KA) complex, a Prolog-based

frame representation system.

The choice of a frame-based system written in Prolog as the method of knowledge representation
was made early in the design of the CODER project. The specifications for the predicates required
were sketched by Robert France in his M.S. thesis [FRAN 86] and will not be repeated here, These
high leve] predicates laid the foundation for the mplementation of the KA complex. This section
will discuss that implementation and will explain the facility developed for building aﬁd storing

“knowledge” in the CODER system.

The knowledge administration compiex requires a system that can support the creation and ma-

nipulation of three levels of knowledge representation.

Elementary data types (EDT) Lowest level attributes, such as character. integer and atom primitive
tvpes. Resirictions and quantifications of the three primitive types define additional
EDTs.

Frames Models of entities. Frames are classified by frame type where each frame type is defined
by a set of slots and the EDTs, frames or relations associated with each siot,

Relations Logical relations over objects, where an object is an EDT, frame or other relation.

Each level of knowledge representation has a type manager; the frame and relation levels also have
object managers. The type managers provide the ability to identify, test, and manipulate EDT,

frame or relation definitions. The object managers support the creation and manipulation of ob-

Implementation 72

Jects, that is, the instantiation of data. The type and object managers will be used by the system
administrator and by the CODER community of experts respectively. The system administrator,
for example a designated CODER implementor, is an individual responsible for the definition and
maintenance of EDT, frame and relation types. The CODER community of experts will use the
knowledge administration predicates to define and represent factual knowledge, and to determine
relations, such as subsumption or matching, among both objects and types. A clear distinction
between cbjects and types, as with any frame representation system [FIKE 85, BRAC 83, HAHN
86}, must exist in the KA complex. Therefore, scparate Prolog programs contain the type and

object managers.

4.2.2.1 Type Managers

All three KA type managers are contained in the program, knowadm. To stmpiify entry of type
definitions, the program may be driven by the main menu shown in Figure 19. When the goal
update is entered, the menu will be displayed. For each of the first three options, the system ad-
ministrator will be prérnpted 1o supply the data required to create the Prolo g facts which represent
type definitions. Since the program is written in Prolog, capitalized entries or entries containing
special characters such as blanks, commas or periods must be enclosed in guotes. As required by
Frolog, al} entries mus.‘z end with a period. A sample session appears in Appendix F. The infor-
mation stored for each type definition is described in the following sections. Option 4, Save Up-
dates, provides a checkpoint facility as a safety measure and is recommended when large numbers
of type definitions are entered during one session. It creates a Prolog save state and explains how
to re-enter the session at the point where updates were saved. The final option, Terminate Proc-

essing, appends the new type definitions to their respective type files.

Implementation 73

Please enter function desired:
1. New Elementary Data Type
2. New Frame
3. New Relation
4. Save Updates
99. Terminate Processing

| Figure 19. Knowledge Administration Complex Main Menuy

Implementation 74

EDT Type Manager: The Elementary Data Type manager handles identification and coordination
of EDTs. It provides functions for the creation of a new EDT, for testing the type of an EDT

object and for navigation of the type lattices.

New EDT Types: A single Prolog fact represents each EDT.
ka_edt(Edt_name, Quantifier, Parent, Restriction)

Arguments consist of the following,

Edt_name Any name not already used as a frame, EDT or relation type name. Primitive types
char, int and atom are reserved.

Quantifier The number of required items in an EDT object list or set. Not yet fully implemented
1s the ability to assign a quantifier which is a list or set of characters which the EDT
object must contain. For example, for EDT phone_number the quantifier field might
contain fint, ', (', Y, */’. This field may be null t¢ indicate that quantification is not
needed,

Parent The EDT name of a parent EDT whose restrictions and/or quantifications will be in-
herited. Minimally, the char, int or atom parent may be supplied.

Restriction A list of items with which the EDT object must comply. Restrictions include mem-
bership, minimum and/or maximum for integers, negation or any combination of these.
Some sample restrictions include:
|min,01,max,12] {for month of the year);
{member, Sat’,'Sun’] (for weekends);
fnot,"Sat’,’Sun’} (for weekdays).

If a parent EDT having a non-null quantifier has been entered for a newly created EDT, the child
EDT will inherit the parent’s quantifier. When the child EDT is entered, its quantification must
match the parent’s or must b.e null m which case the paren: quantifier will be inherited. If the
parent quantifier is null, then a child quantifier may be entered. Since the parent of the new EDT
may also have ha& its own parent, any quantification for an ancestor of the EDT will automatically
be inherited because it has already been merged with the parent quantifier. The knowadm program
mciudes checking of parental ancestry to ensure that & loop is not created somewhere by an EDT

having 2 parent which has that EDT as an ancestor.

Complex routines have been written to merge EDT parent restrictions with child restrictions.
Table 1 depicts the merging of inherited parent restrictions with child restrictions. Restrictions are

grouped in the table by the not, member and min/max operators, When restrictions are inherited,

Implementation 3

Table 1. EDT Restriction Inheritance

EDT RESTRICTION CASE TABLE

CHILD PARENT MERGED RESTRICTION COMMENTS
I any parent’s restriction Inherit parent
not not union of both ‘not” sets
not member set difference of child ‘not” set must be
child and parent sets subset of parent ‘member’.
not min, max merged member set of merged member set must
elements within min/max, not be [].
minus NOT set,
not] chiid ‘not’ set no inheritance
member not child ‘member” set child set elements must
not be in parent set.
member member child ‘member” set child set must be
subset of parent set.
member min, max child ‘member’ set each element of child
set must be within
parent min/max range
member [i child ‘member’ set
min,max not child min,max members of parent NOT
- set must not be in
range of child min/max
min,max member new member set of parent member set
elements of parent set mapped mto new child
within child min/max member set.
min,max min,max child min,max child min,max must be
' within range of
parent min,max
min min,max child min,parent max child min must be
> = parent min;
inherit parent max
max min,max parent min,child max child max must be
= < parent max;
. inherit parent min
min,max I chiid min,max

[min,max,inot]]

merged as member

Implementation

76

the merged restrictions are stored with the EDT. This eliminates recomputation of merged re-
strictions when new EDT objects are created; the original specific child restrictions which have been

merged with parent restrictions are lost although they could be deduced in most cases.

Testing EDT Object Type: In addition to creation of new EDTs, the knowadm program contains
predicates which may be called by the CODER community of experts as well as by the system
administrator. A single predicate, is_elt validates the type of an elementary object and is used by
the object managers when new objects are instantiated. Given an EDT type name and an EDT
data object, the predicate verifies the existence of the EDT type and validates the object based on

the quantifier and the restrictions specified for the EDT type.

EDT Lattice Manipulations: The EDT type manager also contains predicates to navigate the hies-

archy created by parent assignments to EDTs,

weaker(Weaker_type,Stronger_type) tests whether the weaker_type is a descendant of the
stronger_type.

supertypes{ Weaker_type,Stronger_types) returns a list of all ancestors of weaker_type.

subtypes(Stronger_type,Weaker_types) returns a list of all direct descendants of stronger_type.

Frame Type Manager: The CODER frame type manager supports all functions required for the
construction of frame definitions. Frame types provide structured representations of an object or
a class of objects. Variable-sized sets of named attnbutes called slots characterize cach frame type.
By specifying each new frame type as a “subclass” of other more general frame types, frames may
be ordered into taxonomies. Frame types may have more than one parent as well as more than
one child, and thus a complex lattice framework may result. Predicates for navigation of frame

taxonomies and for identifying subclasses of frame types are included in the frame type manager.

Implementation 77

New Frame T ypes: For each frame type, a Prolog fact contains the frams characteristics.
ka _frame(Frame_name, Parents, Slot_list)
where

Frame_name is any name not already used as a frame, EDT or relation type name.

Parents is a list of frame type names representing classes of which this frame is a member. For
example, a journal_article frame type could have parent frame type journal which could
have parent frame type bibliographic_reference. '

Slot_list is a list of attribute names and characteristics, All parent slots are inherited, that is they
are added to the list of slots defined for a new frame type.

A list of characteristics per siot is contained in the slot_list. Siot characteristics are represented by
the list

[Slot_name,Class, T ype,Cardinality_min, Cardfnality_max,l)q"ault]

Slot_name is a slot identifier, Although slot names must be unique within a given frame type, they
need not be unique among all frame types. However, it is recommended that all slots
be given unique names 1o avoid confusion.

Class identifies the kind of object required to fill the slot. It must be e (EDT), £ (frame) or r
(relation).

Type 1is the type name of the EDT, frame or relation to il the slot.

Cardinality_min is the minimum number of vatues allowed for the siot when the frame object is
instantiated. All slot values for frame objects are stored as Jists of values. This value
may be null if there is no lower bound on the number of slot values.

Cardinality_max is the maximum number of values allowed for the siot when the frame object is
instantiated. This value may be null if there is no limjt.

Default 15 the vaiue assigned to an EDT slot when & frame object is created.

Default values are passed from parent frame slotlists when slots are inherited, However, inherited
default values for child frame types may be modified: therefore, an inherited siot may have all of
the parent characteristics except the default value. Default values are optional for slots which are
EDTs. For a slot which has a frame or relation type, the identifier of a frame or relation object is

stored as the slot value; therefore, default values are not permitted for such slots.

Some sample EDT and frame types appear in Figure 20. Note that not all frame and EDT defi.

nitions used in the example, such as the minerals and vitamins frames, are mncluded,

Implementation 78

Recall that the fact form for an EDT is:
ka_edt(Edt_name, Edt_parent, Quantifier, Restrictions).

ka_edt({temperature, int, {], [min,32,max,110]).

ka_edt(beings, char, [], fmember,human, plant insect,fish,bird,other_animal]).
ka_edt(color, char, [], {member,orange,yellow red,green, blue, black]).
ka_edt(fruit_name, food_groups, {], [member,apple,orange,bananatomato kiwi).
ka_edt(food_groups, char, [], fmember fruit_veg,dairy meat,bread_cereal]).
ka_edt({sizes, char, [], [member,small normal Jarge, huge]).

Recall that the fact form for a frame is:
ka_frame(Frame_name, Parents, [Siot,Class, Type,MinMax,Default,Slot,...J).

ka_frame(food, i}, [storage_temp.e.int,[},[],68,
eaten_by e,beings,{},[],human]).

ka frame(food_group, [food], [storage _temp,e,int[],[],68,
eaten_by,e,beings,[],[],human,
characteristics,f,char,]],[],[},
group_name,e,food_groups,{1,[L{)).

ka_frame(fruits, [food_group], [storage_temp.e.int,[].1],68,
eaten_by,e,beings,[],[],human,
characteristics,{,char,[},[L]],
color,g,color,1,[1]],
fruit_name,e,fruits, 1,[1]],
group_name,2food_groups,[],[11],
grown_in f,state[],[],'Fla’,
minerals_in,f,raineral,[),[].[},
Vitamins_m,f,vitamm,[},ﬂ,ﬁ,
size,e,int,[],[.normal,
taste,e tastes,[Ll] sweet]).

Figure 20. EDT and Frame Type Examples

Implementation

79

merged according to the class and type for the slot. The following heuristics are applied.
1. If the slot name, class and type are unique, the slot is intherited.
2. Duplicate siot names with the same clags and same type are inherited once.

3. Duplicate slot names having different classes (e, f, I) are not allowed, An error message is
provided to the System administrator if this OCCUrs.

4. Duplicate slot names with the same class but a different type are'inherited as follows: a) if 5
subsumption relationship can be established, then the Stronger frame type is used, b) if 4
subsumption relationship cannot be established, then an EITOTr message is generated.

Facts contain e parent frame type ang s direct descendant frame type:
ka _fjnarerzt(Parent__type,Cizild__rype). Frame taxonomy relationships are reported by
subframe_list(Frame_t;;oe,Subﬁ*ames) and supefﬁ‘ame_‘_list(]?mme_rype,Supe:ﬁ‘ames) which returmn

a list of immediate sublrame types and 4 Iist of all ancestors respectively, These predicates may also

have a parent-child relationship.

The subsumes(Ancestar,Descendanr) predicate indicates whether one frame type 1s a generalization
of another. Qpe Irame subsures another if all of its slots are either included i the stronger frame
type’s slot list or are generalizations of slots in the stronger frame’s slot Tist (for example, EDT
parents and chiidren). If every slot of a frame type A comesponds to a siot of another frame type.
B, with either the SAme name and type or Wwith a Sironger type than one in B, then frame A
subsumes frame B. Therefore, any frame stored as & parent of another frame should subsume 1ts
child frarne, However, g parent-child link is not required for one framg IYPe 10 subsume another.
Finally, the frame type manager of the KA complex includes the Slor_lz'st(Frame_type,SIodist)
predicate 10 return g fr.a.me type’s list of slots or to succeed if 2 given list of slots is a proper subset

of the frame’s slotlist,

Impiementation 80

Relation Type Manager: The highest leve] of knowledge in the system is provided by logical re-
lations. Relations model propositions over objects. Relations may exist among EDTs, frames or
other relations. For example, synonymy or antonymy relationships may exist between ‘headworg’
elementary data iypes in the lexicon; a relationship author_of may exist between a person frame
and a bibliographic frame, The relation type manager provides the {ools needed to create and ma-

nipulate logical relations.

Arity is the number of Arguments required in the argument list whep a relation object ig
‘ instantiated. :

1S, arguments Tepresent the types of objects which may be related by this
Relation_name. :

When arity equals two, binary relation properties as illustrated in Figure 2} may also be assigned.
Reflexive, transitive, symmetric and antisymmetrie Properties are asserted when applicable 1o binary
relations, as indicated by the system administrator, The transitive relation may also be assigned a
confidence value 1 indicate the strength of the transitivity, where J is the weakest and 10 is the
Sirongest. Binary properties {or relation tYpes are asserted ag Separate facts of the forms:

reflexive R e!arion_name) .

Symmerricy Relaziorz_name) .

ARLISPITmIe tyic (R eiatia.rz_rzame .

ransitive(R e]azz'on_rzame, Confidence).

The relation 1ype manager also contains predicates which can Supply information about relation

o

type definitions, The ariry(Relarion_rmme,Arz'zy) predicate returns fhe number of arguments Te-

Implementation 81

I ka_relation(synonymy, 2, [queryqterm,headwordj).
reﬂe}dve(synonymy).
symmetﬁc(synonymy).
tra.nsitive(synonymy,S). _

Examples of argument lists are
[domjcﬂe,home] and [house,home]

2 ka__re]ation(pm_of, 2, [issue,article,joumal,book}).
antisymmetric(paz‘t_»of).
transitive(pan_of 103,

Examples of ar

gument lists are
farticle# 123, joumal#456}

Figure 2j, Relation Type Exampies

Tetemeree

Implementation

will use the ask function with these predicates, for example,

askf. knowadm, signatyre (part_of,Arg list).

4.2.2.2 Object Managers

priate EKBs such as the user model base, or objects such as Structured names apd addresses in
queries may be created locally for use during one retrieval session only. The object manager pro-
gram issues asks to the I¥pe ranager program to validate objects entered as slot values or relation
arguments. Unliks the t¥pe manager, the object manager does not have s own socket and is not
included in the CODER configuration. Rather, modules requining frame or relation objects consult

the object manager code.

Frame Object Manager: The new _Jrame predicate aflows establishment of a4 new frame object. This
predicate is of the form: new_ﬁunze(}’mme‘gyve, Frame_object). Any CODER expert may issue

the new frame predicate to creats a new frame object ag long as the Object manager code has been

Implementation &3

consulted. When 1ssued, the frame_type must be bound to a defined type; frame_object may be
unbound, in which case jt will be returned as the object identifier which has been assigned. If the
module creating the object wishes to assign its own identifiers, it may do so, However, the identifier
assigned must be unique within the module’s local fact base of frame objects. Two types of as-
sertions occur to create new frame object:
Jobjid(Object_jdemfﬁer, Frame_type)
Jobj(Objecr_identgﬁer, Si'ﬂg_mme, Slot_value_list).

Sample facts representing two frames are listed in Figure 22. When new frames are created, the
fobjid fact is asserted. Next, any slots having non-nyl] default values are asserted as fobj facts,
Therefore, a fobj fact will pot necessarily exist for every slot defined for a given frame type. Indeed,

no fobj facts are required when a frame object is created, Opge a frame object has been created,

values such as defaulis may be removed and/or new values may be assigned.

methods considered. However, it simplifies processing of stot value manipulations and reduces
€xecution time processing by climinating the Jist traversal required by other methods. Two other

possibilities were examined in conjunction with the one adepted,

L For each new frame object, a single fact could be asserted as:

Jobjf Objecr_jifmme_r}pe, [Slotname. [Faluesf SSlotname. | Falues/,...]).

All slot names and a Jist of values for each would be inciuded in a single fact, Although this
method would considerably reduce the size of the knowledge bases created and eliminates the
redundant storage of the object identifier necessary in the method chosen, it would require Jist
processing and manipulation EVery time a slot valys were added or removed. In addition, the
frame object manipulation predicates would require excessive list processing. The frame ob.-
jects in Figure 22 would be replaced by two facts: |

fobj{1636109] 7,user_eva1,[satisfaction.[8],usefu1ness.[’67-90’],why_stop.{ ‘out of time’),...}).
fobj(16361 0918,sassion,[nodoc_queries.{O},doc_quantity.{ 10),user_eval[1636109] 7.0

Implementation 84

fobjid(163610917, user_eval).
fobjid(163610918, session).

fobj(163610917, satisfaction, [8]).
fob](163610917 usefulness, [67-90}

fobj(163610917, why_stop, ['out of time’]),

fob1(163610917 easy_to_use, [y]).
f0b1(163610918 nodoc _Queries, [0]).
fobj(163610918 doc_gquantity, F10D).
fob1(163610918 user_eval, [163610917]).
f0b1(163610918 sessmnigth [154]).
fob}(163610918 session_id, [26968]).

Figure 22, Sample Frame Objects

Implementation

35

2. To reduce storage requirements even more, the Siotname could be eliminated from the list of
slot names and values, Instead, each list of values would positionally be matched to the sfot
names defined in the frame type definition. So, the single fact for each object would contain:

Jobj(Object_irLFrame_type,[[Values],[Values] ... /).
This method would require even more extensive list manipulation as well as matching of the
frame type slots to the object stot value list for all frame object manipulation. In cases where
no values were assigned to slots, each slot would stil] have to be included in the list so that the

positional values could be properly matched to slots in the frame type definition.

The implementation strategy for frame objects could be rewritten according to one of the above
methods or using some other strategy. Such modification, however, would require rewriling of afl

frame object predicates as well as rewnting of modules which use the current frame object structure.

Qbject Manipulation: Predicates to support the manipulation of frame objects allow updates to slot
values, and support reasoning about the relationships between or among frame objects, Is _fiame
and has_slot_value predicates return information about the existence of frame objects and the values
assigned to frame slots, respectively. Slot values are asserted using the set_slot_value predicate, and
may be removed with the remove_slot_value predicate, The equal frames and matching_frame
predicates allow comparison between frame objects to establish similarity, A frams object A
matches a frame object B if every filled slot of A matches a filled slot of B. Slot values march when
slot types, c_}asses ang values maich or when values for a slot which subsumes another slot match.
Matching is an antisymmetric telation, whereas equal is a symmetric relation: every slot in A must

maich a slot in B and every slot in B must match a slot in A,

Relation Object Manager: The new_relation predicate creates a relation object. This predicate has
the form

new_relation(Rei tion_type,/ Avg, A rg_typel|] Relation_object).

Implementation 86

As with the new frame predicate, any CODER expert may issue the new_relation predicate to
create a new relation object. When the new_relation goal is attempted, the relation_type must be
bound to a defined type, and the argument list bound to a list of values associated with one of the
types defined in the relation type definition. Relation object identifiers may be instantiated by the

module creating the object or will be assigned by the object manager code,

When a new relation object is created, the following fact is asserted,
robj(Object_identifier, Relation_type, [Arg,Arg_typel J).

Each argument in the argument list must be of the arg_type specified; moreover, the arg_type as-
sociated with each argument must be one of the allowable types defined in the argument_list of the
relation type definifion. For example, for the relation ‘part_of” in Figure 21 only arguments which
are issues, articles, journals or books would be accepted.” The number of arguments specified for
the object must equal the arity defined for the relation type. So, an example of a relation object
fact would be:

robj(12345678, part_of, [issue,23452345,article,12341234])
where 12345678 is the identification of this relation object, 23452345 is the identifier of a frame

object for an issue frame, and 12341234 is the object identifier assigned to an article {rame.

Object Manipulation: To retrieve information about relation objects, three additional predicates
have been written. The is_relation, like the is_frame predicate, retums the relation_type for a given
relation object identifier and vice versa. The argument_list(Rel_object,Arg list) and

argument(Rel_object,Position, A rgument) predicates retum the valyes and relative positions of ar-

guments for a specified relation object respectively.

" The ‘part_of relation txampie does not include alf relevant argument types for the CODER project,

Impiementation 87

4.2.2.3 Programs and Files

Type and object files for each of the three types of knowledge, EDTs, frames and relations, are
maintained by the knowledge administration complex. Programs for the creation and manipulation
of types and objects are also part of the KA complex. They reside in the ~coder/know_adm type

and object subdirectories as follows.

knowadm 1s the knowledge representation type manager program,

ka_localobj is the knowledge representation object manager program,

type files include the ka_frame_file, ka_edt_file and ka_rel_{ile containing the type definition facts,
ka_inv_frame_file contains the inverted frame parent-child facts, and

object files per knowledge base exist for frame and relation objects. For example, the user model
' base contains the ka_user_fobj and ka_user_robj files.

The knowledge administration type manager, knowadm, acts as 2 Prolog resource manager. That
is, other inferential modules may ask the knowadm module for information about EDT, frame and
relation types. The knowledge administration system contains additional programs and files to
complement those for types and objects. During development of the input analyst module, need
arose for natural language description of slots to clarify slot name mnemonics. In addition, iden-
tification of th.e prompt to be used when prompting the user to supply slot data and the tutorial file
to be displayed if the user requested explanation of the slot were needed. Therefore, the ka_slotdesc
{ile was created as an anéillary to the ka_frame_file. Iis facts contain a natural language description
of each slot defined for a frame type and the prompt and tuteral file associated with the siot. The
build_desc program was written to prompt the system implemf;mor for siot description data. The
same program. may be used 1o add new slot descriptions as new {rame typss are defined. Programs

also exist to print or display frame definitions and objects.

Although not all of the functions provided by the knowledge administration complex are used by
the Version 1.0 modules, representations of entites, classes of entities and the relationships between

them can be defined and stored using the KA type and object managers. The type and objsct

Implementation 88

programs are the largest of the CODER retrieval subsystem inferential modules. The files con-
taining the type definitions and object data are relatively small and are consulted as local fact bases
by this version of the retrieval subsystem. However, incorporation of the NU-Prolog version of
MU-Prolog will support the minor modifications required to establish the KA files as external

knowledge bases supported by special Prolog extensions.

A facility for modifying type definitions does not exist. Due to the complex taxonomies which
may be created by EDT and frame type structures aﬁd the inherent difficulty associated with such
modifications, maintenance to type definitions can be applied by the system administrator only by
means of editor software such as vi. It is hoped that the structure of frames to represent documents
and document fields will be stable enough that lack of a maintenance facility will not stifle the

system’s capabilities.

4.2.3 Input Analyst and Report Modules

With the blackboard, strategist and knowledge administration modules written and tested, devel-
opment of the retrieval system “front-end” as shown in Figure 23 was targeted as part of this re-
search. The CODER system design did not include details concerning the flow of information to
and from the user. Review of the distributed problem treatment (DPT) modet discussed by Belkin
et al. [BELK 83] supported the decision to strictly control the flow of information between the user
interface manager and the CODER community of experts. That is, rather than allow any module
o send requests to the user interface manager, only two modules communicate with the user
interface manager. The Input Analyst (1A) receives all input firom the user via the interface, and

the Report Generator sends all system generated output to the user via the interface.

8 The term input analyst has been adopted from the work of Belkin et al.

Implementation B9

- convert, user
request to
internal form

Blackboard/
Strategist

&

information
intended
for the user

other
moduies

| Input
Analyst

usar requests
and responses

User Interface
ager

Report
Generator

Figure 23, Retrieval System Front-End

fites, menus,
etc., to
be displayed

Impiementation

90

As part of a Master’s project, a generic user interface was written using the UNIX curses package
[KHAN 88]. The user interface manager will not be discussed in detail here; however, the input
analyst and report modules, developed and tested as part of this research, will be deseribed in this

section.

4.2.3.1 Input Analyst (I4)

Every user response to menus or prompts is passed directly from the user interface 1:6 the TA
module. The module converts user input 1o an appropriate internal system form, determines on
which area of the blackboard the input should be posted, and posts it as a hypothesis. The black-
board is the only module called by the inpuf analyst, and the input analyst is the only module called
by the user interface. It is also the bn.ly module which will not be scheduled by the sirategist to
perform tasks. The user interface manager, rather than the blackboard/strategist compiex, provides

all direction for the mput analyst.

- Prompts: The architecture of the prompt file was discussed in detail in chapter 3, section 3.1.3.
When the user enters a response 10 a prompt, the response, validated by the user interface manager
if required, is passed to the iﬁput analyst via the protocel(i&,resp(Respome_.f’rompt_nbr) } com-
munications function. Based on the prompt number, the ia module may or may not store local
information about the response, and will post a hypothesis to the blackboard ﬁzdicat'mg action to
be taken based on the user response. For example, the user response to prompt number 53, “HAI
lookup entry:”, a term, phrase or person’s name, is processed by the input analyst as follows:

1. Domain knowledge within the 1A module indicates that prompts 52 thru 54 are requesis to
browse the HAL :

2. Alocal fact, stored by the input analyst when a HAI browse menu option was selected, iden-
tifies the type of browse, e.g., index subject, person or italicized references, requested,

Implementation 91

3. The hypothesis hai_req(Type_of_browse,Response, Time) is posted to the user_reg area of the
blackboard. The strategist will subsequently schedule the browse expert to locate the requested
information in the HAI so that it may be presented for user browsing.

NISO Command Input: The proliferation and diversity of online interactive information retrieval
systemns has resulted in different vocabulary and syntax for commands which pcdoﬁn the same
function, but on different systems. To provide users with a common command language, the Na-
tional Information Standards Organization (NISO) has defined NISO standard 739.58-198. “The
standard specifies the vocabulary, syntax, and operational meaning of commands in a command
language for use with online interactive information retrieval systems.” [NISO 87]. The CODER
A module includes processing of applicable NISO commands. Not ali commands, such as data-
base selection, are required by the CODER retrieval subsystem and only those functions which

Version 1.0 modules can process are included.

Commands which may be entered in a designated window or in response to a NISO command

entry prompt include:

EXPLAIN |topic] If entered alone, a list of topics that can be explained will be displayed. When
' entersd with a topic, a tutorial file or menu for the iopic will appear.

HELP Provides online assistance specific to the current situation.

STOP To terminate a session. This command will cause the system state 1o be changed to
user_done and will initiate the user gvaluation segment of the session.

FIND query To enter a search statement in Boolean format (not impilemented). For exampie,
FIND TI treaties AND alliance.

SCAN [term] To view an ordered list of search terms. This command cannot bs fully implemented
until the dictionary of search terms is provided. Then, when the user eniers scan
some_terim, a list of terms, either related to the term entered, or in alphabetical sequence,
may be displayed for user browsing. :

RELATE [term] To view terms logically related to0 2 search term. If entered alone, this command
will cause the lexicon related term menu to be displayed. If entered with & term, the
lexicon browse module will be scheduled to find related terms.

DISPLAY [options] To view the results of searches of the database.

PRINT {options] To request offline printing of search results.

SORT {options] To arrange records in search result sets by specified field.

Implementation 92

REVIEW [datasets] To view search history, that s, search statements. This command will perform
as does the “document archive” option of the browse main ment.

Although these commands are included in the nput analyst module, and will be posted to the
blackboard, the abibity to properly perform the functions indicated by the commands is dependent
on other modules. Only the help command functions properly at present. The majority of the
commands listed depend on the search engine and the lexicon, both of which are still under devel-

opment by other graduate students.

Structured Knowledge Entry: Approximately balf of the Prolog code for the JA module is devoted
to processing the user’s entry of structured knowledge. The term structured knowledge refers to
entry of data to fill one or more slots in 2 frame. Frames include issues, messages within 1ssues,
document types, names, addresses and dates. The current CODER system frames types, stored in
the ka_frame_file by the KA complex, appear in Appendix G. Frame types were defined b\;,f Qi
Fan Chen, the graduate student working on the CODER analysis subsystem. The input analyst
creates frame objects containing user input and posts them to the blackboard where they can be
viewed by the search expert to be matched to frame objects previously created during documnent

analysis by the analysis subsystem.

When the user indicates the ability to provide information about canonical structures in the data-
base being searched, the input anaiyst posts a hypothesis indicating that a frame has been requested.
The report moduie, scheduled by the strategist, begins to prompt the user o enter slot information.
As information is entered, the input analyst stores the responses 0 that a frame object can be cre-
ated when the user has completed slot entries. Since slots of frames may be other frames which
may have slots which are other frarmes and so o, ail lowest level frame objects must be created first

so that frame object identifiers may be used to set stot values.

Additional complications arise because some slots which are frames, for example'the postal_address

slot in the individual frame, may be generic classifications of more specific frame types, such as

Implementation 93

U_S_mail ot non_U_S_mail. To narrow the user’s search, the most specific frame desired 1s the
one which should be created and matched to frames representing documents. Therefore, the IA
module creates an indented tree structure of subframe types. Following display of the tree, the user
is instructed to select the most appropriate frame type, and will be prompted to enter slot values
for that frame type only. The structures and {rame manipulations provided by the input analyst

are used to test the hypothesis “Users can perform more effectively when structured knowledge is

employed.”

Callable Functions: The functions which the input analyst can process and the hypotheses which
it posts to the blackboard are listed in Table 2. Many of the calltable goals could be processed in
one goal by the IA module. For example, where goals are passed as menu file parameters (see
Figure 5), many goals could use the same Prolog functor and supply its arguments as the functor
and arguments to be posted. The 1A module could append a time to the arguments and then post
the predicate to the blackboard. However, 10 maintain clarity of processing and to avoid confusion
regarding the source of posted predicates, this straiegy was avoided for the first implementation of
the system. Because all goals are distinetly defined, 'persons developing future versions of CODER

will be able to easily trace the source of blackboard postings.

4.2.3.2 Report Module

The CODER report generator module sends all information to be displaved to the user interface
manager. It is scheduled by the strategist based on imternal system processing Or On USer Iputs
channelled through the input analyst. | The report generator 1s the only CODER module which
directly sends information to be displayed or edited 1o the user interface manager. 1t controls the
display of menus, files, editors, prompis and mmessages; this module also formats requested browse

data for user viewing, and determines in which windows data will be displayed.

Implementation 94

Table 2. Input Analyst Callable Goals

FUNCTOR in

CALLABLE GOAL HYPOTHESIS AREA COMMENT

setup_screen
menu(Menu)
hai_req(Request)

lex_req{Request)
um_req(Request)
tut(Tutfile}’
displayf{File,Hdr,Next)
state(State, Trans)
pmsd_menu({Resp,Menu)
um_menu(Resp,Menu)

resp(Resp, Promptid)*

frame_req(Frame, Rel)**

frame exit

state
disp_menu
disp_prompt
disp_prompt
um_req

tut
displayf

state
prob_resp
um_resp
lex

hai
prob_resp
um_resp
disp_frame
displayf
disp_prompt
nextslot
relation

frame

disp_frame
dispiayf

disp_prompt

done_frames

* Aetion iaken depends on Promprid
** detion taken depends on state of processing

siate
user_req
user_req

user reég

user_req
user_req
user_req
state

problem

umodel
user_req

user_req
probiem

umodel -

user_req
user_req
user_req
user_req
user_req

user_reg
user_req

user_req

user_reg

initiates system states
ment requested

HAIT browse request;
lookup entry prompt.
Lexicon browse request;
lookup entry prompt.

User Model browse reguest
iutorial file request

fite dispiay needed

state transition indicated’
response ic a problem
mode/state/descr menu
response 1o a user model menu

prompt indicates lex browse
prompt indicates HAT browse
response is for a problem
mode/state/descr prompt
response 1s for a user model
prompt

if slot frame has no subframes
if slot frame has subframes,
indented tree is displayed.

display next slot of frame

any relaiion objects for
previous frame are posted.
any frame objects for previous
frame are posted.

if {rame has no subirames.

if frame has subframes,
indenied tree is displayed.

user is done frame entnies

Implementation

95

The report module assumes some of the roles that would be assigned to a dialog expert if one were
included. That is, it manages windows and controls what the user sees. However, a true dialog
expert would “determine the type of dialogue appropriate to the given context.” |BELK 83]. De-
pending on the type of user, the problem state and the problem type, 2 dialog expert would deter-
mine the type of dialog used to clicit information {rom the user and to inform the user of the
system’s progress and intentions. The report module, on the other hand, uses only the type of
dialog, for example the prompt of display message, indicated by the hypotheses which other mod-
ules post to the blackboard. It makes its inferences based only on blackboard information and on

its own knowledge about current and previous data displayed on the vser interface windows.

To instruct the user interface to display information, the ‘window’ function and the “ask’ predicate
may be used as foliows:
ask(user_interface,window(Win_num, Wi in_tirle,Dam,0ption,CIear:ﬂag) Je

where

Win_num: 1-6 to indicate the window to be used,

»ow

Win_title: any title for the window, or 7,
Data: a prompt number, message string, or the name of a file.

Option: Options indicate the action that the user interface manager is
i take. The options provided appear in Table 3.

Clearfiag: 0 = no clear, 1 = clear.

Since all calls to the user interface manager are located in one module, replacement of one user
interface with a different one will require changes to the report module only. I the $AIME -ZENeTic
functions are performed by a new user interface, then no changes to the report module would be

necessary.

The report generator module formats textual data requested for browsing. For example, lexical
definitions or related terms are posted to the blackboard as fists of data ftems. The report expert

converts the internal system formats into structures suitable for user viewing. Portions of text from

Implementation 96

Table 3. User Interface Manager Options

~Ihth DR O

Option

(T T T (| A

clear

display file
display menu
display error
edit file

display prompt
do nothing
display message

Data

Clear window (for multiple windows)
File name, including path

Menu file name, including path
Error message string

File name, including path

Prompt number

None (for multiple windows)
Message string

Implementation

97

the HAI are also structured by the report module so that different text references and matched terms

or names are distinctly displayed. Additional details are provided in section 4.2.4.

Structured Knowledge Entry: In conjunction with the mput analyst module, the report generator
determines the prompts required for user entry of structured knowledge. The ka_slotdesc file is
consulted to determine prompts to be displayed by the user interface manager for each slot of a
requested frame. Not all siots in every frame will have associated prompts. For example, the user
would not be asked 1o enter data into the dig_id slot of the issue frame {see Appendix G) since that

slot contains a value assigned by the CODER analysis subsystem.

The ka_slotdesc file, discussed in the previous section, contains facts in the form:
ka_slotdesc(Frametype,Slot,Class,Prompt,Slot _frametype, Tutorial) .

‘The Class .argument indicates whether the slot is 1o contain an EDT, frame or relation object. If
the Prompt number is not zero, the report module asks the user interface manager to display the
prompt identified by the number entered as this argument. Where slots are frames, the associated
prompt is a yes/no prompt to determine whether the user has information about the frame. If the
user responds positively, the report module proceeds to prompt the user for the slots for that frame.
When: prompts for all slots have been dispiayed, the report module uses local knowledge to return
to the prompt for thé next slot of the originat frame. As with the input analyst module, the proc-
essing to support structured knowledge entry is somewhat complez, and is included to test the hy-

pothesis regarding use of structured knowedge in an intelligent information retrieval sysiem.

Callable Functions: The blackboard hypotheses which the report module can process appear in
Table 4. The only functions which the report module requests are those processed by the user
interface manager. Functions listed as calfable goals tepresent hypotheses which other modules
may post to the blackboard. The Tm argument is a distinct timestamp needed to differentiate hy-

potheses which have the same functor and other identical arguments. For example, the user may

Implementation 98

Tabje 4. Report Generator Callable Goals

CALLABLE GOAL
setup_screen
tut(Tut,Depends, Tm)

displayi{ File, Hdr,Nxt, Tm)
disp_menu(Menu,Dep,Tm)
disp_frame(Frame,Rel, Tm)
done_frames
nextslot(Frarne,5lot, Tm)
disp_msg(Msg, Tm)
disp_msg(Msg,Value, Tm)
disp_error(Msg, Tm)

disp _prompt{Prompt,Hdr,ij
editf(File,Hdr,Depenés,Tm)
Eax_ouiput(’Kind,Te‘rm,Result,Tm)

hai_output(Kind, Term Result, Tm)

OPTION in ASK
to USER INTERFACE

setup_screen
display file
display file
display menu
display prompt
display file
display prompt
display message
display message
display error
display prompt
edit fite .
display file

display file

COMMENT
initializes screen window
tutonal file is displayed
requested file 1s displayed
menu file 1s displayed
prompt for slot entry
display Thank you file
prompt for next slot of frame
display text message
append dynamic Value to Msg
special error processing
display prompt, send response
display file for editing
format lexical output

format HAT cutput

Implementation

99

request the same browse function many times during a single session. Without the timestamp, the
hypothesis would be rejected by +he blackboard with the message “*Warning - hypothesis already

exists with equal or higher confidence.”

4.2.4 Browsing

Two inferential browsing modules are included i the Version 1.0 Coder system. The Jexical expert
accesses the facts derived from the Collins Dictionary of the English Language. The drowse expert
extracts text relevant to a user’s request for information from the three volume Handbook of Arti-
ficial Intelligence. A CODER resource manager, hai_mgr, has been written fo extract indicated text
from specified files and line number ranges. A similar program, text_mgr, extracts 1ext from the
document collection so that retrieved documents may be viewed. The modules to support browsing
were prototyped by graduaia students during Spring quarter, 1987 [BARN 87, BISH 87], and the
databases browsed were created earlier by other graduate students [WOHL 86, WENB 85]. The
user interface manager [KHAN 88] provides the ability for users 1o select words or phirases via a
program function (PF) key. Selected words or phrases may be displayed during query entry so that
users may incorporate them into queries as desired. No aufomatic inclusion of selected terms is

available in this version of the retrieval subsystem.

Both infereniial browsing modules require additional enhancements. The lexical module must be
adapted to handle modifications mads to lexicon facts as part of a separate research project, "Qr-
gan.izipg Lexical Knowiedge for Information Retrieval. " The browss module must be expanded to
include enhanced browsing of text in the document collection. Implementation of natural tanguage

guery processing would require additional functions in the modules.

9 The lexicon project is funded by National Science Foundation Grant IRI-8736580.

Implementation 100

4.2.4.1 Browsing the HAI

Based on a user’s request to browse the Handbook of Artificial Intelligence, the browse expert uses
Prolog facts derived from the HAI to determine which sections of text are relevant to the user’s
request. Separate sets of Prolog facts, created to fulfill class project requirements during Spring
guarter, 1986 [WENDB 86], exist for subjects, index entries, italicized eniries, person’s names and
the HAI tabie of contents. Each fact includes one or two file names (out of 106) and the line
number or range of line numbers from which the referenice was extracied. The current version of
the CODER retneval subsysiem supports menu doven browsing of the HAI. When HAI browsing

is requested, the menu o Figure 24 appears.

HAT Resource Manager: For each option selected, the user will be prompted with a secondary
menu or with a prompt for entry of 2 subject or person’s name. If the browse expert matches a
user request to a HAI fact, the hai_mgr will be requested to extract the text and place it in a iem-
porary file. The original hai mgr was written as part of a Master’s project [KHAN 88}, and has
been rewritten to include C communications funcfions. Before the hai_mgr can access a HAT file,
the file must be preprocessed so tﬁat its ines may be indexed. The browse expert maintains a local
fact base of files indicating which have been preprocessed. If a file has not been preprocessed, the
browse expert issues ask(hai_mgr,preprocess(Filename}). ‘Since all argumentis will be Instantiated
at the time the ask is issued, the hai_mgr and browse expert may execuie concurrently. The
hai_mgr also contains callable functions for extracting single lines or blocks of text. The functions

which may be requested of the HAI resource manager appear in Table 5.

HAI Browse Expert: When the browse by subject option is selected, a secondary menu prompts the

Implementation 161

Browse Handbook of Al

By Subject

By Person’s Name
Table of Contents
Return to Browse Menu
Return to Main Menu

el el

Figure 24. Browse HAI Menu

Implementation 102

Table 5. HAI Resource Manager Callable Goals

CALLABLE GOAL COMMENT
preprocess(File} Indexes HAI text file by line offset

extractline(File,Line, Tempfile) Retums Tempfile as name of file containing
relevant text.

extractbioc(Fﬂe,Begin_line,End_ﬁne,Tempﬁle)
Returns Tempiile as name of file containing
relevant text.

extractbloc2(File1,File2,Start] End2,Tempfile}
Text spans 2 HAI files; text begins at
Start] in Filel and ends at End2 in File2.
Returns Tempfile as name of file containing
refevant text.

Implementation

103

user to select browsing by index entries, italicized entries ** or both. The user will then be prompted
1o enter a term or phrase which the browse expert attempts to match to HAI subject reference facts.
Only an exact match will result in text extraction. Moreover, line numbers or ranges of lines in
all HAI Prolog facts indicate only the lines which contain the matched terms. Therefore, an arbi-
trary number of lines surrounding the matched lines are extracted and placed in a temporary file,
‘The name of each temporary file created is posted to the blackboard; all files containing relevant
text will subsequently be concatenated and formatted for viewing by the report generator module.
A more “intelligent” version of the browse expert or of the program which extracted HAI references
originally shouid identify optimal line number ranges of paragraphs or other blocks of text which

are relevant 1o the subject referenced.

Unlike subject browsing, browsing by a person’s name does not require an exact match. Most
names found in the HAT are stored in Prolog facts as a single argument containing last name, first
name or initial, middle initial’. A parser was written to create additional facts which segregate the
components of the person’s names. When a search by name is indicated, the browse expert first
attempts an exact match. If that fails, it tries to match as many as possible of the name components
supplied by the user. For example, if the user énly enters a last name, then all references to any
person having that last name will be extracted. However, if the user enters a last name and first
name, exact matches exciuding middle intial, and matches to last name and first initial will be ex-
tracted. Naturally, some matched references will not give the user precisely what he/she was look-
ing for. For example, a user’s entry "Marigold Minsky” would be maiched to facts containing the

person ‘minsky, m.’, Hkely a reference to Marvin Minsky.

The third option, Table of Contents, allows the user to browse the HAI table of contents or 1o re-
guest broader or narrower terms for a given term or phrase. The Table of Contents menu is shown

in Figure 25. A portion of the HAI Tabie of Contents (TOC) appears in Figure 26. Either the

19 Due Lo the size of the file containing italicized entry facts, only a subset of the italicized entries is inchuded
in this version. Implementation of external knowledge base functions will allow inclusion of all itaficized
entry facts.

Implementation 104

Browse Related Subjects

Broader Topic

Subtopics

TOC Listing

For Italicized Entry

For Index Entry

Retum to HAI Browse Menu
Return to Browse Menu
Return fo Main Menu

poIO kLo

Figure 25. Browse HAI Table of Contents Menu

Implementation 105

HANDBOOK OF ARTIFICIAL INTELLIGENCE
TABLE OF CONTENTS

handbook of artificial intelligence
introduction
artificial intelligence
the ai handbook
the ai literature
search
overview |
problem representation
state-space representation
problem-reduction representation
game trees
search methods
blind state-space search
blind and/or graph search
heunistic state-space search
basic concepts in heuristic search
a*--optimal search for an optimal solution
relaxing the optimality requirement
bidirectional search
heuristic search of an and/or graph
game tree search
minimax procedure
alpha-beta pruning
heuristics in game tree search
sample search programs
logic theorist
general problem solver |
gelernters geometry theoremS$-proving machine
symbolic mtegration programs
strips
abstips
knowledge representation
overview 2
survey of representation techniques
representation schemes
lege
procedural representations
semantic networks
production systemns
direct (analogical) representations
semantic primitives

frames and scripts

Figure 26. HAI Partial Table of Contents

Implementation

106

entire TOC or just supertopics and subtopics for one of about 220 subjects in the TOC may be
requested. The subject browsing options are also included so that users need not navigate the menu

structure if they wish to see more information about a listed subject.

Callable Functions: Table 6 lists the callable goals in the browse expert.

4.2.4.2 Browsing the Lexicon

The lexical expert accesses the Prolog facts contained in twentv-one relations derived from the
Collins dictionary [WOHL 86]. Presently, the Jexical expert only supports browsing of definitions
and their components in the dictionary. Implementation of natural Janguage parsing of queries
may require additional functions in the lexical expert. Representing approximately 85,000
headword entries, the lexical facts are too numerous to be loaded into local Prolog fact bases.
Therefore, only a subset of each of the relations has been used to develop the lexical expert. As
part of the lexicon research project previously mentioned, methods using Prolog external knowledge

bases, B trees, or C programs for searching the lexical fact bases are being explored.

When Jexicon browsing is requested, the menu in Figurs 27 is displayed. All options will eventu-
ally result in 2 prompt to the user to enter a lexical term. No stermming of terms or mormphological
analysis 1s presently provided by the system. The Parts of Speech and Variant Spellings options
simply match the term entered to a headword stored in Prolog facts for part of speech or vanant
spelling. A Hst of parts of speech or alternate spellings is posted to the blackboard and subsequently.
formatted for viewing by the report module. The Definition option results in extensive navigation
of the hierarchy of facts stored for each headword entry. A list containing the textual definition and

all components of the definition, such as abbreviations, parts of speech, synonyms, variant speliings

Implementation 167

Table 6. Browse Module Callable Goals

FUNCTOR in
CALLABLE GOAL HYPOTHESIS COMMENT
hat{Function,Subj, T'm) hai_output functions are indicated by
menu options selected.
i.e., gel_aith_person, get index,
get_subtopics, get_rel subj,
get_jtalics, get_italics_span,
get_supertopics, find_hierarchy.
results iext_output display documents retrieved

Jmplementation 108

Browse Lexicon

Definition

Related Words and Phrases
Parts of Speech

Variant Spellings

Sample Usages

.Return to Browse Menu
‘Return to Main Menu

e

Figure 27. Browse Lexicon Menu

Implementation 109

and morphological variations, is posted to the blackboard and processed by the report generator for

display to the user.

The Related Words and Phrases option results in display of a secondary menu shown in
Figure 28. Results displayed for each option are derived directly from the Prolog facts for the
comesponding relation. As those relations and their derivation are discussed in detail in other re-

ports [WOHL 86, FOXE 86d] they will not be rediscussed here.

Caliable Function: At present, only one goal is recognized by the Iexical expert:
lex(Function,Weord, Timestamp}. Functions are indicated by menu opiions selected during lexicon

browsing, and include the foliowing:

define a defiition

relt related terms

use sample usages

pos parts of speech

varspell varant spe]]ingé

morph morphological variations
abbrev abbreviations

synonym Synonyins

For each function, the hypothesis lex_outpur will be posted with the browse data requested.

Implementation 110

Browée Related Words and Phrases

Synonyms
Morphologically Related
Variant Spellings
Category
Return to Lexicon Browse Menu
Return to Browss Menu

" Return to0 Main Menu

N LI

Figure 28. Browse Related Words and Phrases Menu

Implementation

111

4.2,5 Problem Description Builder

One of the primary functions of the CODER system, as with any information retrieval system, is
to create a representation of the user’s problematic situation. Users are often unsure of the precise
nature of their problems; therefore, the system must attempt to obtain as much information as
possible about the user’s problem so that a model of the problem may be generated. The goal of
the Problem Description Builder is to create this model. The model will be used by the Query
Formulator expert to post a searchable query. In addition, informaiion collected about the user’s

problem situation will be stored in session frames per user.

The Problem Description builder, identified by the system as probmsd, builds a description of the
user’s problem state for a given search and controls the transition of stages in the retrieval process.
It combines the functions defined by N. Belkin, P.J. Daniels and H. Brooks for the Problem Mode,
Problem State, and Problem Description modules of an intelligent information retrieval system.
Subgoals of these functions have been classified for the CODER system as belonging either to the
docurnent, real or systern world. Per Belkin, Brooks, and Daniels, the problem mode, state and

description are defined as follows.

Mode etermines the system mechanism to be used and explains system capabilities to the
user.
State determines the position of the user in the problem treatment process, for example,

whether the user is just beginning search, refining the search or is looking for a specific
document which he/she has atready seen.

Description includes subject, coniext, terms, research area and subject literature references.

The approaches of the aforementioned researchers have been integrated into the CODER view of
the Problem Description. Three decompositions of problem description have been reviewed and

are discussed here briefly,

1. per Belkin et al. [BELK 83], the problem description consists of 4 functions:
a. problem (ype: for example, procedural, decision-making or learning.

b. problem structure: whether the problem is coherent, unstructured or has gaps.

Implementation 112

c. problem topic: subject matter, terms and topics.

d. problem confext: purpose of the query, user’s research area, user’s area of interest, etc.
2. per Daniels et al. [DANI 85], the problem description consists of 5 subgoals:

a. topic: subject matter, terms and topics.

b. research: user’s area of research and/or research topic.

¢. subject: subject background, a broader subject area than topic.

d. document: content of the documents the user wishes to retrieve.

e. subject literature: literature of the subject domain already known to be relevant, such as
key authors or works,

3. in the CODER spstem, the problem description contains 3 worlds:

a. The document world deals with the physical/logical structure of documents to be retrieved,
for example, message refationships within documents. This world is related to Daniels’
document subgoal.

b. The real world, the largest of the 3 worlds, contains the context, topic, terms and subject
area to be retrieved. This world would include the topic, research, subject, and subject
literature subgoals discussed by Daniels, et al. as well as Belkin's topic and context fune-
tions.

¢. The systern world addresses functions of the information retrieval system being used, for
example, the quantity of documents desired, sorting of retrieved documents or
recall/precision level expectations.

Each of the three CODER worlds has been examined in light of the following:

* problem description subgoals and functions discussed by Beikin, Daniels, and Brooks;
* the CODER knowledge administration complex;

* message relations and AlList -documem structure; and

* sample queries generated by graduate students for different issaes of AIList Digest.

Each world is discussed below, Whers frames are lListed, it is intended that the input analyst module,
and later classifigation experts, may post partially filled frames. For example, the name frame for
an individeal may contain only the last name of the sender of a digest message; the first and middie
name slots may be empty. The ’post_frame’ predicate, one of the knowledge administration local
frame predicates, may be used to post partially filled frames to the blackboard. Where elementary
data items, lowest level data, are listed, it is intended that this data be posted as standard blackboard

hypotheses,

Implementation i13

Document World: The document world refers to the physical'and logical structure of documents,
It may contain EDTs, frames or relations to represent the physical or logical structure of docu-

ments.

1. Frames contain the user’s entry of structured knowledge. Such frames may include:
¢ Digest issue frames containing issue attributes such as volume, issue, topics and issue date;
* Digest message frames having message attributes like sender of message and date sent;

¢ Document type frames representing document logical structure, for exarnple, seminars,
conference announcements, news reports, humor, etc. Document types are not yét fully
implemented in the analysis subsystem. The seminar announcement document type 1s the
only type currently recognized by the analysis subsystem.

2. Relations indicate relationships among document physical or logical components.!!

* Message relations represent document logical structure and may include relations such as
those depicted in Table 7 on page 115.

* Physical relations represent document physical structure and may include relations such
as those bisted in Table 7 on page 115. Note that many of the document world frames
contain slots which overlap with information which is relevant to the real world. For
example, the digest_message frame contains slots for sender, an individual, and date_sent,
a Gate frame.

Real World: The real world contains the context, topic, terms and subject area of the user’s problem

situation.
1. Frames contain the user’s entry of structured knowledee.

¢ Frames about individuals contain slots for names, addresses and affiliations of people.
Individua] frame types are used for message author, sender, person tc whom reply should
be sent, person to contact about a seminar, ete. '

¢ Organization frames include any one of the frames within organization frame hierarchy,
such as educational institution, corporation or government agency. These frames have
not yet been implemented by the analysis subsystem.

¢ Address frames may include either postal or electronic mail address information.

¢ Jourals, articles, books and other citations are represented by bibliographic reference
frames. These frames, when implemented, will address Daniel’s “subject literature” sub-
goal. :

¢ Date frames will be posted with the relations: on, before or after. The user is prompted
with a menu 1o indicate whether the time period for which the search is requested is on
a given date, before a date, after a date or betwesn dates.

! These relations are not yet implemented in the analysis subsystemn

Impiementation 114

Table 7. Sample Message and Physical Document Relations

Sample Message Relations:

copyof
annotationof
citation

Sample Physical Document Relations:

centering
tables
middleofdoc
block
_underiined

referto
samedigest
quotation

capitalized
multicolumn
page(X)
wholemsg

list

excerptfrom
beforedigest

replyto

memo
topofdoc
paragraph
sentence

by
afterdigest
aroundsametime

sectionhdgs
bottomofdac
field

figures

Implementation

115

2. Relations for the real world include relationships among terms, such as synonymy, broader
term or verb relations. These relations are not included in Version 1.0. Presently, relationships
among headwords in the lexicon, such as synonymy and broader terms, are indicated by the
lexicon facts ¢ ALSO_CALLED, c_COMPARE, c_RELADJ and ¢ CATEGORY.

3. Elementary Data itemns include words and phrases to be included in the query formulation, for
example topics, hardware, software or user’s research area,

System World: The system world includes information required by the CODER system for its

processing.
1. Frames such as those for user modeling may help to determine search strategy.
2. Elementary Data items provide most of the other system world information.
* Quantity of documents the user wishes to retrieve may be an integer or ‘all’.
¢ The time the user has availabje to do the search should be considered.
¢ Recall and precision level expectations may help to determine the search strategy.

¢ Sorting of retrieved documents may be by relevance, most recent or author’s last name.

In addition to the structured knowledge supplied by the user, information is explicitly acquired us-
ing the prompt and menu mechanisms. Sample prompts and menus used by the problem de-
scription builder to acquire document, real and system world information appear in Figure 29 on

page 117.

Probmsd Functions: The probmsd expert performs the following functions:

. I implemeﬁts a nondeterministic finite state automaton based on the CODER retceval sub-
system flow developed in June, 1987 (see Figure 30 on page 119). The szate hypothasis ?osted
by experts will prompt the domain task scheduler to notify the probmsd. If the predicate in
& hypothesis matches a transition arc for the current state of retrieval, the probmsd expert will
“jump” to the next state and post 2 hypothesis to initiate the action(s) for the new state. Facts
representing the finite state machine are of the form:

Jsm(Curvent_state, Transition,Next_state,Bboard_area}.

If the new state is one which the probmsd module should process, indicated by a Bboard_area

Implementation 116

**+ Sample prompts/menus for System World:

“How many documents would you like to retrieve?”
1. 1-5

2. 5-10

3.10-20

4. 20-40

5. Al

“Are you locking for pariicular Recall/Precision?”
1. Higher Recall

2. Higher Precision

3. Balance Recall and Precision

4, Don’t Know

“Would you like the retrieved documents to be sorted by:”
1. Relevance
2. Author’s last name
3. Date (most recent)
*++ Sample prompis/menus for Decument World.
“Are you looking for a specific, known document? (y/n/help)”
“What portion of documents would you iike ic retrieve?”
1. Whole document
2. Paragraphs '
3. Document Header only
*++ Sampie prompts/menus for Real World:
“How far along are you in your search for information?”
i. Just begnning
2. Refining the search
3. Browsing
4. Other
“What authors have provided useful references?”
“Enter the titles of any books/articles which have been useful:”

“Do you wish 1o enter structured knowledge for query matching? (y/n/help)”

"Do you wish 1o enter terms for query matching? (y/n/help)”

Figure 29. Sample Preblem Description Prompts/Menus

Implementation : 117

of probmsd, it will do so. Otherwise, the Next_state is posted as the functor of a blackboard
hypothesis with timestamp as an argument. The area to which it is posted is contained in the

Bboard_area argument.

2. Although the subgoals of Belkin and Danicls’ Problem Mode, Problem State, and Problem
Description modules have. been studied extensively, they are not incorporated in their. entirety
into this expert. Rather, the document, real, and system worlds devised for the CODER sys-
tem direct the sequence of activity. The probmsd module contains local knowledge about the
prompts and menus it must request for display to the user so that the problem description and

state may be defined.

Goals which the probmsd module can process appear in Table 8 on page 120.

Emplementation ' 118

AugpEaa.] 20y
51 nsay Avplaigg
. wapds ny
407}
praasiay
FaGG

1Jareag "

WEI0J43 asWd Wi e LT §
wopeTpay U
wonengen Uy DS MMOU (Y
din uwa) b.u.D Mu Om LU
pqIsso g panag Wtz fuf
"elomly 0 ON JUFURIO(T WnGe Y

:E..a:_:n%m

vogvusiafuf
JuNnID G MHROURVT

neu...:u:U
2iojy

U CSH
Vi

o

40 AN oo
Vi aGsid

wels f 2popy
Ev-zor—

Rupsopibcy

auog

1RO iy
wlL] upgoyy

uone| auLg.j

Lo Py vondipsagg

waqoL|

poamdeyy o

prisenbay
NauDeg ON suoprant}

Furiopbey

I3E() UAOUY
Bupoydxg srpmmey)

Wonds = 1IDNUS
wiiay K1) = (50
apoun f 2:: Juophiasap woqoi] - (155184

feapXe X' |

osa0Ig] — HH

whpary widig— v
1opuroudgy pialay - 1y
FPPos 1950% ~ N

, pre iy J.EHH
gy

Vi Fuios. =
Wil Od)4
———
5[}
LTI}

.._:mj

HAOH Y
=5l

gure . 30.

Retrieval State Diagram

3

F

119

Implementation

Table 8. Probiem Description Callabie Goals

CALLABLE GOAL

state(Transition, Tm)*

prob_resp(Resp,Id, Tm)

utype(User_type, Tm)

done_frames(Tm}

FUNCTOR in
HYPOTHESIS AREA

id_user umodel
char_newuser umodel
char_olduser umodel

user_eval umodel
exploring browse
form_query query
search search
results- results
clean_up cleanup
disp_menu problem
disp_prompt problem
new_query problem
state problem
tui user_req
disp_menu problem
disp_prompt problem
state problem
{none}

state : problem

COMMENT

identify user

characterize new user
characterize old user

user evaluation needed

user requesting browsing
ready for query formulation
ready for search of database
retrieval results posted

end of session

probiem description transition
problemn description transition
new guery, same session
transitions within probmsd

user requested explanation
need more user info

need more user info

got all user info for one phase;
transjtion indicated

saves user type posted by umods!

ia posted done frame entry

*Hypothesis posted depends on the current state and the transition arc.

Impiementation

i20

4.2.6 User Modeling

The information retrieval user base is gradually shifting from a group of skilled intermediaries to a
mass audience of users having diverse aptitudes, computer skills and needs. Inteliigent information
retrieval systems must support and adapt 10 a broad range of users, from novices to sophisticates;
the retrieval system must fulfill the same functions that a human search intermediary performs.

One of the primary functions performed is that of modeling the user.

When a user approaches a search intermediary with a database search request, the intermediary
begins to mentally compiie a set of characteristics about the user. As dialog between the user and
the intermediary proceeds, the intermediary identifies personal characteristics and qualities about
the user. Perceived user characteristics may be based on appearance, MAannerisms, previous know-
ledge about the user, or user answers to explicit questions. Accordingly, the search intermediary
will, for example, conclude whether the user is experienced or mexperienced, 1s just beginning the
search or is refining it,.has] wall.-formuléted or a vague search request. Determining an appropriate
dialog and the degree of assistance required for the user to formuiate a precise query are functions
that the intermediary performs. As an information retrieval system which employs Al methods to
allow more effective retrieval, the CODER system atiempts to simulate some of the functions

normally performed by a human search intermediary.

The aim of the user model module of the CODER system is to ide tfy relevant aspecis of the vser’s
short and long tenm goals, background, experience and knowledge. To accomplish its aim, the
module uses the k_nowl.edge administration complex to build frames and relations for individual
users of the system. From information collected during previous sessions as well as from uses-
supplied responses to menus and prompts, the user modeling expert builds frames for each user.
Slot values in the frames determine the user stereotype to be posted to the blackboard; that type,
as well as other information about the user, may assist CODER modules in determining action

sequences and modes of interaction with the user.

Implementation 121

User Mode! Frames: Based on research by P. Daniels [DANI 86b] frames containing information
about the user have been defined. The user modeling subgoals specified by Daniels provided

guidance for frame definitions. The subgoals include the following.

¢ The user subgoal determines the user’s status, for example,
graduate/undergraduate/faculty/staﬁ for an academic user.

¢ The agoal subgoal identifies the user’s short and fong term goals.

* Assessment of the user’s state of knowledge about his/her problem situation is the third sub-
goal

* The subgoal, level of experience with information retgeval systems, helps to determine the di-
alog mode and degree of interaction required between the system and the user.

¢ TIanally, relevant aspects of the user’s background, such as education or employment, further
characterize the user,

In addition to the user frames incorporating these five subgoals, frames have been created for stor-
age of information about each different session in which a user is engaged. A session represents the
time period from start-up of the CODER retrieval subsystem by a single user to termination by that
user. An individual session may include multiple queries. Information accumulated during previ-
ous retrieval sessions is used to characterize users during new sessions. Like all of the Version 1.0
modules, the user modei expert has been implemented as a prototypical module. Therefore, later

versions will likely require expansion of the frames defined for this version of the system.

Seven frames have been definad for each user. All frames are either slots in the primary user frame,

that is they are part of the user frame, or they are slots in the frames which are part of the the user

frame. The user frame contains slots for wser identification, user iype, frequency of use and the

following frames.

environment: preferred session environment, such as query type, document ordering and document
Guantity (experience subgoal). Preferences are mferred by reviewing up to ten of the last
user sessions, and weighting the preferred environment selected during the current and
previous session more heavily,

. info: general mformation about the user's status (background and user subgoals).

knowledge: user’s level of experience with computers and information retrieval systems (knowledge
and experience subgoals),

loginfo: averages and totals for retrieval sessions; also contains the session slot for frames con-
taining statistics about each session. The session frame contains user’s iong and short
term goals (ugoal subgoal).

Impiementation 122

The user modeling frames and their slots are displayed in Figure 31 and Figure 32.

Sample prompts and menus used to explicitly acquire information about the user appear in
Table 9. Whether prompts or menus are displayed depends on the type of user and the user’s re-
sponses to prior prompts and menus. If the user has previously used the CODER system and in-
formation about the user’s background and experience level has already been obtained, many of the

user characterization prompts and menus will be bypassed.

Browsing the User Model: The user model expert also supports user browsing of information in the
user mode] frames. Background, preferred environment or session statistics may be browsed by the
user, Future versions of the user modeling module should allow a user to modify particular infor-
mation in his/her user frames. In addition, the user should be able to browse a document archive

of retrieved document ids and data about those documents which the user specified.

User Stereotypes: The model of the user contained in the user frames allows the user model expert
to stereoiypically classify CODER users. Pre-encoded assumnptions about users provide three
classifications: nevice, average and expert. When a user type has been inferred, the user modsl
posts the type to the blackboard so that other modules may tailor processing accordingly. About
a dozen rules; mosily in the query formulator and probiem description builder modules, have besn
implernented in this version of the CODER system regarding how best to apply user classifications.
Primarily, user types have been considered .When detemﬂning the kinds of prompts and menus to
be displayed; that is, the user stereotype affects dialog and degree of assistance provided. Advanced
functions, such as applying user modeﬁng data to determine whether 1o expand query terms,
whether to provide general or specific references, or how to translate terms, have not vet been m-

corporated.

Implementation 123

FRAME TYPE: user

Stot

userid
usertype
freq_of use
environment
info
knowledge
loginfo

FRAME TYPE: knowledge

Slot
usedcomp
csers

1STCIS :
knowbool
othenisr
otherfreq

FRAME TYPE: eaviromment

Slot

doc_gty
doc_ordering
type_display
qtype

recall precision

FRAME TYPE: info
Stot

Gegres
educ_field
firstlang
gender
mdividual

Figure 31. User Model Frames

Class
EDT
EDT
EDT
frame
frame
frame
frame

Class
EDT
EDT
EDT
EDT
EDT
EDT

Ciass

Class

EDT
EDT
EDT
EDT

frame

Deseription

user identification

type of user (novice, average, expert)
number of times CODER has been used
user environment preferences

general information about the user

user experience and knowledge

session information

Deseription

ever used a computer (ves or no)
taken computer sci. courses

taken ISR courses

familiar with boolean logic

used other ISR systems (yes/no)
frequency if used other ISR systemns

Description

preferred document quantity

preferred document sort

preferred portion of document

preferred query tvpe (boolean, vector,...)
preferred level of recallprecision

Description

highest educational degres obtained
educational ficld for degree

English as native languags {ves/no)
male or {emale

name, address, ... (ot currently used)

Implementation

124

FRAME TYPE: loginfo*

Stot Class Description

avegfdbk EDT average times feedback used
avgigth EDT average length of queries
avgqehgs EDT average changes to queries
5855101 frame : statistics per session
totdocs EDT total documents retrieved
totfdbk EDT total feedback searches
tothelp EDT total times help requested
totquery EDT total queries

tottime EDT total time on system

FRAME TYPE: session

Slot Class Description

nodoc_queries EDT nbr of queries with no documents found
fdbk EDT feedback query

qchgs EDT guery changes

query EDT query

refdocs EDT retrieved document ids
sessionigth EDT session length

session_id EDT session process id

nbr_docs EDT number of docs found
nbr_fdbk EDT number of feedback docs
user_eval frame user evaluation of session
doc_qgty EDT document quantity requested
doc_ordering EDT documment sort

givpe EDT query type

type_display EDT document portion
recall_precision EDT recall/precision level

research EDT research area

purpose EDT purpose of search

FRAME TYPE: user eval

Slot Ciass Descriprion

easy_to_use EDT system was easy to use (ves/no)
satisfaction EDT evel of satisfaction (1 10 10y
usefuiness EDT percent of documents found useful
why_stop EDT reason for stopping search

* Loginfo slots other than for sassion frame and total time on systemn
are not vet filled.

Figure 32. User Model Session Frames

3
th

Implementation 1

Table 9. Sample User Model Prompts and Menus

For user characterization:

“Enter a unique id (e.g., last name followed by first initial}:”

"Have you ever used a computer? (y/n)”

“Have you taken Computer Science courses? (y/)”

"Have you taken Information Storage & Retrieval courses? {y/n}

“Are you familiar with Boolean logic {yin)?”

“Is English your native language? (y/n)”

"Enter your gender (m=male, f= female).”

“Have you ever used an Information Storage & Retrieval System? (ym)”

"How many times have you used Information Storage & Retrieval Systems?”
1. I-5

2. 6-10

3. 10-25

4. over 25

“What is the highest Jevel of education you have achieved?”
1. High school diploma
2. Two or more years college
3. Bachelor’s degree
etc.

“In what field is your degree?”
1. Computer Science
2. Engineering

ete.

"What area of research are you currently pursuing?”
1. Knowledge Representation
2. Natural Language Processing

etc.

For user evaluation of session:
“On a scale of 1-10, (I =dissatisfed, 10= satisfied), enter satisfaction:”
“Was this system non-frustrating and easy to use? (y/n}”

"Did you stop searching because you:”
1. found what you wanted
2. found enough information
3. are frustrated with this system
4. ran out of time
“Please estimate the percentage of documents retrieved that were useful”
1. under 20%
2. 20-33%
3. 34-50%
etc.

Implementation 126

The heurstics employed to classify users appear in Table 10. Explicitly acquired attributes as well

as information accumulated by the system provide the knowledge needed to infer user types.

Callable Functions The callable goals for the user model module appear in Table 11.

4.2.7 Search and Query Formulation

Research regarding efficient methods for scarching large document collections focuses on ways to
reduce the number of database accesses required to respond to any given query [SALT 830]. The
goal is to eliminate sequential searching of entire collections and to examine as few docurnent rep-
resentations as possible without sacrificing retrieval effectiveness. A broad range of searching
methods and algorithms [FALO 85, SALT 83c| have been developed to reduce the time required
1o locate relevant documents in large information collections. As a research testbed, the CODER
system aims to include a wide variety of those methods so that comparisons between different al-
gorithms in different situations may lead to strategies for selecting the best search method for a given
query. Different similarity me;asures and/or search methods appear to be more effective for different
types of queries; however, determination of which query characteristics suggest particular search

strategies is an open research problem.

Retrieval Models: The most common arrangement for retrieval is a Boolean system accessed via
an inverted fle. Commercial systerns fke MEDLARS, BRS, DIALOG and STAIRS have adopted
such a retrieval model. Key terms connected by the Boolean operators AND, OR and NOT are
used in conventional Boolear retrieval. Document sets associated with key terms connected by
AND are intersected while all documents associated with terms joined by OR operators are in-

cluded. Documents containing negated terms are eliminated from the relevant set. Boolean re-

Implementation : 127

For user type novice;

Siot
usedcomp

otherisr
otherfreq

For user type average:

Slot
otherisr
otherfreq

OR
totsearches
OR
totsearches

CSCIS

For user type expert:

Siot
otherisr
otherfreg
tolsearches

OR
totsearches

Note:

L

Value

=

A
fi

—

=]

Value
> 10
> 2

Falue

V Vi
LAY

A%
s
b2

Table 10. User Stereotype Classification Heuristics

Comments
never used a computer

never used an ISR systemn

used other ISR systems less than
or equal to 10 times

Comments
used other ISR systems
more than 10 times.

Performed more than 2 CODER searches

Performed more than 5§ CODER
searches and has taken CS courses

Comments
used other ISR systems more
than 10 times, and performed
rore than 5 CODER searches

Performed more than 12 CODER searches

Any users not classified by the above rules are classified as average

and a warning message is logged for the CODER system administrator.

Implementation

128

CALLABLE GOAL
id_user(Tm)
char_newuser(Tm)

char_olduser(Tm)

um_resp(Resp,Id, Tm)*

um_req{Request, Tm)
user_eval(Tm)

clean_up(Tm)

Table 11. User Model Callable Goals

FUNCTOR in
HYPOTHESIS

disp_prompt
disp_prompt

utype
state

state
disp_menu
disp_prompt
tut

editf

displayf
disp_msg
disp_prompt

state

AREA
umodel
umodel

umodel
State

state

umodel
umodel
umodel
umodel

user_req
user model

umodel
umodel

state

* Hypothesis posted depends on Id of Prompt or ment.

COMMENT
request user identification
begin 1o get user info

post user type
post transition for probmsd

process user responses to

user model prompts/menus
user requested browsing of
begin user evaluation of session

after frames are updated,
post state transition

Impiementation

trieval is popular in operational situations because the basics are easily understood and high
standards of performance are achievable if searchers are creative and persistent [SALT 83b).
However, the set of relevant documents retrieved in response to a query is not ranked, and grappling

with sheer size may be an obstacle to effective retrieval,

Between conventional Boolean retreval and vector retrieval is extended Boolean retrieval which
uses the p-norm formalism to determine document/query similarities [SALT 83b]. Boolean opera-
tors, query term weights and docurnent ierm weights are 2ll included in this model. Furthermore,
Boolean connectives may be parameterized by a number from | to infinity, the p value, which as-
serts the strictness of interpretation of the connective. As p values move from infinity to 1, the
Boolean operators are interpreted more and more loosely; when a p value equals 1, the distinction

between AND and OR operators disappears,

A variety of additional retrieval methods have been developed, however they have not yet been
included in the CODER system. Probabilistic retrieval uses probability theory in both the indexing
and retrieval processes based on ratios of relevant and no.nrelevant documents. A method for in-
tegrating Boolean and probabilistic tetrieval methods has been proposed by Croft [CROF 86a).
Clustered searching [FALO 85] proposes that closely associated documents tend to be relevant to
the same request and uses cluster centroids to contain average term weights representing all docu-
ments in a cluster. Retrieval based on citations and references employs a citation index and/or
cocitation Iinks to relate documents, Lastman and Weiss propose a tree algorithm for nearest
reighbor searching [EAST 77]. As buill into the MU-Prolog external database factilities, more so-
phisticated multi-attribute retrieval is provided by superimposed coding schemes [SACK 82, RAMA

85].

This version of the retreval subsystem includes Prolog programs 1o support vector, p-norm and
Boolean searching. However, as with the lexicon, the collection 1o be searched 15 too large to be
consulted in a Jocal Prolog fact base. Work 1s currently in progress to adapt indexing and searching

routines from the SMART svstern, A C resource manager wWill be created to be accessed by the

Implementation 130

search expert so that time-consuming searching of Prolog fact bases, either local or external, is
omitted. This section will describe the eurrent functions of the search and query formudator mod-
ules. The incorporation of SMART routines, still in progress by other students, will not be dis.

cussed here.

4.2.7.1 Search Expert

The CODER search expert has its roots in an expert system tool, written in HC Prolog [ROAC
85], to aid the placement of foster children into appropriate homes. The HC Prolog code was
converted to MU-Prolog code to fulfil] élass Project requirements early in 1986 [WEAV 86a]. Later,
search functions were expanded and calls to the biackboard/stratcgist and 1o a Prolog external da-
tabase were added [WEAV 86b]. Boolean searching functions were developed during Spring quar-

ter, 1987 [SIU 87}

The search expert uses an external Prolog database of facts containing a relational represeniation
of key terms and document ids:

dv(Document_id, Classification_type, Query_term,Weight).
The facts were produced from vectors generated by the SMART system. Query terms are repres-

ented by concept numbers and weights are numbers in the range .00001 10 .99999, where the deci-

4]

mal place is assumed. Classification types, such as author, title or bedy, are not used. Th
superimposed coding scheme provided with MU-Prolog was used to index the facts for faster re-
trieval. However, respoase times for very] rge mumbers of facts {over 5000) were unaceeptable,

and only small fact bases of 2000 1o 5000 facts have been ussd by the search experi.

The search expert performs three primary functions:
1. Retrieval of relevant document ids.

2. Computation of query-document sirilarity, if term weights are provided.

Implementation 131

3. Ranking of relevant documents based on similarity, and posting of document ids up to the
number of documents requested by the user.

P-norm processing: As mentioned earlier in this section, Boolean operators, query term weights and
document term weights are all included in the p-norm model, and the p value allows fuzzy inter-
pretation of Boolean operators. The search expert expects a p-norm query posted on the black-
board to adhere 1o a particular syntax, That is,

p.norm(Number_of docs, I Weight,Boalean_opemtor,P_value,Clausas] J.
where
Number_of_docs is the quantity of documents the user would like to retrieve,
Weight isan integer from 0 to 10.
P_value isan integer from 1 to infinity, where infinity is represented by "%,

Clauses is a list of lerm, weight pairs where terms are of the same form as those stored in the
document database facts, in this case, concept numbers, and weights are integers from
1t0 10 indicating the importance of query terms.

Therefore, a valid p-nomm query representing "I would like to retrieve 10 documents about auto-
mation of catalogs or computer peripherals” would be

-

p_norm(10,{9,0r,5,/8,and, 1},jautomation, 19} [catalog,7],[9,and, lj.[computer, 3], eripheral, 10]]).12

When relevant documents have been retrieved, similarities between
documents and queries are computed.’ As described by Salton, Fox and Wu [SALT 83b), the
similarity is calenfated according 1o the foliowing formula.

Consider, as gn example, a documen: D with assigned terms A and B and ler o 4 and dp represent the weights
or imporiance of the twe terms in the documenr. . Given queries {A and B) gng {A or B), the following

query-gocumen: similarity functions may be defined berween ihese queries and a documen: D = dg.é& iR

. , (~a"+ 0 -ap® o
SI(Q g g gy D) =1 ~ [4 5 P

12 Note that terms such as automation and catalog would really be concept numbers.

13 Similarity computations require M U-Projog floating point number routines,

Implementation 132

. df +dp 1L
sn'n(Q(A orB)’D) = [——2 P

Following similarity computations, the retrieved documents are sorted by similarity, and the 10
highest documents will be posted to the blackboard with doe(ld) hypotheses using similarity

rankings as confidence values.

Vector processing: Setting the p value to 1 in a p-norm syntax query will resulf in vector style
processing. That is, AND operators zre treated like OR operators; all terms are, therefore, ored
together.” For k equal to the number of query terms, “the actual similarity values obtained for p= 1

are exactly those produced by a vector processing system in which the similarity between a docu-

9 G

ment D = (dy,d,,...) and a normalized vector query 0= PR

,-%5-) 1s evaluated as the usual

vector product.” [SALT 83b].

Boolean processing: When p value is set to infinity, Boolean connectives will be stricily interpreted.
Therefore, conventional Boolean queries could be processed by the p-norm functions. However,
the p-norm routines implemented have no provision for handling of the Boolean NOT operator.
Search functions which process Boolean logic queries including the NOT operator have been de-
veloped [SIU 87]. As with the p-norm and vector queries, the search expert expeéts a Boclean
query 1o be properly structured in prefix notation format when received. For example, a Boolean
search hypothesis might be
[boolean{ 5,[and, o, online,computer,not,retrieval storage]).

representing the query “1 would like 5 documents about online or computer and retrieval, but not
storage.” Up to five relevant document ids will be posted to the blackboard by the search expert.
Additional details regarding the operations performed by the Boolean searching routines may be

reviewed in the corresponding class project report [SIU 87N

implementation 133

Frame Matching: In addition to traditional retrieval where documents and structured queries are
matched, the CODER systemn requires that partial frames created by users be matched to frames
in the document knowledge base created by the analysis subsystem. A two-guarter project is cur-
rently underway to facilitate matching of user frames to document frames. Its twofold objective
includes 1) constructing a “system” to store frames in C structures and 2) creating a CODER re-
source manager to determine matching frames and to perform other frame object maﬁpulations.
Although the frame object predicates have been coded and tested using MU-Prolog, efficient
processing to match frames could not be accomplished due to the size of the document knowledge
base. Therefore, matching of partially filled user frames to document frames could only be per-
formed for small subsets of the document database. The implementation of a CODER resource

manager written in C should efficiently accomplish matching of frames.

Caltable Functions: The caliable goals for the search module appear in Table 12.

4.2.7.2 Query Formulator

The ebjective of the CODER query formulator module, gform, is to structure queries in formats
scognizable by the search expert, and to assist users m formulating Boolean queriss. Fuiuré ver-
sions of the query formulator may help users to formulate other types of queries as well. The query
formulator was written as 2 stand alone mogdule [QUIZ 87). Later, calls to the blackboard/strategist

and replacement of input/outupt functions with operalions to be performed by the user interface

manager were added.

The query formulator offers assistance for two types of users, novice and expert. Explanations of
Jacets, exclusion lists and Boolean query requirements are provided. In addition, the user is
prompted to enter term facets, subjects and exlusions, and is given an opportanity 10 modify system

formulated queries before they are posted for the search expert. Further description ‘of the query

Impiementation 134

Tabie 12, Search Modyie Callable Goals

CALLABLE GOAL
p_norm(N umdoc,Query,Tm)

boolean(Numdoc,Query,Tm}

Vector(N.umdcc,Query,Tm)

Impiementation

FUNCTOR in
HYPOTHESIS

doc
docs_posted

doc
docs_posted

doc
docs_posted

AREA

results
results

results
Tesults

resulty
results

COMMENT

search database
finished finding docs

search database
finished finding docs

search database

finished finding docs

Table 13. Query Formulator Callable Goals

FUNCTOR in
CALLABLE GOAL HYPOTHESIS
form_guery(Tm) disp_prompt

' do_query(Query__type,Tm) disp_prompt

qf_resp(Resp,Id) disp_prompt
disp_menu
displayf
editf

AREA
gform
gform
gform
gform

gform
aform

COMMENT
begin prompting user
begin prompting user

continue to get info
te build query

implementation

136

formulator module is provided in the corresponding class project report [QUIZ 87]. The sample

session in Appendix H iliustrates some of the functions of the query formulator module.

Callable Functions: The callable goals for the query formulator module appear in Table [3.:

Conclusion: Alfhough searching and retrieval of documents could occur, albeit less effectively,
without the user model, mput analyst, report generator, probiem description builder or browsing
modules, no retrieval can oceur without the search expert. Elimination of the query formulator
would require that the user know how to formulate searchable quenes using the syntax expected
by the search expert. Unsurprisingly, the search engine was the first module of the CODER pro-
totype to be implemented and tested. However, the search module’s need for document and term
information dictates intensive mnput/output processing; furthermore, computationally expensive
operations to caiculate sumilarity measures must be performed. Of all of the Version 1.0 modules,
the current search expert demands the most immediate atiention so that all user queries can be efs

Jiciently matched 1o documents in the complete AIList collection.

4.3 Version 1.0 Prototype

The diagram in Figure 33 depicts the current CODER retgeval subsys_tem. All modules are func-
tional and have been integrated with the blackboard/strategist complex, user interface manager and
other resource managers. The subsystem consists of nine inferential modules, three resource rman-
agers written in C and four external knowledge bases. The implemented system tuns on a single
VAZX-11/785 running ULTRIX™ a varant of 4.2 BSD UNIX. Although work is in progress to

create a multi-user version of the retrieval subsysterm, Version 1.0 handles only one user at a time.

Implementation 137

Problem |
Query Mode, State

Formularor

Desc.

User
Model
Builder

(S—

User
Model

Retrieval

|

*

Hypotheses

. Sbbiject Areag

el R g S

Lexical

Priorirv Areas
Questions/Answers

ustr model problem stats

useful erms probie deseription G

user reguest Fructured daty
resulrs query formulation

Pos'_ga.resm_g_; [
5 ;{ Quest/answ handier
JA " Logic task sched

g Domain 1ask sched

I
s
T

Lexicon

Task dispatcher

Knowiedge - many moduies

Adminisration

E Dictionaries

e Document
Knowledge
Base
Manager

Figure 33. Version 1.0

Implementation

Implementation

Manager

138

5.0 Discussion of Results

Based on the results of the Version 1.0 CODER system implementation, this chapter discusses how
the original hypotheses of the CODER system research have been addressed by this investigation.
In addition, a micro-level evaluation of system performance and details concerning the CODER

modules are also presented.

5.1 Accomplishments

The hypotheses addressed by this implementation were presented in Chapter 1, section 1.3. Each
hypothesis will be examined here again ia relation to the conclusions garnered from the retrieval

subsystem implementation.
Logic programming is adaptable io information storage and retrieval,

The Version 1.0 implementation of the CODER reirieval subsystem includes nine modules written
in the legic programming lenguage Prolog. The list processing, recursion and pattern matching
abilities of the language allowed fast, efficient implementaticn of modules. Siructures containing
fists of query or document terms, {rame slots, lexical definitions, document ids, blackboard hy-
potheses, and queue.s of expert tasks could be processed recursively; thus, Prolog’s inherent eff-
ciencies for recursive processing could be vtilized. Prolog pattern matching abilities facilitated, for
example, straightforward retrieval of bypotheses from specific blackboard areas, matching of user

responses to particular prompts or menus, and tailoring of dialog to user types.

Discussion of Results 139

Programmers who were trained in conventional procedural langueages did encounter a significant
learning curve when attempting to develop programs in Prolog. However, once the fundamentals
of a logic programming language were understood, module development could proceed rapidly.
Inferential reasoning performed by the Prolog modules could not be as easily coded in a language
such as Pascal or C. Rule bases, for example rules for scheduling strategies or for the problem state
finite state automaton, would have required many if-then-else structures and/or special file or data
structures if developed in a procedurai language. Moreover, addition of new rules may be effected
by simply adding new facts to Prolog fact bases. Although the time required for comptationally
intensive' processing within Prolog modules was not optimal, compilation of modules when con-
version from MU-Prolog to NU-Prolog occurs should significantly reduce computation times. The
creation of the Vérsion 1.0 retrieval subsystem, with most modules coded in Prolog, indicates that

logic programming is adaptable to information storage and retrieval.
The knowledge engineering paradigm can be applied to information storage and retrieval systems.

The Master’s thesis specifying the design of the CODER system |JFRAN 86] proposed that know-
ledge engineering tools could be used by information storage and retrieval systems. A knowledge
administration complex has been written and tested, and is an integral part of both the analysis and
retrieval subsystems. Structures representing the content and hierarchical organization of docu-
ments have been defined and instantiated. Knowiedge about documents and users is stored in
frames and is used by retrieval subsystem modules to partially simulate the functions of a trained
search intermediary and to intelligently match user queries to documents. The representation of
knowledge in the domain of artificial intelligence has been accomplished in the CODER system

through use of the knowledge engineering tools, frames and relations.
System modularity provides a more Slexible research testbed ervironment.

Twelve modules, each performing distinct functions, form the present CODER retrieval subsystem.

Each module was first developed independently as a stand-alone program. System development

Discussion of Results . 140

and module integration could proceed without completion of all modules. Moreover, as enhanced
versions of modules were created, newer modules could be substituted for previous versions stmply
by replacing source or object files in the configuration directory and adding new scheduling rules
- 1o the strategist if necessary. Ceniralization of message communications on the blackboard pro-
motes further independence of modules and provides additional flexibility. Adding new moduies
or removing modules, as discussed in Chapter 3, section 3.3.2, reguires only two stepé: creation
or deletion of a socket, and modifications to the strategist if necessary. Although successful inte-
gration of the first module required considerable struggling and effort, subseqlient modules were

Integrated in a few hours and generally performed correctly without substantial difficulties.

Nearly thirty graduate students at Virginia Tech have made contributions, of varying degrees, to the
development of the CODER system. The number of different people working on pieces of the
CODER systern,as well as the ease with whichk new modules were integrated, supports the hy-

pothesis that modularity does provide a quite flexible research testbed environment.
Users can perform more effective retrieval when structured knowledge is employed.

“Structured knowledge” includes the hierarchical organization of documents as well as concepts
such as names, dates and addresses. The knowledge administration complex provides the founda-
tion: for the creation and storage of structured knowledge. Frames and relations representing doc-
uments and their contents are created by the analysis subsystem. The input analyst and report
modules promote and support user entry of structured knowledee information. Finally, the searcl

expert matches the user’s structured knowledge entries to document frames and relations.

The facilities needed to support user retrieval employing structured knowledge have been provided
in the Version 1.0 implementation. However, the processing required to efficiently match user
frames to the complete set of document frames is still under development. As a consequence, ex-
periments {o evaluate user satisfaction with retrieval results when frame information is supphed

have not yet been performed. When efficient frame matching can be accomplished, such exper-

Discussion of Results 141

unentation should examine retrieval satisfaction of traditional vector-style queries versus structured
knowledge queries; moreover, combinations of different kinds of traditional queries such as p-
norm, vector and boolean, in conjunction with varying amounts of frame input should be com-
pared. Such experimentation is not deemed trivial and could also include investigation of which

query characteristics suggest specific search strategies,

5.2 Micro-Level Evaluation

System performance and details concerning CODER modules have been evaluated at the imple-
mentation Jevel. This section discusses the performance of the retrieval subsystern, that is, the times
required by the system to perform specific functions. In addition, the size of the modules and their

rule bases are presented.

5.2.1 Performance

The timings for the session evaluated were taken during late evening hours when system load was
minimal. They appear in Appendix H. The time(X) predicate added to the MTU- rolog mierpreter
was used to record the time, in seconds, at which hypotheses were posted to the CODER black-
board. Although times recorded to tenths of 2 second would have allowsd more precise evalnation
ot systemn performance, the times listed provide a sufficiently accurate indication of the system’s

performancs.

The tables contained in Appendix H reflect the sequence of control from module to module and
the fiow of a typical retrieval session. A typical session is illustrated by the screens printed in Ap-

pendix . Areas where concurrent processing may occur, other than between the blackboard and

Discussion of Results 142

strategist modules where it always occurs (see section 4.2.1), are indicated by “+’. Where many
prompts, menus and display files are sent to the user interface so that modules may collect infor-
mation for a single purpose, for example user evaluation of the session, functions are not repeatedly

listed.

When modules require information from users, the system requires approximately one second to

process the four steps listed below. Data is passed as foliows:
1. amodule posts a display request to the blackboard;

2. the blackboard notifies the strategist;

3. the strategist dispatches the report module;

4

the report module sends the request to the user interface manager for display.

Next, the user’s response must be sent back to the module requesting the user mnput. The module
receives the information and posts a request, for example for more information, in about one sec-

ond.
1. The user interface manager sends the user response to the input analyst module;

2. the input analyst converts the response to an internal system form and posts it to the black-
board;

3. the blackboard notifies the strategist;
4. the strategist dispatches the requesting module;

5. the module processes the information and posts the next hypothesis or question on the
blackboard.

Passing data to and from the user is performed well within acceptable response iime ranges. Most
general functions reguire approximately one second to be executed; however, siare transitions
normally require from two to three seconds due to the extra calling of moedules. For sxample,

1. a module posts a state transition to the blackboard;

2. the blackboard notifies the strategist;

3. the sirategist dispatches the probmsd module;

4. the probmsd initiates the next state by posting a hypothesis to the biackboard;

the biackboard notifies the strategist;

the strategist dispatches the appropriate module;

e e

the module may request information from the user which it posts to the blackboard:

Discussion of Results 143

8. the blackboard notifies the strategist;
9. the strategist dispatches the report module;

10. the report module sends the request to the user interface manager for display.
Other critical processing steps which require significant times to process include the following.
e system start up requires slightly over one minute;

* sysiern termination, including refreshing frame object files and removing temporary files takes
up to one minute; this is invisible to the user since most of it occurs after the user’s final

message from the system has been received;

& the time required for building and posting of frames created by users depends on the number
of frames created, number of slots in the frames and whether subframes were created; it often
requires over ten seconds; however, this function is performed concurrently with other proc-

essing steps, so the time requried to post frames is transparent to the end user;

¢ the time required for searching the document data base using a test coliection of 2500 Prolog

facts depends on the guery submitted, but often requires from five to ten seconds;

¢ the time required for searching the HAI or the lexicon also depends on the terms usec to per-

form searching and usually requires up to five seconds;

+ formulation of a Boolean query in the syntax expected by the search module, given user term

and exception entries, requires three to four seconds.

Discussion of Results 144

5.2.2 Module Statistics

Sizes of Prolog modules in terms of ines of code, numbers of rules in rule bases, and the number

of ancillary files such as menus and tutorials are presented in this section.

Source Code Statistics: Table 14 illustrates the sizes of the CODER inferential modules. The
Prolog code column represents the number of Prolog goals or subgoals in each module. Com-
ments, blank lines and print control lines are ignored. The third column includes comment lines.
Interestingly, well over half of the total lines in each module is devoted to comments. The Prélog
language does not require declarations of variables or definition of record and file structures.
Therefore, the amount of code required to accomplish desired functions 1s much less than would

be found in more traditional procedural programs, but comments are even more important.

Rule Base Statistics: The sizes of the CODER rule bases, of which some rules are single facts, are

presented in Table 15. These numbers were not included in the sizes given for the Prolog modules.

Miscelianeous Statistics: The quantities of some of CODER's supporting files are shown below.
The number of menus, prompts and display files changes frequently; therefore, the numbers shown

represent a snapshot of the quantity of files only, as of December, 1987.

40 Menus

40 Tutorial Files
2060 Prompts

20 Display Files

Since many of the C modules, such as the user_interface manager, the text manager and the lexicon
manager, are still under development b} other graduate students, exact sizes of those modules are
not known. However, the current hai_mgr is completed and contains 237 lines of C code phas 387
kol

ines of included code for Prolog to C communications; therefore, the hai_mgr contains z total of

624 lines of C code. At present, the user interface manager contains about 1200 lines of C code

Discussion of Results 145

Table 14. Moduie Source Code Statistics

Module

knowadm

user_model

browse

report

gform

1a (input analyst)

search

probmsd

ka_localob;j

lexical

bboard

LTS(logic task scheduler)
TD (task dispatcher)

QA (questionjanswer)
DTS (domain task scheduler)**

Totals

** (stralegist subtotals:

Prolog Code
With Comments

2378
1057
831
&73
836
864
1082
527
677
406
610
287
182
165
78

10853

712)

Discussion of Results

Table 15. Rule Base Statistics

: , Number
Rule Description Module of Rules
fsm finite state machine transitions probmsd 25
sched moduie scheduling strategist (DTS) 50
classify_user determine user type user_model 9
priority determine scheduling priority strategist (LTS) 16
pos converts lexical part of speech report 32

for user browsing
ka frame* frame type definitions a3
ka_edt EDT definitions 13
ka rel relation type definitions 17
ka_slotdesc describes slots and assignment ia 128
of prompt numbers and tutorials report
ka_fparent inverted frames to show 5
parent-chiid relationships
*Includes 7 user frames.
Discussion of Results 147

plus the 387 lines of code included for Prolog to C communications. Approximate statistics on

external knowledge bases appear in Table 16.

Discussion of Results 148

Table 16. Approximate Statistics on External Knowledge Bases

A) AlList Document Collection

Number of messages:
Number of authors:
Number of digest issues:
Dates covered:
Characiers of text:

B) Handbook of Artificial Intelligence

G

Number of files:
Characters of text: _
Number of Table of Contents subjects:

- Number of Index entries:

Number of Index range entries:
Number of Index person names:
Number of Italicized words/phrases:

Collins Dictionary of the English Language

Number of relations produced:
Number of headwords:
Number of different parts of speech:

Number of categories {used > = 3(times):

Number of definitions:
Number of morphological variants:
Number of usage samples:
Number of comparisons:
Nurmnbers for parts of speech:
Nouns:
Verbs:
Adiectives:
Adverbs:

8600

300

950

4/83 - 12/87
16Mbytes

106
4Mbytes
218

853

158

138

5009

21
85K

120
165K
28K
17K

63K
15K
13K
1369

Discussion of Results

149

strated “impressively”, a more powerful user interface with functions such as those provided

by a Macintosh-style interface is required.

3. Efficient access to sizable external knowledge bases has n.ot yet been accomplished. The full
set of italics reference facts derived from the HAI are not included in the HAI browsing; only
a sample portion of the lexicon is searched by the lexical expert; and matching of queries is
limited to a small subset of documents. So that the browse, lexical and search experts may
function more efficiently, external knowledge bases such as the lexicon, HAI and document
databases must be indexed and stored so that rapid access to desired data can be achieved.
That is, either the C resource managers or the database facilities provided by NU-Prolog must

be used to access large databases.

4. When the CODER retrieval subsystem is executing, 12 additional processes are placed on a
computer system which is already operating near capacity and which numerous Computer
Science graduate students and faculty rely on for other purposes. Consequently, during penods
of peak usage, such as Mondays thru Fridays from 10 a.m. to _4 p.m., system response fimes
are not within acceptable ranges. For example, after entering a user id, the user may be forced
1o view an unchanging display terminal for over a minute while waiting for the next prompt
to appear. Response times during non-peak hours, however., are acceptable. Such dependency
on system load su;ggests that the CODER system be moved to a dedicated computer or to one

with greater computational and storage capacity.

5. As mentioned several times throughout this paper, natural language queries cannot be proc-
essed by this implementation of thé CODER system. Inclusion of natura! language queries
was not an integral part of the original CODER proposal; however, partial parsing of natural

- language queres such as that found in the FRUMP sysiem {DEJO 82} is desired. Nonetheless,
the degree of effort required to implement even kimited processing of natural language queries
suggests that separate graduate research be dedicated to the development of a module to

process natural language queries.

Conclusions 152

6.0 Conclusions

By the end of 1987, implementation of the first version of a comprehensive inteliigent information
retrieval system, conceptualized four vears earlier, reached fruition. Although enhanced develop-
‘ment of many subsystem modules remains to be accomplished, a robust research testbed for artifi-
cial intelligence techniques in information retrieval has been created. The system as it currently
exists represents the efforts of many Virginia Tech graduate students as well as the thoughts and

ideas of various researchers in the field of information retrieval.

As with other academic systems such as the SMART system began at Cornell University in the
early 1960’s and still used for information retrieval research {BUCK 85), the CODER system will
likely be modified and expanded for many vears .‘LO come. Its modularity and diversity of functions
provide the foundation for continued research and development of Al methods in information re-
trieval systems. User modeling techniques and knowledge engineering tools may be investigated;
natural lenguage processing and ‘_th benefits of an online lexicon may be researched; and the re-
trieval effectiveness of different search strategies may be comipared. Continued experimentation as
well as further development of the basic methods suppornied by the system will likely support the

hypothesis that Al techniques significantly upgrade the productivity of ISR systems.

This firal chapier summearizes major system Hmitations and recommends future enhancements.
The lmitations and recommendations listed, alluded 1o in earhier chapters, are ordered by degree
of importance, with the most critical listed first. The recommendations suggested by no means
include all facets of the system requiring enhancements; future research projects may use the

CODER systemn as the basis for investigation of a diversity of Al and ISR methods.

Conclusions _ 150

6.1 Limitations

Only the most significant limitations of the Version 1.0 CODER system are detailed 1n this section;

minor limitations of various modules are not included.

1.

As discussed in chapter 4, section 4.2.7, the search module is the one module that is not op-
tional in a retrieval system. Although the existing search functions perform correcily and a
small subset of the AlList archive may be searched, the complete document collection has not
been searched by the CODER system. The Prolog facts containing vectors of terms and
documents, as well as the frame objects representing document contents, are 100 numerous to
be searched efficiently using the current version of Prolog. Thérefore, the C routines adapted
from the SMART system and the new routines to be used for frame matching must be pro-
vided before the full AIList collection may be searched effectively. Additionally, query terms
must be converted to the assigned concept numbers before databases can be properly searched.
Prolog functions to perform such conversion do not exist, Desirable word searching oper-

ations such as word neamness, word position, and word truncation are not vel provided.

The UNIX curses user interface lacks flexibility and does not provide many of the functions
desired for the CODER user interface. Presently, only one window may be éisplayed at any
given time, and ééiting and prompling cperations perform less than optimally. Moreover, the
system guices the user through the retrieval session rather than both the user and the sysiem

Initiating stages of the retrieval process. Section 6.2 recommends modifications to the user

interface to alleviate this problem.

As discussed in relation to the I*R system, the user interface manager may contain 40 to 50
percent of all code in the system [THOM 87a]. Admittedly, development of a generic yet ro-

bust user interface is not a trivial task. However, before the CODER systemn may be demon-

Conclusions 151

6.2 Recommendations

1. The limitations of the search module discussed in the previous section must be addressed.
That is, the C routines adapted from the SMART system and the new C resource manager to
be used for frame matching must be provided before the full AIList collection may be searched
efficiently. The use of feedback to perform additional retrievals and the_incorporation of word
searching operations like word nearness, word position and word truncation should also be

provided.

2. Development of a Macintosh-style user interface will substantially improve the demonstrability
of the CODER systerh. Providing the user with pull-down menus, pop-up windows and
mouse selection of terms and options will allow CODER to be a mixed initiative system. That
1s, both the user and the system may initiate activities. For example, a menu of NISO com-
mands could be provided for the user to request desired processing at any point during the
retrieval session; at any point in the retrieval process, & browse menu could be selected for
browsing world or domain knowledge; pop-up windows containing selected terms, phrases,
or previous queries could be displayed during query formulation: and defaults for user envi-
ronment preferences such as document sorting could be used unless the user selected a pull
down menu to mo&ify the environment default values. For experienced users particularly, such

features should considerably improve the Jeve! of satisfaction with the systerr:.

3. The updated version of MU-Prolog, NU-Prolog, was received at Virginia Tech at the end of
November, 1987. Compilation of Prolog modules should significantly upgrade system per-
formance; furthermore, experimentations with the improved external database facilities pro-
vided by NU-Prolog may alleviate some of the systemn limitations resulting from inefficient
Prolog processing of large external knowledge bases. To implement NU-Prolog, the modifi-

cations appilied to the MU-Prolog prolog-s and prolog-b versions must be incorporated into

Conclusions 153

new versions of NU-Prolog. In addition, the Prolog modules may require some modifications

for successful compilation to occur.

4. To alleviate CODER system response time fluctuations due to computer system foad, the re-
trieval subsystem should be ported to a dedicated computer or to a computer with increased
computational power and storage capacity. The Macinstosh™ I} supports the UNIX operat-
ing system, A/UX™ and provisions for TCP/IP communications exist. Availability of a
Macinstosh 1 computer for CODER research suggests that it be considered as a home for
future versions of the CODER system. The pending sale of the VAX computer on which

CODER resides provides additional incentive to reiocate the system in the immediate future,

5. The query formulator module presently provides assistance only for Boolean query formu-
lation. Similar assistance for users who wish to formulate p-norm queries should be developed.
As additional methods of retrieval are developed, assistance should be provided by the query

formulator module.

6. The user modeling module in the CODER system provides the foundation for continued re-
search of user modeling techniques in ISR systems. Development of rules used to characterize
users and to tailor system performance may be accomplished with expansion of user modeling
rules and user model frames. Rules gleaned from behavioral studies, dialogs between users and
search intermediaries, system performance studies and empirical observation may be grouped
and systematized into a knowledge base of heuristics for use by intelligent informatiod retrieval

systems.

7. The addition of a dialog module for providing enhanced assistance to users and for determining
- the type of interaction appropriate depending on circumstances of the user’s situation should
be considered. Functions to inform the user of the system’s progress, intentions and percep-

tions should be included. Modes of interaction for different types of users and for different

Conclusions 154

stages of the retrieval session could be determined by a dialog module. Belkin et al. provide

examples of functions to be performed by a dialog module [BELK 83].

For instance, ar some states a natural-language interaction in an informal mode might be ap-
propriate (in, say, initial problem description by the user with as et nebulous perceptions of the
problem). In others, interactive graphic interaction might be preferred (in, sap, representation
of the mechanism’s perception of the user's anomalous state of knowledge for a user who prefers
multi-dimensional to linear represeniations).

Additionally, the tutoralsprovided for the system should be expanded.

8. The NIS.O commands for inferactive online information retrieval systems {NISO 87] accepted
by the input analyst may be expanded and incorporated into other modules. For example the
Jind command specified in the NISO standard. allows Boolean queries to be submitted to the
system in an infix notation. Such syntax must be reformulated by the query formulator so that
the query may be processed by the search expert. Review of search history and print commands
must be incorporated with text browsi.né. The scan command to view an ordered list of search
terms may be fully implemented when the dictionary of search terms is provided. In summary,
many of the functions suggested by the NISO standard do not vet exist in the CODER re-
trieval subsystem. Periodic review of the commands so that they rﬁay be implemented in ap-

propriate system modules as functions become availabie is advised.

9. Advanced functions for browsing document text have vet 1o be incorporated into the browse
module. Highlighting of document terms matched to query terms; cross-referencing of docu-
ments, such as repljés ;io previous messages cited within retrieved documents: display of doc-
uments at the point where relevant text begins: and browsing document archives are z faw of
the functions which a text browsing expert couid include. More sophisticated browsing oper-

ations are described in recent IR liierature [INGW 86].

10. As discussed in chapter 4, section 4.2.1, the blackboard/strategist complex does not contain
all of the functions envisaged in the original design of the CODER system. Scheduling strat-
egies must consider the context of the phases of the overall task in which the system is engaged.

The task dispatcher should inform the strategist when task queues are empty or when no tasks

Conclusions 155

in a queue have priority greater than a certain threshold. Implementation of more complex

control and scheduling strategies should be investigated.

I1. The functions of the strategist, particularly of the logic task scheduler, are highly dependent
on the confidence values posted with blackboard hypotheses. Confidence levels assigned to
hypotheses by most Version 1.0 experts are hard-coded -and have been arbitrarily determined.
Except for the search expert which posts query-document similarity values as confidence levels,
the modules do not use knowledge aggregation schemes or apply logical reasoning such as
modus ponens to determine confidence values, Uncertainty based reasoning and proper as-

sigmncht of confidence values may be investigated.

12, As discussed uﬁder systern limitations, natural language processing is not included in this ver-
sion of the CODER system. Partial parsing of natural language queries such as that found in
the FRUMP system [DEJO 82] should be considered. Previously unsuccessful efforts to adapt
the CHAT-80 Prolog parser as a quick implementation of a CODER query parser module
suggest that separate graduate research be dedicated to the developrent of a module to process

natural language queries.

13. The subject browsing options for the Handbook of Artificial Intelligence require that users enter
subjects exactly as they appear in the HAI Prolog facts. Partial matching of users’ terms
andjor phrases, as provided for browsing by name, should be’ investipated. A more
sohpisticated version of the browse expert or of the program which originally extracted the
Prolog facts from the text would identify fine numSer ranges of paragraphs or other blocks of
text which are relevant to the subject referenced (see section 4.2.4.1). Other enhancements for
HAT browsing should include ighiighting of terms or phrases which match the user's entry,
identification of volume and page numbers in the printed HAJT where the relevant text may be
found, and compietion of the removal of typesetting codes in the HAT online text (currently

in progress). The use of hypertext for cross-referencing should also be considered.

Conclusions 136

14. When new frames for organizations, biblographic references and other document types are-
generated by the analysis subsystem, the retrieval subsystem’s structured knowiedge facilities
should be reviewed. That is, the menu containing the structured objects for which users may
supply data must be enhanced; slot descriptions and prompts for the new frames and their
slots must be added to the ka_slotdesc file and to the prompts.dat file. Any modifications to

frame structures require that corresponding prompts, tutorials and menus- be reviewed.

6.3 Assessment

In summary, the objective of this research has been achieved: a prototypical intelligent distributed
information retrieval system has been implemented. Artificial intelligence techniques such as
knowledge representation, logic programming, distributed rule-based experts, and inferential reason-
ing based on heuristics have been inctuded in the implementation. The efforts of many researchers
and graduate students have been incorporated into the CODER modules. As a modular research
testbed, the CODER system simplifies integration of new modules and experimentation with dif-
ferent information retrieval methods. Future work will lead to removal of the main limitations and
to recommended improvements. It is hoped that the resulting system will be easier 1o use, more

satisfying and more effective for users with information needs.

bt

Conciusions 15

Bibliography

[APTE 87a] Apte, Sachit C. “Communication in the CODER system.” Masters Project Report.
Blacksburg, VA: Virginia Tech Department of Computer Science, June 1987

IAPTE 87b] Apte, Sachit C. “The Query Parser.” Class Project Report. Blacksburg, VA: Virginia
Tech Department of Computer Science, June 1987.

[BARN 87] Barnhart, Richard. “The CODER Lexical Expert.” Class Project Report. Blacksburg,
VA: Virginia Tech Department of Computer Science, June 1987,

[BARR 82| Barr, Avron, Edward A. Feigenbaum and Paul R. Cohen. The £/, andbook of Artificial
Intelligence. Los Altos, CA: William Kaufmann, 1981.

[BATE 79a] Bates, Marcia J. “Information Search Tactics.” Journal of the Awmerican Society for
Information Science 36:2 (July 1979), pp. 205-214. '

[BATE 79b] Bates, Marcia J. “Idea Tactics.” Journal of the American Society Jor Information
Science 30:4 (September 1979), pp. 280-289.

[BELK 8, Belkin, N. I, T. Seeger and G. Wersig. “Distributed expert problem treatment as a
model for information system analysis and design.” Journal of Information Science 5 (1983),
pp. 153-167.

[BELK 84] Bellin, N. J., R. D. Hennings and T. Seeger. “Simulation of Distributed Expert-
based Information Provision Mechanism.” Information Technology Research & Development
Applications 3.3 (1984), pp. 122-141. -

[BELK 87a] Belkin, N. I. and W. Bruce Croft. “Retrieval Techniques.” Annual Review of Infor-
mation Science and Technology 22 (1987}, pp. 109-145.

[BELK 88] Belkin, N. 1. and H. M. Brooks. “Knowledge Elicitation Using Discourse Analysis.”
International Journal of Man-Machine Studies 28 {1988), in press.

[BISH 87] Bishop, Lucy. “HAI Browsing.” Class Project Report. Blacksburg, VA: Virginia Tech
Department of Computer Science, June 1987, _ _

[BISW 87] Biswas, Gautam, James C. Bezdek, Marisol Marques and Viswanath Subramanian,
“Knowledge-Assisted Document Retrieval: 1. The Natural-Language Interface.” Jowrnal of the
American Society for Information Science 38:2 {1987}, pp. 83-96,

{BOBR 77] Bobrow, D. G. and T. Winograd. “An Overview of KRL, a Knowledge Represen-
tation Language.” Cognitive Science 1 (January 1977), pp. 3-46.

[BORG 85] Borgman, Christine L. “Designing an Information Retrieval Interface Based on User
Characteristics.” Proceedings of the 8th Annual International ACM SIGIR Conference on Re-
search & Development in Information Retrieval (Montreal: June 1985), ACM, 1985, pp.
139-14e6. ‘

Bibliography 158

[BORG 86] Borgman, Christine L. “Individual Differences in the Use of Information Retrieval
Systems: A Pilot Study.” ASIS-86: Proceedings of the 49th Annual Meeting, Knowledge In-
dustry Pubbcations, 1986, pp. 30-31.

[BORG 87a] Borgman, Christine L. “Individual Differences in the Use of Information Retrieval
Systems: Some Issues And Some Data.” Proceedings of the 10th Annual International ACM
SIGIR Conference on Research & Development in Information Retrieval (New Orleans, LA:
June 3-5, 1987), ACM, 1987, pp. 61-71.

[BORG 87b} ‘Borgman, Christine L. “Information Systems. Functionality: A User-Driven Per-
spective.” Paper presented at the Workshop on Distributed Experi-Based Information Spstems.
School of Communication, Information and Library Studies, Rutgers University, (March
1987).

[BRAC 83] Brachman, Ronald J.; Richard Fikes and Hector J. Levesque. “Krypton: A Func-
tional Approach to Knowledge Representation.” Computer 16:10 (October 1983), pp. 67-73.

[BRAC 85 Brachman, Ronald J. and Hector J. Levesque. Readings in Knowledge
Represemation._ Los Altos, CA: Morgan Kaufmann, 1985.

{BRAJ 87] Brajnik, Girogio, Giovanni Guida and Carlo Tasso. “User Modeling in Intelligent
Information Retrieval.” Information Processing & Management 23:4 (1987), pp. 305-320.

[BRAT 86] Bratko, Ivan. Prolog FProgramming for Ariificial Intelligence. Reading, MA:
Addison-Wesley, 1986.

[BREN 81] Brenner, Lisa P., Mary Huston-Miyamoto, David A. Seif, Phyllis C. Self and Linda
C. Smith. “User-Computer Interface Designs for Information Systems: A Review.” Library
Research 21 (1980-81), pp. 63-73.

{BROO 85] Brooks, H. M., P. Daniels and N. Belkin. “Problem Description and User Models:
Developing an Inteliigent Interface for Document Retrieval Systems.” Advances in Intelligent
Retrieval, Proceedings of Informatics 8 {London, 1985), ASLIB, pp. 191-214.

[BROO 87] Brooks, Helen M. “The Functions of an Information System: The MONSTRAT
Modcel.” Paper presented at the Workshop on Distributed Expert-Based Information Spsiems.
School of Communication, Information and Library Studies, Ruigers University, (March
1987).

[BUCK 85] Buckley, Chris and Alan F. Lewitt. “Optimization of Inverted Vector Searches.”
Proceedings of the 8th Annual International ACM SIGIR Conference on Research & Develop-
ment in Information Retrieval (Montreal: June 1985), ACM, 1985, pp. §7-110.

[BUSH 45] Bush, Vannevar. “As We May Think.” Atlantic Monthly 176 (July 1945, pp. 101-108.

[CHAN 86] Chandrasekaran, B. “Generic Tasks in Knowledge-Based Reasoning: High-Level
Building Blocks for Expert System Design.” /EEE Expert 1:3 (Fall 1986), pp. 23-30.

[CHAR 86] Charniak, Eugene and Drew McDermott. Infroduction to Artificial Intelligence,
Reading, MA: Addison-Wesley, 1985.

[CHEN 87] Chen, Hsinchun and Vaant Dhar. “Reducing Indeterminism in Consultation: A

Cognitive Model of User/Librarian Interactions.” Proceedings of the Sixth National Confer-
ence on Artificial Intelligence {Seattle, WA: July 13-17, 1987), AAAIL 1987, pp. 285-289.

Bibliography 159

[CHIA 87] Chiaramelia, Y. and B. Defude. “A Prototype of an Intelligent System For Information
Retrieval: I0TA.” Information Processing & Management 23:4 (1987), pp. 285-303.

[CLOC 84] Clocksin, W. F. and C. S. Mellish. Programming in Prolog. New York, NY:
Springer-Verlag, 1984.

[COFF 87] Coffield, David and Doug Shepherd. “Tutorial Guide t¢ Unix Sockets for Network
Communications.” Computer Communication 10:1 (February 1976), pp. 21-27.

[COHE 85] Cohen, Jacques: ‘“Describing Prolog by its Interpretation and Compilation.” Comn-
runications of the ACM 28:12 (December 1985}, pp. 1311-1324.

[CORK 87] Corkill, Daniel D., Kevin Q. Gallagher and Phillip M. Johnson. “Achieving Flexi-
bility, Efficiency and Generality in Blackboard Architectures.” Proceedings of the Sixth Na-
tional Conference on Artificial Intelligence (Scattle, WA: July 13-17, 1987), AAAI, 1987, pp.
18-23.

[CRQOF 85] Croft, W. Bruce and Thomas I. Parenty. “A Comparison of a Network Structure and
a Database System Used For Document Retrieval.” Information Systems 10:4 (1985), pp.
377-390.

[CROF 86a] Croft, W. Bruce. “Boolean Queries and Term Dependencies in Probabilistic Retrieval
Models.” Journal of the American Society for Information Science 37:2 {1986), pp. 71-77.

[CROF 87] Croft, W. B. and R. H. Thompson. “I*R: A New Approach to the Design of Doc-
ument Retrieval Systems.” Jowrnal of the American Society for Information Science 38:6
(1987), pp. 389-404.

[CUGI 86] Cugini, John. “Prolog documentation standard.” Prolog Digest 4:80 (1986).

[DANI 85] Daniels, P. J., . M. Brooks and N. J. Belkin. “Using Problem Structures for Driving
Human-Computer Dialogues.” RIA0 ‘85 IMAG, (Grenoble, 1985), pp. 645-660.

{DANI 86a] Deaniels, P. J. “Progress in Documentation. Cognitive Models in Information Re-
trieval - An Bvalvative Review.” Jowrnal of Documentation 42:4 (December 19863, pp.
272-304,

[DANI 86b] Daniels, Penny J. “The User Modelling Function of an Intelligent Interface for
Document Retrieval Systems.” Proceedings of IRFIS 6. Imelligent Information Systems jor
the Information Society {Frascati, Septerpber 1985), Amsterdam, North Holland, 1985.

[DATT 87} Datta, Sanjeev. “CS5332, Information Storage and Retreval, Class Project Report.”
Class Project Report. Blacksburg, VA: Virginia Tech Department of Computer Science, June
1587,

[DEER 85] Deering, Michael F. “Hardware and Software Architectures for Efficient AL” Byte,
April, 1985, pp. 193-198.

[DEFU 85] Defude, B. “Different Levels of Expertise For an Expert Systemn in Information Re-
trieval.” Proceedings of the 8th Annual International ACM SIGIR Conference on Research &
Development in Information Retrieval (Montreal: June 1985), ACM, 1985, pp. 147-153.

[DEJO 82] Dejong, G. “An Overview of the FRUMP System.” In Lehnert, Wendy G. and Martin

H. Ringle (Eds.). Strategies for Nanral Language Processing. Hilisdale, NJ: Lawrence
Eribaum Assoc., 1982, pp. 149-176.

Bibliography 160

[DOSZ 86] Doszkocs, Tamas E. “Natural Language Processing in Information Retrieval.” Jowrnal
of the American Society for Information Science 37:4 (July 1986), pp. 191-196.

[EAST 77} Eastman, Caroline M. and Stephen F. Weiss. “A Tree Algorithm for Nearest Neighbor
Searching in Document Retrieval Systems.” Technical Report TR 83-CSE-8, Dallas, TX:
Department of Computer Science and Engineering, Southern Methodist Unversity, February,
1983.

[EGAN 87] Egan, Dennis E. “Individual Differences In Human-Computer Interaction.” In
Helander, M. (Ed.). Handbook of Human-Computer Interaction. North-Holland, Elseview
Science Publishers, 1988.

[ERMA 80] Erman, D. L., F. Hayes-Roth, V. R. Lesser and D. Raj. Reddy. “The HEARSAY-II
speech understanding system: integrating knowledge to resolve uncertamty.” ACM C omputing
Surveys 12:2 (June 19803, pp. 213-253.

[FALO 85] Faloutsos, Christos. “Access Methods for Text.” ACM Computing Surveps 17:1
(March 1983), pp. 49-74. '

{FENI 81] Fenichel, Carol Hansen. “Online Searching: Measures that Discriminate among Users
- with Different Types of Experiences.” Journal of the American Society for Information Science
32 (1981), pp. 23-32.

[FICK 85] Fickas, Stephen, David Novick and Rob Reesor, “Building Control Sirategies in a
Rule-Based Systern.” Technical Report CIS-TR 85-04. Eugene, OR: Department of Com-
puter Science and Information Science, University of Oregon, 1985.

[FIKE 85] Fikes, Richard and Tom Kehler. “The Role of Frame-Based Representation in Rea-
soning.” Communications of the ACM 28:9 {September 1985), pp. 904-920. '

[FINI 84] Finin, Tim and David Silverman. “Interactive Classification.” IEEE Workshop on
Principles of Knowledge-Based Systemns (August 1984), pp. 107-114.

[FORE 85] Forester, Tom, Ed. The Information Technology Revolution. Cambridge, MA: The
MIT Press, 1985, ' '

[FOXE 83a] Fox, E. A. “Extending the Boolean and Vector Space Models of Information Re-
trieval with P-Norm Queries and Multiple Concept Types.” Phd. Dissertation, Cornell Uni-
versity, University Microfilms Int., Ann Arbor MI, August 1983,

[FOXE 83b] Fox, E. A. “Some Considerations for Implementing the SMART Information Re-
trieval System under UNIX.” Technical Report TR 83-560. Cornell University, Department
of Computer Science, September 1983.

[FOXE 85} Fox, E. A. “Composite Document Exiended Retrieval: An Overview.” Proceedings
of the 8th Annual International ACM SIGIR Conference on Research & Development in Infor-
mation Retrieval {Montreal: June 1985), ACM, 1985, pp. 42-53.

|[FOXE 86a] Fox, E. A. and R. K. France. “A Knowledge-Based System for Composite Docu-
ment Analysis and Retrieval: Design Issues in the CODER Project.” Technical Report
TR-86-6. Blacksburg, VA: Virginia Tech Department of Computer Science, March 1986.

[FOXE 86b] Fox, E. A. and R. K. France. “Architecture of a Distributed Expert System for
Composite Document Entry, Analysis, Representation and Retrieval.” Proceedings Third
Annual USC Comp. Sci. Symp.; Knowledge-Based Systems: Theory and Applications
{Columbia, §.C.: March 31-April 1), 1986.

Bibliography 161

[FOXE 86c] Fox, E. A. “Information Retrieval: Research into New Capabilities.” In Lambert,
S. and Ropiequet, §. (Eds.). CDROM - The New Papyrus. Redmond, WA Microsoft Press,
1986, pp. 143-174,

[FOXE 86d] Fox, E. A., Robert Wollwend, Phyllis R. Sheldon, Qi Fan Chen and Robert K.
France. “Building the CODER Lexicon: The Coliins English Dictionary and Its Adverb
Definitions.” Technical Report TR 86-23. Blacksburg, VA: Virginia Tech Department of
Computer Science, October, 1986.

[FOXE 87] Fox, E. A. “Development of the CODER System: A Testbed for Artificial Intelli-
gence Methods in Information Retrieval ” Information Processing & Management 23:4 {1987,
pp. 341-366.

[FRAN 86] France, Robert K. “An Artificial Intelligence Environment for Information
Retrieval.” Masters Thesis, Blacksburg, VA: Virginia Tech Department of Computer Science,
June 1986,

[GARV 87] Garvey, Alan, Craig Comelius and Barbara Hayes-Roth. “Computational Costs
versus Benefits of Control Reasoning.” Proceedings of the Sixth National Conference on Arti-
ficial Intelligence (Seattle, WA: July 13-17, 1987), AAAL 1987, pp. 110-115.

IGAUT 81] Gauthier, Richard. Using the UNIX System. Reston, VA: Reston Publishing, 1981.

IGEHA 84] Gehani, Narain. C: An Advanced Introduction, Rockville, MD: Cormputer Science
Press, 1984.

IGOLD 78] Goldstein, Charles M. and William H. Ford. “The User-Cordial Interface.” Online
Review 2:3 (1978), pp. 269-275.

[GUID 83} Guida, Giovanni and Carlo Tasso. “An Expert Intermediary System for Interactive
Document Retrieval.” Automation 19:6 (1983), pp. 759-766.

tHAHN 86] Hahn, Udo and Ulrich Reimer. “TQPIC Essentials.” Postfach 3560, D-7750 Konstanz
/,Universitat Konstanz, April 1986.

IHART 86] Harter, Stephen P. Online Information Retrieval: Concepts, Principles, and Tech-
nigues. Orlando, FL. Academic Press, 1986,

[HAYE 79 Hayes-Roth, B., F. Hayes-Roth, F. Rosenschein, and S. Cammarata, “Modelling
Planning as an Incremental, Opportunistic Process,” Proceedings of the Sixth International
Joint Conference on Artificial Intelligence. Los Alios, CA: William Kaufmann, 375-383.

[HAYE 83] Hayes-Roth, Frederick and Dcnaid A. Waterman. Building Expert Sysiems. Read-
ing, MA: Addison-Wesley, 1983,

[HAYE 84] Hayes-Roth, Barbara. “BB1: An Architecture for Blackboard Systems that Control,
Explain, and Learn About Their Own Behavior.” Technical Report STAN-CS-84-1034.
Standford, CA: Department of Computer Science, Stanford University, December 1984,

[HAYE 85 Hayes-Roth, Frederick. “Rule-Based Systems.” Communications of the ACM 28:9
{September 1983), pp. 921-932.

[HOLC 85) Holcomb, Richard and Alan L. Tharp. “The Effect of Windows on Man-machine

Interfaces.” Proceedings of the 1985 ACM Computer Science Conference - Agenda Jor Com-
puting Research. The Challenge for Creativity. (March 1985), pp. 12-14.

Bibliography 162

[HUU 86] Huy, C. T. and U. Kekeritz. “Eine Frame Implementation in Prolog.” Rundbrief des
Fachausschusses 1.2 der GI, (April 1986), pp. 15-25.

g
Mechanisms in Modern On-line IR.” Proceedings of the 9th Annual International ACM SIGIR

[JOHN 87] Johnson Jr., M. Vaughn and Barbara Hayes-Roth. “Integrating Diverse Reasoning
Methods in the BBI Blackboard Control Architecture.” Proceedings of the Sixth National
Conference on Artificial Intelligence (Seattle, WA: July 13-17, 1987), AAAL, 1987, pp. 30-35,

[JONE 87] Jones, William P. and George W. Fumas. “Pictures of Relevance: A Geometric
Analysis of Similarity Measuges,” Journal of the American Society for Information Science
38:6 (1987), pp. 420-442.

[KHAN 88) Khan, Mahtab R. “Support Routines for the CODER System.” Masters Project.
Blacksburg, VA: Virginia Tech Department of Computer Science, in progress, 1988,

[KASS 87] Kass, Robert and Tim Finin. “Rules for the Implicit Acquisition of Knowledge About
the User.” Proceedings of the 10th Annual International ACM SIGIR Conference on Research
& Development in Information Retrieval (New Orleans, LA: June 3-5,1987), ACM, 1987, pp.
295.300.

[KERN 78} Kemighan, Brian W, and Dennis M. Ritchie. The C Programming Language.
Englewood Cliffs, NI Prentice-Hall, 1978.

[KERN 84] Kernighan, Brian W. and Rob Pike. The UNLY Programming Emvironment.
Englewood Cliffs, NJ: Prentice-Hall, 1984,

[KOUS 86] Koushik, Prabhakar. “Project Report for CS85332, Information Storage and
Retrieval.” Class Project Report. Blacksburg, VA: Virginia Tech Department of Computer
Science, June, 1986,

[LANC 78] Lancaster, Wilifrid F. Toward Paperless Information Systerms., New York, NY: Ac-
ademic Press, 1978.

[LEE 86] Lee, Newton §. “Programming with P-Shell.” IEEE Expert (1986), pp. 50-63,

[LEFF 84] Leffler, Samue! J - Robert 8. Fabry and William N. Joy. “A 4.2BSD Interprocess
Communication Primer.” In ULTRIX-32 Supp!emema{v Documents, Vol 111, Merrimack,
NH: DEC, 1984, pp. 3-5t0 3-28.

[LENA 86] Lenat, Douvg, Mayank Prakash and Mary Shepherd. “CYC: Using Common Sense
Knowledge to Overcome Brittleness and Knowledge Acquisition Bottlenecks.” 47 Magazine
(Winter 1986), pp. 65-84.

[LEVE 84] Levesque, Hector J. “Foundations of a Functional Approach to Knowledge Repre-
sentation.” Artificial Intelligence 23:2 (July 1984), pp. 155-212.

[LESS 83} Lesser, V. R. and L. D. Corkill. “The Distributed Vehicle Moritoring Testbed: A Tool
for Investigating Distributed Problem Solving Networks.” 4 [Magazine 4:3 pp. 15-33.

[LOGA 86] Logan, E. L. and Nancy N. Woelfl. “Individual Differences in Online Searching Be-

bavior of Novice Searchers.” ASIS-86: Proceedings of the 49k ASIS Annual Meeting,
Knowledge Industry Publications, 1986, pp. 163-166.

Bibiiography 163

[MALO 87) Malone, Thomas W., Kenneth R. Grant, Franklyn A. Turbak, Stephen A. Brobst and
Michael D. Cohen. “Intelligent Information-Sharing Systems.” Communications of the ACM
30:5 (May 1987), pp. 390-402.

[MARB 85] Marbach, William D. “The Race to Build a Supercomputer.” In [FORE 85], 1985,
pp.60-70.

[MARC 85] Marcus, Richard §. “Design Questions in the Development of Expert Systems For
Retreval Assistance.” 4575-86- Proceedings of the 49th ASIS Annual Meeting, Knowledge
Industry Publications, 1986, pp. 185-189. _

[METZ 85] Metzler, Douglas, Terry Noreault, Douglas P. Haas and Cynthia Cosic. “An Ezpert
System Approach to Natural Language Processing.” 4S75-85- Proceedings of the 48th 4SIS
Annual Meeting, Knowiledge Industry Publications, 1985, pp. 301-307,

[MINS 81] Minsky, Marvin, “A Framework for Representing Knowledge.” In I. Haugeland
(Bd.). Mind Design, Cambridge, MA: The MIT Press, 1981, pp. 95-128,

[MYLQO 84] Mylopoulos, John and Hector J. Levesque. “An Overview of Knowledge Represen-
tation.” In Michael .. Brodie, Joachim W. Schmidt and John Mylopoulos (Eds.). On Con-
ceptual Modelling. New Y, ork, NY: Springer-Verlag, 1984, pp. 3-16.

[NADO 87] Nado, Robert and Richard Fikes, “Semantically Sound Inheritance for a Formally
Defined Frame Language with Defaults.” Froceedings of the Sixth National Conference on
Artificial Intelligence (Seattle, WA: July 13-17, 1987), AAA], 1987, pp. 443-448,

[NAIS 85] Naish, Lee. M U-Prolog 3.2db Reference Manual. Melbourne University, July 1985.

INH 82] Nii, H, Penny, E. A. Feigenbaum, J. J. Anton and A. J. Rockmore. “Signal-to-Symbol
Transformation: HASP/SIAP Case Study.” 41 Magazine 3:2 pp. 23-35.

[NII 86A] Nii, Penny H. “Blackboard Systems: The Blackboard Model of Problem Solving and
the Evolution of Blackboard Architectures.” A7 Magazine 7:2 (Summer 1986), pp. 38-53,

INII 86B] Nii, Penny H. “Blackboard Svstems: Blackboard Application Systems, Blackboard
Systems from a Knowledge Engineering Perspective.” 47 Magazine 7:3 (August 1986}, pp.
82-106.

[NISO 87] National Information Standards Organization, “Proposed American National Standard
for Information Science -~ Common Command Language for Online Interactive Information
Retrieval,” Draft circulated for ballot, Gaithersburg, MD: National Bureau of Standards,
Z39.59-198x, 1987,

[NORE 82] Noreault, Tom and R. Catham. “A Procedure for the Estimation of Term Similanity
Coefficients.” Information Technology: Research & Development (1982), pp. 189-196.

[NORM 86] Normore, Lorraine T and Louis Tijerina. “Evaluation of Guidelines for Designing
User Interface Software.” Proceedings of the Human Factors Seciety - 30th Annual M eeling
(1986), pp. 1363-1365.

[PATE 84a] Patel-Schneider, Peter F. “Sma]l Can Be Beautiful In Knowledge Represeﬁtaﬁon.”

Workshop on Principles of Knowledge-Based Systems (Denver, CO: Dec. 3-4, 1984), IEEE,
1984, pp. 11-16.

Bibliography ' 164

[PATE 84b] Patel-Schneider, Peter F. “ARGON: Knowledge Representation meets Information
Retrieval.” The First Conference on A rtificial Intelligence Applications {(Denver, CO: Dec. 5-7,
1984), IEEE, 1984, pp. 280-286.

[PERE 83] Pereira, Fernando. “Logic For Natural Langnage Analysis.” Phd. Dissertation, Uni-
versity of Edinburgh, January 1983,

[PIGM 84] Pigman, Victoria. “The Interaction Between Assertional and Terminological Know-
ledge in Krypton.” Workshop on Principles of Knowledge-Based Systems (Denver, CO: Dec.
3-4, 1984), IEEE, 1984, pp. 3-10.

[POLL 87] Pollitt, Steven. “CANSEARCH: An Expert Systems Approach to Document Re-
trieval.” fnformation Processing & Management 23:2 (1987), pp. 116-138.

[RAMA 85] Ramamohanarao, Kotagiri and John Shepherd. “A Superimposed Codeword In-
dexing Scheme for Very Large Prolog Databases.” Technical Report 85/17. Victoria,
Australia: Melbourne University Department of Computer Science, 1985,

[RICH 79 Rich, Elaine. “User Modelling via Stereotypes.” Cognitive Science 3 (1979}, pp.
329-354.

[RICH 83} Rich, Flaine. Artificial Intelligence. New York, NY: McGraw-Hill, 1983,

[SACK 83} Sacks-Davis R. and K. Ramamohanarac. “A Two Leve] Superimposed Coding
Scheme for Partiai Match Retrieval.” Information Sysiermns 8:4 (1883), pp. 273-230.

[ROAC 85] Roach, John and Glenn Fowler. “Virginia Tech Prolog/Lisp.” Blacksburg, VA:
Virginia Tech Department of Computer Science, 1985,

[SALT 83a] Salton, Gerard, C. Buckley and Edward A. Fox. “Automatic Query Formulations in
Information Retreval.” Journal of the American Society for Information Science 34:4 {July
1983), pp. 262-250.

[SALT 83b] Salton, Gerard, Edward A. Fox and Harry Wu. “Extended Boolean Information
Retrieval.” Commumications of the ACM 26:11 (November 1983) pp. 1022-1036.

[SALT 83c] Salton, Gerard and Michael J. McGill. Jmroduction to Modern Information Retrieval,
New York, NY: McGraw-Hill, 1983,

[SEN 86] Sen, Mahasweta. “Communication Through The CODER Blackboard.” Class Project
Report. Blacksburg, VA: Virginia Tech Department of Computer Science, June, 1986,

[SCHN 8¢] Schnupp, Peter and Lawrence W. Bernhard. Productive Prolog Programining.
Englewood Cliffs, NJ: Prentice-Hall, 1686.

[SIMO 83] Simens, G. L. Towards Fifth-Generation Computers. England: NCC Publications,
1983.

[SIU 87) Siu, Lydia. “CODER - Boolean Search Expert.” Class Project Report. Blacksburg, VA:
Virginia Tech Department of Computer Science, June, 1987,

[SMEA 81] Smeaton, A, F. and C. J. Van Rijsbergen. “The Nearest Neighbor Problem in Infor-
mation Retrieval: An Algorithm Using Upper Bounds.” Proceedings of the 4th Anmual Inter-

national ACM SIGIR Conference on Research & Development in " Informarion Retrieval
(Oakland, CA: May 31 - June 2, 1981), ACM, 1981, pp. 83-87.

Bibliography 165

[SMIT 80] Smith, Linda C. “Artificial Intelligence Applications in Information Systems.” ARIST
15 (1980), pp. 67-106.

[SMIT 84] Smith, L. C. and A. J. Wamer. “A Taxonomy of Representations in Information
Retrieval System Design.” In Hans J. Dietschmann (Ed.). Representation and Exchange of
Knowledge as a Basis of Information Processes, NY: North-Holiand, 1984, pp. 31-49,

[SMIT 87a) Smith, John B., Stephen F. Weiss and Gordon J. Feruson. “MICROARRAS: An
Advanced Full-Text Retrieval and Aunalysis System.” Proceedings of the 10th Annual Interna-
tional ACM SIGIR Conference on Research & Development in Information Retrieval (New
Orleans, LA: June 3-5, 19873, ACM, 1987, pp. 187-195.

[SMIT 87b] Smith, Linda C. “Artificial Intelligence and Information Retrieval.” Ammal Review
of Information Science and Technology 22 (1987), pp. 41-77.

[SPAR 87] Sparck-Jones, Karen. “Architecture Problems in the Construction of Expert Systems
for Document Retrieval.” Paper presented at the Workshop on Distributed Expert-Based In-
Jormation Systems. School of Communication, Information and Library Studies, Rutgers
University, (March 1987).

[SRID 87 Sridharan, N. §. “Report on the 1986 Workshop on Distributed Artificial
Intelligence.” A Magazine 8:(3) (Fall 1987), 75-85.

ISTER 86] Sterling, Leon and Ehud Shapiro. The Art of Prolog. Cambridge, MA: The MIT
Press, 1986.

[TAGU 87]. Tague, Jean. “Generating an Individuatized User Interface: From Novice To
Expert.” Proceedings of the 10th Annual International ACM SIGIR Conference on Research
& Development in Information Retrieval {New Orleans, LA: June 3-5, 1987), ACM, 1987, pp.
57-60.

[TERR 83} Terry, A. “The CRYSALIS Project: Hierarchical Control of Production Systerns.”
Technical Report HPP-83-19. Stanford, CA: Stanford University, Heuristic Programming
Project, 1983.

[THOM 85] Thompson, Roger H. and W. Bruce Croft. “An Expert System for Document Re-
trieval.” Proceedings of Expert Systems in Govermment Symposium (Mclean, VA: October
1985), IEEE, 1985, pp. 448-456. :

ITHOM 86] Thompson, R. H. and W. B. Croft. “I°R: A New Approach to the Design of
Document Retnieval Systems.” Jownal of the American Society for Information Science {April
~ 1986).

[THOM 87a] Thompsen, Roger. “An Implementation Overview of I*R.” Paper presented at the
Workshop on Distributed Expert-Based Information Systems. School of Communicatien, In-
formation and Library Studies, Rutgers University, (March 1987), '

{THOM 87b] Thom, James A. and Justin Zobel, Eds. “Extracts from NU-Prolog Reference
Manual,” Version 1.1. Technical Report 86/10. Victoria, Australia: University of Melbourme,
Department of Computer Science, May 1987.

[THOM 87¢] Thom, James A. and Justin Zobel (Eds)). “NU-Proiog Reference Magual.” Viciona,
Australia: Department of Computer Science, University of Melbourne, May, 1987.

[TONG B86a] Tong, Richard M., Lee A. Appelbavm, Victor N. Askman and James F.
Cunningham. “RUBRIC I - An Object-Oriented Expert System for Information

Bibliography 166

Retrieval.” Proceedings of Expert Spstems in Government Symposium (Mclean, VA: Qctober
22-24, 1986), IEEE, 1986, pp. 106-115.

[TONG 86b] Tong, Richard M. Lee A. Appelbaum, Victor N. Askman and James F.
Cunningham. “Conceptual Information Retrieval using RUBRIC.” Proceedings of tﬁe 10th

[VANR 86]. Van Rijsbergen, C. J. “A New Theoretical Framework for Information Retrieval.”
Proceedings of the 9th Annual International ACM SIGIR Conference on Research & Develop-
ment in Information Retrieval (Pisa, Haly: September, 1986), ACM, 1986, pp. 194-200.

[VICK 87] Vickery, A. and H. M. Brooks. “PLEXUS - The Expert System for Referral.” Infor-
mation Processing & Management 23:2 (1987), pp. 99-117.

[WATE 86] Waterman, Donald A. 4 Guide to Expert Spstems. Reading, MA: Addison-Wesley,
1986.

[WATT 87] Watters, C. R. and M. A, Shepherd. “Towards an Expert System for Bibliographic
Retrieval: A Prolog Prototype.” Proceedings of the J0th Annual International ACM SIGIR
Conference on Research & Development in Information Retrieval (New Orleans, LA: June 3-5,
1987), ACM, 1987, pp. 272-281.

[WEAV 86a] Weaver, Marybeth T. “The CODER Search Expert.” Class Project Report.
Blacksburg, VA: Virginia Tech Department of Computer Science, December, 1986,

[WEAV 86b] Weaver, Marybeth T. “The CODER Search Expert Integration.” Class Project
Report. Blacksburg, VA: Virginia Tech Department of Computer Science, June, 1986.

[WEAV 86c] Weaver, Marybeth T. “A Frame-Based Knowledge Representation System.” Class
Project Report. Blacksburg, VA: Virginia Tech Department of Computer Science, January,
1986.

[WEIS 84] Weiss, Sholom and Kulikowski, Casimir. 4 Practical Guide to Designing Expert Sys-
tems. Totawa, NJ: Rowman & Allanheld, 1984.

[WENB 86] Wenban, Jim. “CS$5332 Class Project - Creating Prolog Facts from the HAL” Class
Project Report. Blacksburg, VA: Virginia Tech Department of Computer Science, June,
1986,

[WILL 84] Williams, M., H. Brown and T. Barnes, “TRICERO Dssign Description.” Technical
Report BSL-NS539. ESL Inc., 1984,

[WOHL 86] Wohlend, Robert C. “Creation of a Prolog Fact Base from the Coltins English Dic-
tionary.” Masters Project Report. Biacksburg, VA: Virginia Tech Department of Computer
Science, March 1986,

[YIP .81] Yip, Man-Kam. “Ap Expert System for Document Retrieval.” Masters Thesis.
Cambridge, MA: Massachusetts Institute of Technology, February, 1981,

Bibliography 167

Appendix A. Prolog Utilities List

PROLOG UTILITIES INDEX

For information regarding the arguments and details of each utility,
reference the utilities Lbrary (~coder/UTIL).

aless

all
append
append3
append_n
ansi_io

bestlist

control2
convert
cqueen
Cross

db

delete
delete_all
dsimc

efface
env_fuont
epilog
extended_logic

findall
for_alt

general
genwait
gnot

ground

hex
input_output
mnsert
is_real_list
islist

isort

Less than comparison for atoms.

All solutions. Same as “findall’, ‘setof”.

Appends. two lists to form one new list,

Appends three lists together.

Append a list of lists, ignoring the null Hst.

Group of standard predicates needed for terminal 10,

Finds the best valoe in a kst according to some
binary predicate.

‘Loop’ and “invoke’ for predicates.

Conversions between integers, constants, and strings.
For 8§ queens problem.

General purpose problem solving procedure.

For Mu-Prolog database.

Delete alt occurences of one element from a list.
Delete all occurences of a list of elements from a list,
For Mu-Prolog database, superimposed coding.

Delete first occurence of an element from a Jist.
Group of environment function enhancements,
Epilog -and- connective special coroutining,
Extended logic predicate, e.g., ‘or’.

Findall occurrences of an item in a prolog fact base.
See “setof” and ‘setofl”.
Apply a predicate to each member of an op_Hst,

Anti-unification.

Generates wait declarations for a procedure,
Generalized negation predicate.

Predicates for grounding.

Conversion between hex integers and strings.
User [/O, includes pretty-printing trees, strings, ...
Inserts an element 1nto a fist. '
Allows only properly formed lists (ie., no dotted lists).
Allows any list.
Insertion sort.

Appendix A. Prolog Utilities List

last
list_length
lqueen
Iquery

mac
maplist
matchlist

maxlist
member
member_rest
merge
merge2

miniist

- next to
no_dupis
non_null_list
ngqueen
numbervars

octal
osets

perm
permute
plin.pl
position
preds
prefix
primes

random
rationalize
read_in
reduce
reduced
remove_dups
repeat_list
TEVErse

tlhp

setof
setofl
sets

sime
st
sort
stdio

string_of
structures

Appendix A. Prolog Utilities List

Last element in a list.

Number of elements in a list.

Logic of 8 queens problem {input to preprocessor).
Logic query processor.

Missionaries and cannibals problem.

Maps one list onto a new list based on a Predicate arg.
Matches one list to another [ist based on 2 list of
common elements.

Maximum element in a list.

List membership.

List membership and returns the rest of the list.

Merges 2 non-decreasing lists (duplicates not removed).
Random merge of 2 ordered lists ”

Minimum element in a list.

Adjacency between 2 elements in a List.
Succeeds if a list has no duplicates.
Succeeds if a list is non-null.
Front-end for the n-queens problem.
Number of variables in a term,

Conversion of octal integers and strings.
Ordered set manipulation utilities (R.A.O'Keefe).

Permutation of 2 lists (with wait predicate).
Permutation of 2 lsts (no wait predicate),
Prolog formatter and comment remover,
Element in postition X in a Jist.

- all’, notall’, ‘some’, and ‘none’ for predicate success.

Succeeds iff “part’ is a leading substring of a whole.
Prime number sieve.

Generate random number betwesn I and specified X.
Rationalize number,

Create list of words from an English sentence.

Apply bin-op left associatively to elements in a Jist.
Reduce an expression to lowest terms.

Removes all duplicates from 2 list creating a new list.
Create a list be repeating an Element X times.
Reverse elements in a List.

MuProlog DB, recursive linear hashing program.

Like findall’; also contains ‘bagof’. (Unsound mequality}
Like findall’; also contains "bagof’. (Sound mequality)
Predicates for sets (e.g., ordered lists). Includes

subset, intersection, unicn, sei-diff, set_equal,
set_plus,powerset, partition, closure.

MuProlog DB. Superimposed coding scheme program,
Same leaves (for processing tree structures),

Quick sort,

Standard I/O routines, ¢.g. centering display,

menus.

Suceeeds if string is composed of elements of given alphabet,
Predicates for atomic/compound terms, and tree position.

169

sublist
subst
suffix
system

term_compare
terms

times
traperror

trim
unixutil
virace

Appendix A. Prolog Utilities List

List is a sublist in a list.

Substitute all occurrences of one element by another.
Succeeds iff “part’ is a trailing substring of a whole.
All system predicates.

Determines relationship between 2 terms {eg =,<,>)
Tests term types, e.g., atomic, fioat, instantiated,...
Divide and multiply predicates.

Traps an undefined procedure call, and checks whether
the procedure is available in some other lLibrary.

Trim leading and/or trailing elements of a list.
Contains UNIX utilites ‘cat’, ‘cp’, ‘move’,

Trace binding of variables in a goal.

176

Appendix B. Prolog Programming Standard

CODER Prolog Programming Standard

Adopted from Prolog Digest Volume 4, Number 80, Summer 1986. Submitted by John Cugini.

Many predicates expect certain of their arguments to be instantiated upon invocation. When such
restrictions apply it is usually the leading arguments which are thought of as input (and hence
uninstantiated), and the trailing arguments as cutput (and hence allowed to be uninstantiated). A
standard way of denotmg the status of arguments to a Prolog predicate is to include a comment line
before the body of the clause, in which arguments expected to be instantiated are prefixed by "+,
uninstantiated arguments arguments bya’, an& arguments where it doesn‘t matter (or where either
can be used} by ‘7. For example,
% append(+1L1, +L12,-L3)

indicates the status of the arguments to the usual use of the standard “append’ clause.

Appendix B. Prolog Programming Standard 171

Appendix C. Testing Communications Extensions

To test, for example, the hai manager:

Execute hai_mgr in background.
>hai_mgréd

% Go into one of the prolog versions with the buil-in ask predicate.
>prolog-s

% To be sure that the hai_mgr socket is Junctioning properly, test
% with the hello function.

> ask(hai_mgrhello(X)).
X = hai mgr
% Check some of the functions of the hai_mgr.
> ask{hai__mgr,prf:process(test_ﬁ}ena.me)).
true.

%% Extract line mumber 10 from the Jile, test_filename.
% Systern should respond with the name of a temporary file.

> ask{hai_mgr,extractline(test_ﬁlename, 10, Text_filename)).
Text_filename = [tmp|hai_test ' Jilename 12345

| %% Exit Prolog.

CtiD

Terminate the hai_mgr running in background.

kil %1

& Remove any temporary Jiles placed in the ~tmp directory.

mm /tmp/hai_test_filename 12345

Appendix C. Testing Communications Extensions 172

Note that the hai_mgr must be in the map file before Prolog can be used 10 transmit an ask com-

mand. Otherwise, the error “unknown server module” will be displayed.

Appendix C. Testing Communications Extensions 173

Appendix D. Implementation Schedule, June 1987

CODER Retrieval Subsysiem Tasks

Month / Week

June July August
Activities 3 4 1 2 3 411 2 3 4

-

Phase |

Jest new configuration A ——
Test Prolog versions Ea—

Frolog 10 C exiensions —————

Phase Il

Inout Analyst & Report and
User Imentace integration

Problem Description Builder s —————

Phase Il

Implement Browse ang
Lexical Expens P ———:

Phase IV

Integrate above phases
with biackbcardfs:rategis:;
Define blackboard greas,

Phase v

Query input & formulation;

Search expert :

- Py . “
Hesponse Generater,

Pnase vi

Test with indexed
AlListall using SMART,

or use Anaiysts subsysiem _

if ready.

= . Gantt Char as of June 2, 1887
(""'-- Cheduied Every)

Appendix D. Implementation Schedule, June 1987 174

Appendix E. Modified Blackboard/Strategist

Specifications

Appendix E. Modified Blackboard/Strategist Specifications 178

Blaékboard / Strategist Complex:
Functional Specification

There are five functional modules within the blackboard/strategist composite. In the
blackboard proper, the posting area manager maintains the integrity of the posting
areas while responding to the external post, refract, and view commands. The other four
functional modules are considered parts of the strategist. The logic task scheduler is
responsible for scheduling new tasks necessary 10 maintain the validity of the hypotheses
on the blackboard, while the domain task scheduler schedules new tasks based on
domain-specific blackboard events, The question / answer handier uses
domain-specific knowledge of which experts are able to answer what guestions to
schedule the tasks involved in the question/answer process., Proposed tasks from thege
three sources are picked up by the task dispatcher and passed to the experts in the loca]
community. The external calls wake, attend, and stop actually originate from the
dispatcher, and the done and éheckpoint communications from the €Xperts are received
by it.

0.1. Common Data Structures

Hypothesis -- A 5-tuple
<fact, confidence, expert, id, dependencies>

where: '

fact'is a CODER fact, ,

‘confidence’ the confidence the expert has in the fact,

‘expert’ the ID of the specialist making the hypothesis,

1d' a unique identifier for the hypothesis within the session, and

‘dependencies’ is a list [or possibly, a p-norm expression] of id's for the
hypotheses used by the expert in producing the carrent hypothesis.

When a fact is posted by an expert, 'id' is passed as an unbound variable. A value is
supplied for the variable by the blackboard and remrned. All other elements of the uple
should be supplied by the posting expert: in the event that the hypothesis depends on no
previous hypotheses, ‘dependencies' may be bound o the empty Jist [].

Appendix E. Modified Blackboard/Strategist Specifications 176

Question - A skeletal fact, i.e., a set of CODER variables coupled to a fact, one or
more arguments of which are replaced by the variables. Each question is posted to the
reserved Question area of the blackboard until it accumulates an adequate set of answers,
upon which it is returned 1o the specialist that originated it, A question has an expert-id,
dependency information and an id of its own, but no confidence.

Answer -- A binding list that partially instantiates the question with which it is
associated (ie, a subset of the variables in the question together with CODER knowledge
structures with which they can be replaced) signed, confidence-rated and justified by the
answering expert. (In other words, an answer is exactly like an hypothesis, except that
the fact is replaced by a binding list of variables from the question).

‘Task -- A 5-tuple
<expert, command, scheduler, priority, time>

where:
‘expert' is the ID of an expert in the local community,
‘command’ on¢ of the expert entry points (wake, artend &e.),
'scheduler’ either Togic’, 'question’ or 'domain’,
‘priority’ the priority assigned by the scheduler, and
‘tirne’ the date/time when the task was entered.

1. The Posting Area Manager

All interactions with a posting area of the blackboard, either by the external
community or by the other modules of the blackboard/strategist complex, occur throu gh
the posting area manager. Each area of the blackboard, whether a subject postng area, the
pending hypothesis area, or the question/answer area, can be directly accessed only by the
posung area manager. The area manager thus must provide the functionaliry for all post,
retract, and view commands. In additon, it must notify the two task schedulers when
€vents occur on the blackboard that may have scheduling repercussions. Specifically,
whenever a hypothesis is posied 1o a subject area, both task schedulers must be notified;

- -

Appendix E. Modified Blackboard/Strategist Specifications 177

the domain task scheduler with the type of hypothesis posted (the head relation) and the
logic task scheduler with the dependencies of the new hypothesis. The domain task
scheduler must similarly be informed when a question or an answer is posted, and the
logic task scheduler when a hypothesis is retracted or replaced. The exact syntax of these
calls is defined below under the headings for the two schedulers.

Still more specifically, the following lists the activity required by each of the calls to
the posting area manager:

post_hypothesis (Hyp, Area). -- The hypothesis 'Hyp' is added to the
subject posting area ‘Area’, and its id 1s bound to a new identifier. The
hypothesis is time-stamped, and the logic task scheduler is passed its
dependency information. If 'Hyp' involves a fact already posted 1o the
area by the originating expert (if it replaces an earlier hypothesis), then
the earlier hypothesis is removed from the posting area, and the logic
scheduler is notified of this as well. If not (if the hypothesis involves a
new fact), then only the domain task scheduler is notified.

retract_hypothesis (Hyp_id, Expert_id). -- The hypothesis "Hyp_id' is
removed from the blackboard, and the logic task scheduler notified, using
the difference between the confidence value of the retracted hypothesis
and 0 (or the nill confidence value) as the change in confidence. Only the
expert which posted the hypothesis may retract it.

post_question (Quest_id, [Expert_id, Quest, Dep]). ~ The question
‘Quest’ is added to the question posting area, and the question/answer
handler notified.

post_answer (Quest_id, Ans). -- The answer 'Ans’ is added to the set of
answers to the question with ‘Quest_id' in the question posting area. The
queston/answer handler is notdfied. Note: answers can be replaced under
the same conditions zs hypotheses (if the hypothesized fact and the
answering expert are the same), but no notification is made of such
changes, as no hypotheses can be dependent on answers still in the
question/answer area.

retract_answer (Quest_id, Ans_id, Expert_id). -- The answer with
‘Ans_id' is removed from the set of answers to question 'Quest_id' in the
question posting area. Only the expert which posted the answer may
Tewact 1t.

Appendix E. Modifieg Blackboard/Strategist Specifications 178

view_area (Area, Status, Expert_id, Hyp_set). -- Hypotheses
currently in the subject posting area 'Area’ are coliected into Hyp_set’
and returned. The Status and the id of the Expert requesting the
hypothesis set determine which hypotheses are returned: . those which no
expert has yet processed (new); those which the reguesting expert has not
processed, although other experts may have processed them (seen); those
the expert has aiready processed (old), those that have been modified, or
all of the above. Status must be ‘new’, ‘old, 'all’, 'seen’, or an integer
representing the time since the hypotheses were last modified. When a
time integer is supplied, only hypotheses which have been modified since
that time will be returned in Hyp_set.

view hyp(Hyp id, Hypothesis). -- The hypothesis wple for the given
Hyp_id 1s rcmrncd :

view_quest(Quest_id, Question). -- The guestion list of
{Ongmaung_expcrt Quesuon Depcndcncms] for the question 'Quest_id’
1s rerurned as Question.

view_gunestions (Quest_set), -- All hypotheses currently in the question
posting area are collected into ‘Quest_set’ and returned.

view_answers (Quest_id, Ans_set). -- The current set of answers for
gueston 'Quest_id' is returned as 'Ans_set'.

view_pending (Hyp_set). -- The current set of hypotheses in the pending
hypothesis area 15 returned as "Hyp_set'.

hyp processed (Hyp_id, Expert_id, Time). -- Notifies the posting area
manager that hypothems Hyp_ 1d has been processed by 'Expert_id' at
dme "Time'. This predicate updates the Status of biackbozard hypotheses
processed by the Expert.

clear hvps([Functors}) -- Notifies the postmg area manager that
hypotheses with Facts having a head relation maiching one of those in the
Functors' list may be removed from the hypothesis fact base. This
predicate prevents accumulation of hypotheses which will not be used
again and could significantly slow Processing.

Al of the calls provided in the external view of the blackboard are available 1o the strategist
scheduling modules. In addition, the posting area manager provides certain further cails to
the srategist moduies only. These are:

Appendix E. Modified Blackboard/Strategist Specifications 179

retract_guestion (Quest_id, Ans_set, Expert_id). -- The question with
'Quest_id' is removed from the question/answer area, and the (possibly
empty) set of answers accumulated up to the time of call returned as
‘Ans_set'.Only the expert which posted the question may retract i,

2. The Logic Task Scheduler

It 1s the respensibility of the logic task scheduler to maintain the consistency of the
deductdon trees implicit in the hypotheses on the blackboard under the conditons of
possibly changing premises. The knowledge represented on the blackboard is
non-monotonic: hypotheses may be retracted or replaced at any time. When this occurs,
the hypotheses dependent on the retracted or replaced fact must sometimes be retracted or
replaced themselves. The logic task scheduler accomplishes this by schedulin g
reconsiderations of hypotheses that may be effected: ie., by scheduling tasks of the form
artempr_hyp (Rel) for the expert hypothesizing the suspect fact.

In order to perform this scheduling, the logic scheduler draws upon dependency
information and maintenance knowledge. The information is received from the posting
area manager, and the knowledge is represented in a rule base relating the stimuli of
rerractions and changes of confidence together with the closeness of the dependency, to
Tesponses in terms of task postin gs ar various priorities. For example, one rule might be:

IF
The confidence leve] of Hyp_A has decreased Amount_1 AND
Hyp_B is dependent on Hyp_A with level Amount_2,
THEN
Schednle <Expert_B, attempt_hyp(head(Hyp_B))> with priority of
Base_level*Amount_l*Amount 2. -

Other information available for iggering rules includes the age of the hypotheses and the
number of dependenceis an individual hypothesis has. Note that reconsiderations will
propagate namarally through the deduction tree above the replaced or retracted hypothesis
as the logic-maintenance tasks result in the suspect hypotheses themselves being changed

Appendix E. Modified Blackboard/Strategist Specifications 180

or withdrawn. It is the responsibility of the rule base creator 1o ensure that such
propagation is damped appropriately and does not always result in every hypothesis in the
tree being reconsidered.
The logic task scheduler reacts only to the operations of the posting area manager, to
which it provides the following calls:

new dependencies (Hyp_id, Rel, Expert, Confi dence,
“Dependencies), -- Hypothesis 'Hyp_id' has just been posted. It has
head-relation 'Rel' and is dependent on the hypotheses in ‘Dependencies'.
It was posted by expert ‘Expert' with confidence value ‘Confidence'.
This call should initiate no scheduling activity, but the information must

be logged so that dependencies can be traced, :

hyp retracted (H'yp_id). -- Hypothesis 'Hyp_id' has just been retracted.
The dependency graph musf be updated, and reconsiderations may need 1o
be scheduled.

hyp_replaced (Hyp_id, Change_in_conf). -- Hypothesis 'Hyp_id' has

just been replaced by an hypothesis which differs in confidence by
'Change_in_conf. Note that 'Change_in_conf may be either positive, if
the new hypothesis has a higher confidence ieve] than the old, or negative,
if it has less confidence. The dependency graph must be updated, and
reconsiderations may need to be scheduied.

3. The Question/Answer Handler

Of the two application-specific schedulers in the strate gist module, the
question/answer handler is the more straightforward. Based on a set of rules associating
each type of queston (cancnically, edch head-relation) in the set of all questions that may
be posed throughout the community with the set of experts possibly able to answer them,
the question/answer handler reacts to postings of guestions by posting tasks of the form
atrend _quest 10 the task posting area. When answers are posted to guestions, the
queston/answer handler evaluates them for adequacy based (at least) on the confidence of
the answer and which experts of those capable of answering the question have made an
atieropt. If the answer set is judged inadequate, new answering tasks are posied;

Appendix E. Modified Blackboard/Strategist Specifications 151

otherwise, the question is removed with its answer set from the question/answer area and
sent to the originating expert in the form of an answers task,

Answers 1o questions must be evaluated for adequacy in the context of what other
CXperts are available to attempt answers, Each type of question may have an expert or g
set of experts that are best fir to answer it, but other experts may need to be called in if the
first attempt to provide an adequate answer fails, An inadequate set of answers might
alternatively cause the process of searching for an answer to be restarted, if conditions on

might be obtained.

The queston/answer handler is thus the only module in the System that makes use of
the refract__question entry to the posting area manager. It uses, in addition, the
view_answers and possibly the view_questions entry. In return, it provides the
posting area manager with the mggers:

new_question (Quest id, Rel), -- Question 'Quest_id' with head-relation

Rel' has just been posted. Experts capable of answering questions with
this head-relation should be scheduled.

new_answer (Quest_id, Ans_id, Conf). -- Ap answer ('Ans_id") 1o
question 'Quest_id' has Just been posted with confidence level 'Conf. If
the answer produces (either alone or with previously received answers) an
adequate answer set, the question shouid be reracted from the
question/answer ares and consideration of the answer posted as a task for
the originating expert. Otherwise, other processing should be undertaken
10 obtain an answer.

4. The Domain Task Scheduler

The domain task scheduler ig Tesponsible for proposing new tasks based on the
progress of the current session and the mix of hypotheses currently on the blackboard. It
is also responsible for selecting the hypotheses to be posted 1o the pending hypothesis

Appendix E. Modified Blackboard/Strategist Specifications 182

area, again based on what has happened on the blackboard and what is happening at the

moment. The domain-specific strategies for these two types of actions are represented in a
set of rules, the antecendents of which are combinations of events within contexts, and the
consequents of which are expert tasks to be posted and/or types of hypotheses to be
moved to the pending area. For instance, a rule in the retrieval swategist might run:

IF
An hypothesis establishing the document type has been posted
AND
It has a confidence larger than Min_level AND

(There is no other hypothesis of document type posted " OR
The new hypothesis is a refinement of the former pending hypothesis)
THEN
Move hypothess to pending hypothesis area AND
Schedule <doc_type_expert, attempt__hyp(ﬁll_missing_ﬁelds)>
with priority of K.

Rules need to be provided in building this local base to deal with reactions 10 individual
hypothesis types, to questions and to answers to questions, all in the context of the phases
of the overal! task in which the community is engaged. At different phases of the process,
different hypothesis postings may require different actions by a different mix of EXPerts.

The domain task scheduler is informed by the posting area manager whenever a new
hypothesis is posted. This is the primary samulus for miggering rules:

new_hyp (Hyp id, Rel, Dep, Cdnf). -- Hypothesis 'Hyp_id' with
head-relation 'Rel, dependencies 'Dep’, and confidence leve! '‘Conf” has
Just been posted.

In addidon, domain scheduling may be miggered by the task dispatcher, for instance when
the task queue is empty, or when no tasks in the gueue have priority ereater than some
particular threshhold.

Appendix L. Modified Biackboard/Strategist Specifications 183

5. The Task Dispatcher

The task dispatcher coordinates the tasks proposed by the three scheduling units and
sends the actual commands to the requested experts. It maintains a priority queue of tasks,
which may, however, not necessarily be executed in priority order. As well as by the
priority assigned by the scheduling unit 1o the task, order is determined by the availability
of resources (experts, for instance, execute tasks serially, so a task for a given eXpert may
have to wait until the expert is finished), by the location of system modules (tasks for
modules resident On different machines may be allocated at different priority levels,
depending on the demands for those machines), and by heuristics balancin g how crucial
tasks proposed by the three experts are relative to one another.

The task dispatcher is tri ggered by two sorts of events. First, it is miggered
whenever a new task is proposed by one of the scheguling units:

new_task (Task). -- 'Task' should be added to the gueue. If desirable
according to the above heurisacs, it should be dispatched.

Second, the dispatcher is also rigeered whenever an executin g task is completed:

done (Expert). -- 'Expert' has compieted its current task. Based on the task

mix in the queue and the scheduling heuristics, another task may now be
dispatched.

The task dispatcher maintains a history file of the progress of all the tasks execured
dering a session. When each expert signals successful receipt of a task, the dispatcher
nores the time the task has begun in the history file. It notes the time of completon of each
task at the receipt of each done. It uses the information in this file 1o determine which
EXDerts are running at any point. The file is also used by the domain task expert, and
possibly the question/answer handier.

Appentix E. Modified Blackhoard/Strategist Specifications 184

Appendix F. Frame Creation Session

Seript started on Thu Dec 3] 09:08:25 1987
1%prolog
MU-Prolog 3.2ddb

1?- [knowadm].
consulting knowadm
done

true.
27- update.
Please enter function desired:

New Elementary Data Type
New Frame

New Relation

. Save updates

99. Terminate processing

/.

Files being consulted, please wait

BLa o

Please enter, one by one, each parameter of the new EDT followed by a period.
EDT type name

Summer_gtr.

parent EDT

int,

quantifier (or [J }

{7

Restriction in list format: fnot,xy,.] [member,x,y,...]
[min x,maxy] or m

[meniber,6,7,8.

You have added an EDT called surnmer qtr with the following parameters:
quantifier = []

Appendix F. Frame Creation Session i8%

parent_type = int, parent restriction = Il
restriction = [member, 6, 7, 8]

Please enter function destred:

New Frame
New Relation
Save updates
99. Terminate processing
2, .

1. New Elementary Data Type
2.
3.
4.

Please enier, one by one, each parameter of the new frame followed by .
Frame type name

surhmer_scked.

Frame parent(s) list €.2., [parent!, parent2] or]

{7 | |

PLEASE ENTER NEW SLOTS TO BE ADDED FOR THIS FRAME
Bnter slot name (or enter stop to terminate)

class_name,

Slot class (ef;r for edt, frame, or relation)

e

Slot EDT, frame, or relation type

char, |

Siot cardinality minimum (may be [])

[|

Slot cardinality maximum (may be [])

3.
You have added a new siot called class_name

More slots? (v/n)

7.

Enter slot name (or enter Slop 1o terminate)
month_offered.

Slot class (e fr for edt, frame, or relation)

e.

Appendix F. Frame Creation Session

186

Slot EDT, frame, or relation type
summer_gtr.

Slot cardinality minimum (may be [])
[J.

Slot cardinality maximum (may be)]

3.
You have added a new slot called month_offered

More slots? (y/n)

¥

Enter slot name (or enter stop to terminate)
instructor.

Slot class (e,f,r for edt, frame, or relation)

f

Slot EDT, frame, or relation type

individual.

Slot cardinality minimurm (may be)

{7

Slot cardinality maximum (may be)]

&’611 have added a new slot called instructor -
More slots? (y/nj

P

Enter slot name (or enter Stop to terminate)
course_nbr.

Slot class (e.fir for edt, frame, or relation)

e.

Siot EDT, frame, or relation type

char.

Slot cardinality minimum {may be [})

Appendix F. Frame Creation Session

187

[].
Slot cardinality maximum (may be [])

]

You have added a pew slot called course_nbr
More slots? (y/n)

n.

Each EDT siot will be displayed, so that You may enter defaults
SLOT:ciass_na.me, char, CARD: [}.3, DEF: []

Enter new default ([} for no change):

{7

SLOT:course__nbr, char, CARD: {Lll, DEF: [j

Enter new default ({1 for no change):

[]-

SLOT:monthﬁ_oﬁ"ered, sumrﬁer_qtr, CARD: [],3, DEF: 1

Enter new defanlt (I] for no change):

)

You have added a new frame type cailed summer_sched
Frame parent(s) [j

-SLOT:class_name, ¢, char, CARD: |),3, DEF: il

SLOT:course_nbr, e, char, CARD: (LI, DEF: [J
SLOT:instructor, [, individual, CARD: (L[], DEF:]
SLOT:month_offsred, ¢, summer_gir, CARD: 1.3, DEF: ¢
Please enter function destred:
1. New Elementary Data Type
2. New Frame
3. New Relation
4. Save updates

Terminate processing
Ef)T type file being Tewritten, please wait

Frame type file being rewritten, please wait

Appendix F. Frame Creation Session 188

No new relations created.
Termination in process as requested

3% ka_edey summer_gtr,Parent,Quantifier, Restrictions /.
Parent = [],

Quantifier = int,

Restrictions = [member, 6, 7, 8]

47- ka_frame(Summer_sched,Parents,Slotlist).

Parents =
Slotlist =
[class_name, e, char, [}, 3, [ls
course_nbr, e, char, [, [1, I,
instructor, {, individual, 010, I,
month_offered, e, summer_gtr, [J, 3, 6]
5% =D
End of session
2%—D

script done on Thu Dec 3] 09:15:34 1987

Appendix F. Frame Creation Session 189

Appendix G. Frame Type Definitions

CODER FRAME TYPE DEFINITION REPORT

FRAME TYPE: time

SLOTS:
Slotname
hour
minute
second
amprn
time_zone

FRAME TYPE: date

SLOTS:
Slotname

vear

month
day_of_month
day_of_week

FRAME TYPE: date_time

SLOTS:
Slotname
date

time

FRAME TYPE: name

SLOTS:
Slotname
date_established
educ_status

first

last

middle
suffix_jr_sr

title

PARENT(S): []
Type*
e

€
€
€
£

PARENT(S): []

Type
&

€
€
5]

Type
f
f

PARENT(8): []

Type

LU I ¢« T T

* Types are: e= Elementary Data Type (EDT)

Appendix G. Frame Type Definitions

PARENT(S): []

Type name
hour
minute
second
ampm
time_zone

Type name
year

month

day_of month
day_of week

Type name
date
time

Tvpe name
date
char
char
char
char
char
char

, f=frame, r=relation.

190

CODER FRAME TYPE DEFINITION REPORT

FRAME TYPE: phone PARENT (5): {7

SLOTS:

Slotname Type Type name
area_code e char

prefix e char
local_nbr g char
extension e char

FRAME TYPE: u_s_address PARENT. (S): [address]

SLOTS:

Slotname Type Type name
p_o_box e char

street e char

city e char

state & char
country & char
zip_code e char

FRAME TYPE: non_u_s_address PARENT(S): [. address]

SLOTS:
Slothame Type Type name
p_o_box e char
street e char
city e char
province ¢ char

- country 2 char
postal_cods e char

FRAME TYPE: address PARENT (St f7

SLOTS:
Slotname Type Type name
P_0_box e char
street € char
city e char
country e char

FRAME TYPE: educational ~ PARENT(S): [postal_address]

SLOTS:

Siotname Type Type name
department g char
schiool 2 char
university e char
address 1 address

Appendix G. Frame Type Definitions 191

CODER FRAME TYPE DEFINITION REPORT

FRAME TYPE: non_educational ~ PARENT(S): [postal_address]

SLOTS: :

Siotname Type Type name
organization € char
address f address

FRAME TYPE: postal_address PARENT(S): []

SLOTS:
Slotname Type Type name
address f address

FRAME TYPE: email_address PARENT(S): []

SLOTS:
Slotname Type - Type name
user_id e char
source_node f node
reiay f node
Toute e char
FRAME TYPE: node PARENT(S): []
SLOTS:
Siotnpame Type Type name
local e char
net_name e char
domain e char
FRAME TYPE: individual ~PARENT(S): []

SLOTS:
Slotname Type Type name
name f name
postal_address f postal_address
email address i email address
phone { phone

* affiliation e char

FRAME TYPE: discussion_time ~ PARENT(S): []

SLOTS:

Siotname Type Type name
start { time

end f time

Appendix G. Frame Type Definitions

192

CODER FRAME TYPE DEFINITION

FRAME TYPE: place PARENT(S): J1

SLOTS:

Slotname Type
room e
floor e
building e

h €

REPORT

Type name
char
char
char
char

FRAME TYPE: semingr PARENT(S): [doctype]

SLOTS:
Siothame Type
seminar_name £
serninar_time f
serninar_date f
seminar_place f
seminar_title e
discussion_place f
discussion_time f
speaker f
host f
f

abstract_span

FRAME TYPE: span PARENT(S): f]

SLOTS:

Slotname Type
start_line e
end_line e

FRAME TVYPE: digests PARENT (S):[]

SLOTS:
Slotname Type
digests e

Type name
char

time

date

place
char
place
time
individual
individual
span

Type name
int
int

Type name
char

FRAME TYPE: content_vector PARENT (S): j7

SLOTS:

Slotname Type
concepi_nbr e
weight e

Appendix G. Frame Type Definitions

Type name
int
int

193

FRAME TYPE: issue

FRAME TYPE: topic

FRAME TYPE: doctype

FRAME TYPE: digest_issue

SLOTS:
Slotname

issue

topic
digest_message

SLOTS:
Slotname
dig_id
isu_date
isu_num
isu_vol

SLOTS:
Slothame
header!
header2

FRAME TYPE: forward_from

SLOTS:
Slotname
board
individual

FRAME TYPE: digest_message

SLOTS:
Slotnante
msg_id
date_sent

frem

subject

forward_from

reply_to

span

doc_type
content_frame

content_vector

Appendix G. Frame Type Definitions

PARENT(S): []

Type
f
f
f

PARENT(S): []

Type
e

f
e
e

PARENT(S): []

Type
g
e

CODER FRAME TYPE DEFINITION REPORT

Type name
1ssue

topic
digest_message

Type name
int

date

int

int

Type name
char
char

PARENT(S): []

Type
e

f

Type name
char
individual

PARENT(S): []

Type

(D R b e e ey by

PARENT(S): []

Type name
int

date time
mdividual
char
forward_from
individual
span

char

doctype
content_vector

** END OF FRAME DESCRIPTION REPORT *+

164

Appendix H. Performance Evaluation Tables

Time
Function Module Posts Sequence (Sec)

config start_up
-~
request welcome file display ia setup_screen —bboard 80

~+Strategist
—report
—user_interface 1

user sees welcome + (wait for user to continue) ~ig
{state wansition, welcome done + ia state —bboard 13

—strategist
—probimsd
state transition, id user probmsd 1d_user —bboard 1

~s$trategist
—user_model
request prompt for user id user_mnodel disp_prompt —+bboard 2

—strategist
—report
~user_interface i

USer sees prompt (wait for user entry) —1a
POost user response 14 um_resp —bboard 1

—strategist
: —user_mode]
state transition, user_model staie —bboard 1
user unknown
—strategist
—probmsd
SW state, characterize user " probmsd char newuser —bboard

b2

—strategist
—user_model
request user info user_model disp_prompt —bhoard 1

—strategist
—Treport
—User_interface 1

+ Indicates that functions qre performed concurrentiy.

Appendix H. Performance Evaluation Tables 195

Function Module
USEr sees prompt (wait for user entry)
post user response 1a
get more user info user_mode]

user sees menu (wait for user selection)
post user selection 1a

(continue until all explicitly acquired wser information

state transition, questions_done user modef
request problem state info + probmsd
{post user type+ user_model
USEr sees prompt (wait for user eniry)

Post user response ia

Staie transition, document unknown probmsd

request main menu for probmsd

search, browse or tutorials

user sees menu (wait for user selection)
post user selection ia
for secondary menu, browse

+ Indicates thar functions are performed concurrently,

Appendix H. Performance Evaluation Tables

Posts

um_resp

disp_menu

um_resp

ete.
is collected)

state

disp_prompt

utype

prob_resp

state

disp_menu

disp_menu

Sequence

—ia

—bboard

—stirategist
—user_mnodel
—-bboard

~>strategist
—»report
—>user_interface

-31g

—bboard

~+bboard

—strategist
—probmsd
-sbboard

—strategist
—report
—user_interface

~+bboard

-313

—bboard

—strategist
—probmsd
—~bboard

—strategist
—probmsd
—bboard

—strategist
—report
—user_imnterface

—ia
—bboard

Time
(Sec)

1}

196

Funetion Medule

user sees menu (wait for user selection)
post user selection 13
for secondary menu, HAI

USEr sees menu {wait for user selection)

post user selection 1a
for browse by subject

user sees menu (wait for user selection)
Tequest user prompt for ia
browse by index reference

user sees prompt (wait for user entry)

request HAT lookup 1a

post results of browse hai

user reviews browse results (wait to continue

previous menu displaved by user interfacs
user selects return 10 main meny
request display main menu 1a

* Depends on search terms Jor HAI browsing.

Appendix H. Performance Evaluation Tables

Posts

disp_menu

disp_menu

disp_prompt

browse

hai_output

disp_menu

Sequence

—strategist
—sreport
—user_interface

—ia

~bboard

—+sirategist
—report
~user_interface

13

—bboard

~+stirategist
—Ieport
~—~user_interface

—1a

—bboard

—strategist
—report
=»user_interface

—ia

—bboard

~+strategist
—+browse
—bboard

—strategist
—report
—user_interface

—la
—bboard

—sirategist
—report
—user_interface

Time
(Sec)

4&

197

Function Modufe Posts

user sees menu (wait for user selection)

begin searching ia prob_resp
get problem description info probmsd disp_menu
user sees menu (wait for user selection)

ete.

(continue until all problem description information is collected)

POst user response 1a prob_resp
state transition, doc¢ search probrnsd state
get system world info _ probmsd disp_menu
user sees menu {wait for user selection)

etc.

(continue unti! all system world information is coliected)

post user response ia prob_resp
request prompt, structured data? probmsd disp_prompt
user sees prompt {wait for user selection) _

post user response, yes ia prob_resp
request structured data menu probmsd disp_menu

Appendix H. Performance Evaluation Tabijes

Sequence

—g

—bboard

—strategist
—probmsd
—bboard

—strategist
—Teport
—user_interface

—ia

—bboard

—strategist
~probmsd
—+bboard

-bboard

—s{rategist
—report
—>user_inierface

—>ia

—bboard

—strategist
—probmsd
—+bboard

—strategist
—IEPOIL
—user_interface

—ia
—bboard
~=strategist .-

—probmsd
—bboard

Time
(Sec)

198

Function Module Posts

user sees menu (wait for user selection)

post user frame selection ia disp_frame
USer prompted for slot value entry (wait for entry)
Tequest next slot 1a nextslot
user prompted for slot valye entry (wait for entry)

ete,

(continue until all frame slots for requested frame are displayed)
{then, report module initiates redisplay of structured data menu)

user sees menu (wait for user selection)

user is finished frame entries 1a done_frames
other query terms? + probrosd disp_prompt
{post all frames created by user+ ia frame

{post relations for those frames + ia relation

user sees prompt (wait for user selection)

POst user response, ves ia prob_resp
state transition, form query probmsd State

initiate query formulation probmsd form_query

+ Indicates that functions are performed concurrently,

Appendix H. Performance Evaluation Tables

Sequence

~>§trategist
—report
—user_interface

—ia

—bboard

—strategist
—report
-suser_interface

—ia
—bboard

—stratepist
—report
—user_inferface
—1a

—ia

—-»bboard

—+Sirategist
—probmsd
—bboard

—bbeard
—bboard

—strategist
—report
—>user_interface

—ia

—bboard

~+Slrategist
—probmsd
—bboard
—ebboa_rd

Time
{Sec)

199

Function

query formulator started

User sees menu to choose query type (wait for user selection)

post selection, boolean

begin boolean query assistance

Module Posts

gform disp_menn

13 do_guery

aform displayf
etc.,

(continue until all boolean query information is collected:
help files will be displayed, and menus/prompts will guide user.)

post query formed
state transition, search_ready
{inform user of processing +

post retrieved documents +
-state transition, docs posted

request display of resulis

send results file {simulated)

user browses results (wait for u
State transition, done resulis

+ Indicates that funciions are performed concurrently.

* Based on 2500 record test set of Prolog facts. No Jrame matching.
A doc hppothesis will be posted for eac

gform
gform
gform

search
search

probmsd

browse

ser to finish)

browse

Appendix H. Performance Evaluation Tables

boolean
state

displayf

doc
state

results

displayf

State

h relevant document.

Sequence

—sirategist
—qform
—bboard

—ia

~bboard

—sstrategist
—;qform
—+bboard

~bboard
—bboard
—bboard

~strategist
—search
—bboard
—bboard

—strategist
—probmsd
~bboard

—»strategist
—browse
—bboard

—strategist
—report
—+user_interface

—ia
—bboard

Time
(Sec)

200

Function

more queries or done?

Module

probmsd

user sees prompt (wait for user entry)

poSt User response {done)

state transition, vser done
initiate user evaluation
(inform user +

collect user evaluation data+

(continue until all user evaluaiion data is collected)

state transition, done evaluation

state transition, clean up
inifiate clean up
{display final thank you+ +

state transiiion, cleanup done~ +

request termination

{user_interface issues stop_service commands 1
exits its own processing to return control to €0

+ Indicates that functions are performed concurrently.

1a

probmsd
probmsd
probmsd

user_model

user_model

probmsd
probmsd
probmsd

user_model

probmsd

Appendix H. Performance Evaluation Tables

Posts

disp_prompt

prob_resp

state
user_eval
disp_msg

disp_prompt
efc.

state

state
clean_up
displayi

siate

kill_procs

o all modules, then
nfig start up shell.

Temporary files are deleted and processing terminates.)

Sequence

—»strategist
—probmsd
—bboard

—strategist
—report
—user_interface

—1a

—~bboard

—strategist
~probmsd
—bboard
—bboard
—bboard

—~sstrategist
—user_model
—bboard

—bboard

—strategist
—probmsd
—bboard
—bboard
—hbeard

—strategist
—~user_model
—bboard

—strategist
—probmsd
—bboard

—strategst
—report
—user_interface

Time
(Sec)

201

Appendix I. Sample CODER Retrieval Session

E

Uelcome to the CODER system!

The CODER (COmpesite Document Extended/Experi/Effective Retrieval)
system, developed at UP| & SU, is o distributed expert-based
information storage and retrieval system. 1%ts moduler functions

. provide @ rich testbed for information retrieval reseorch; search

methods, user modelling, knowiedge representation, jexical applications,
and user interfaces may be tested end compared using the CODER systenm.

L

You will be searching the buck files of the ARPRAmet Rilist bullietin board
as moderated by Kern Lows (1983—current). These files inclute over 6888
items more or less reloted to Al. Eoch ltem is en electronic mail
message that appeared in one of the issues of ome of the volumes of
AiList Digest. Some messapes are jong ond some are short, but all ore
characterized by some fixed informction es wvell o5 free text.

Hhen vou lebve this tutoricl, who knows what may hoppen.........
Fress TAB tc continue and Dood Luck!

e dent i vicotin : ————— —
iZrter & unigue ic fe.g., jast name foliowed by first initiclr: doe}

Appendix 1. Sample CODER Retrieval Session

ave you ever used an information Storage & Retrieval ‘System? (u/nd

I

4. puer 25
Please enter choice here : 2

]
)
i
]
1
i
1
i
!
i
i
I
H
I
!
1
I
i
i
I
1
i
i
i
1
i
1
i
I
f
i

-

Appendix 1. Sample CODER Retrieval Session

R0 ¢

]

1 H:gh sahool dlDloma |
2. Two or more yeors coliege i
3. Bochelor's degree |
4. Master ‘s degree i
5. Decteral degree :
Other i
ense enter choice here |
' ?

]

]

i

I

!

i

!

E

I

t

"—-U‘

P

T............,..................,.....,..........‘..:ﬂ
1 g
- F e ; !
P Conpu;e* Science !
Pz Engineering !
i nzthematlcs !
I 4. Librory/information Science !
! 5. Psuchology !
| €. Phiiosophy H
| 7. Humanities ;
: "]
i 8. Business !
| 8. Other !
IPiease enter choace here i
| i
']
! t
' I
i +
\ 1
i 1

L !
! i

Appendix 1. Sample CODER Retrieva! Session

204

TN 1 IS e S S ST

jogie (w/nd?

»

205

ae & Retrievcl courses? (U/nd o

tion Stora

P

fre you fomilier with Boolean

b

-+ g—

Ly
ouve Uod Taken informa

X

X

H

Appendix 1. Sample CODER Retrieval Session

1
L
H
1
[
i
L
1
|
H
1
L]
I
t
L
i
i
1
1

i
]
'
L
L
]
'
i

,

sasrpereaasn

e

206

cenger

'
H
H
~ :
o :
2 : @
o : g
al : g
W. H ﬁ
g : i
o : he
4 3
o H]
; -
@ o
2 H i
v £
a e)
&
[
3
| &
3
£~
W

Eng

is
nTer

lzer- 2 Eank ooy
Uour

T

formamatransrrsrererasnsssttonmransanns

Appendix I. Sempie CODER Retrieval Session

fre you looking for a specific, Known cocument? (y/n/help) n_

+

m oo~ owy o assty - U Searet e inTernation?
JUST peginning
Refining tne seorch

2.
2. Brousing
&

. Dther
ease ente™ choice bhere

¥

1
{

Appendix I. Sample CODER Retrieval Session

e vie..enette-ilbsessrssiEEseEPssLsmasEerTa-disnnanysdisrannT
s seemr-tmatessessesarenTEsedsEmuresseLisosnTas

L b 1l 1 A A A A AR T e A0 AL A A e

S i i,

t
1
I |
! {, Browse :
{ 2. Search {
I 2. Tuterials ;
| 4, Exit Sustem |
iPlease enter choice I:oere < T |
| i
| i
| f
I H
']
l 1
i . |
E i
1 d
' 1
l I
l H
I]
!

. CDDER Sustem Querview

2. Brouwsing Obtions
" 2. Searching Options

4, Return to Previous Menu
lemse enter choice here : 2.

Appendix 1. Sample CODER Retrieval Session 208

Thesaurus
Dictionary
Handbook of Al
User Model
Tutorials)
Retrieved Docs
Return to Previous lMenu
ense enter choice here ;| 4

| g8 R

*nrmm.hw

P

LiE=
Tnits is the tutorial of user model.
This tutorial hes not yet been deveioped fully.

The user medeling Tunction allows the CODER susiem to determine how 4o bist

interact with-uou, Besed off your level of experience with informetion sicr age
retrievel systems, vour beskground =nd any previous se swr-s pou've hed with
CODER sysiem, CODER will teilor s processing to your neecs

b
!
i
i
1
1
]
1
1
i
]
L
1
i
t
H
1
1
1
i
]
|
]
I
1
i
1
I
1
I
I
1
i
§
I
1
I
I
1
1
t
t
]
1
L
r

Appendix I, Sample CODER Retrieval Session 209

SErpase Jutorinls -
i, Thesaurus

2. Dictionary

3. Hondbook of Al
4. User Model

5. Tuterijals

6. Retrieved Docs

-

i

. Return to Previsus Hemu
Please enter choice here - .

1. Browse

2. Search:

3. Jutorigls

4. Exit Susienm
Please enter choice here : 1

Appendix I, Sample CODER Retrieval Session 210

i
! i
' P
L1, Lexicen :
! 2. Handpook of Al :
| 3. Your User Hode | ¢
I 4. Retrieved Documents (not valid? :
1 5, Return to Nain tenu ¢
I 6. Exit Susten :
iPlease enter choice here : = !
% !
{ H
! 1
| H
t 1
i |
! i
{ i
!]
! 1
f H
1 l
! i
4 i
3

1, By Suxject

2. By Ferson’s hame

3. Tobie of Contents

4. Return to Browse Menu
5. Return to NHain Nenu
Plegse enter choice here [2.

e
B
i
i
i
i
!
i
i
I
t
i
I
1
1
f
i
|
]
H
I
1
1
H
I
]
t
!
|
1
1

Appendix 1. Sample CODER Retrieval Session

211

SN ————

Enter person‘s name: weguer

I
i

iEarson entries foumd for wegue - . ‘

|

E_\
i REFERENZEZS PMATCH NG - Veauer, wgmmap

Reference 1.

Tor "inhe solution of Wor | Gew | ge translation problams* (Heawer, 1935,
B.®15)Y. The resulting research, on wngt vas called -
machine transiation, attempted to Simulate

with g Computer the Presumnag functions ef @ human trunsla‘tor: Iookinc u
: I ¥ up

r
f

i

1

t

]

H

I

'i

{ fr 1o4g, Harren Leguan Proposed that CompUtems might be ‘usefy|
|

1

}

1

]

1

!

1

Appendix I, Sample CODER Retrieval Session

“Hamdbord o) ;-
1. By Subject

2. By Person‘s Name

3. Table of Contents

4. Return to Browse Menu
S. Return to Pain Meny
ease enter choicé here : 4

!
. Lexiecon i
2. Handoook of A i
2. Your User Hoge! i
4. Retrieved Documents (net velidy }
5. Return to fiain hMenu i
. Exit Syusten i
BQse enter choice here : i !
i

i

!:'

1

i

i

i

]

1

|

Appendix 1. Sample CODER Retrieval Session 213

rowse Lexicon mee—mo._

. Definition

. Related Horde

. Part or Speech
Variant Spellings

. Sampie Usage .

. Return to Browse Henu
Return to HBain heny

ase enter chojpe here :

214
Appendix I, Sample CODER Retrieval Session

= i ooy Day-ind tion
Definition for tan:

ftan; 1. n, the brown colour produced by the skin after intensive exposure
to ultraviolet rous, esp! those of the sun; a |light or mogerate
vel| lowish—pbrown colour; short for Jtanbark; 2. vb, to 9o brown or couse to

1
H
[}
1
1
]
1
1
i

0o brown after exppsure to ultraviolet rays; to convert (e skin or hide) !
inte leather by treating it with o tenning agent, such as vegetable tamnins, |
chromium salts, fish oils, or formaldehyde: (tr!) Slang; to beat or flog; |
2. adj, light brown; of the colour tan; used in or relating to tanning; '
[tannable, adj) ltannish, adjl; tan tanned tans; . !
1

:

|

i

]

3

3

1

Press TAB to continue,

t. Definition
2. Related Horaos

3. Part of Speech

&, Uariant Speilinas

S. Somple Usoge

&. Return to Browse Menu

7. Beturn to Moin Menu
lease enter choice here : 7

‘._..._ __.._.___u_.. o e s e

Appendix [, Sample CODER Retrieval Session

1
2. Search

3. Jutoriais

4. Exit Sustem

lease enter choice here : 2_

-

p.“.".".“.”.”.”.“.“.n.”.".“.“.“.“.“.u.n.”.u.".“.”.“."

Hnot ores of research are you currentiy pursuing?
Knowjedoe Representstion
heturcl Languope Frocessing
Frogramming Languages
Automatic Programming
Expert Sustems

Horowere

Search nethods

Vision

. Cther

ease enter choice nere : 7_

~PEh O LY

U
— 1) 0

Appendix L. Sample CODER Retrieval Session

s this-gueryg vor: -
t. Class ﬂss;gnment
2. Yerm Paper Research
2. Thesis/Dissertation Research
4
s

i
i
1
1
!
| 4. Hebby

! 5. Personal interest

| 6. Dther :
iPlease enter cholce here : 5_
!

|

1

i

I

]

I

i

t

)

1

1

Rl

Hhot avthors hove previded useful references?

]
I
i
i
¥
I
1
I
1
3
]
¥
1
i
1
i
|
I
H
1
1
i
H
i
I}
i
i
H
]
]

|l

Appendix 1. Sample CODER Retrieval Session

217

Enter the tities of any pooks/orticles which have bean usefyu]:

¥
]
1
F
i
I
i
!
1
i
{
i
F
1
I
i
!
1
I
I
i
'
H
i
1
¢
|
H
t
4
i
1

1. up ¢ &
2. up to i
3. up to 28
4. up to 4
5. Al

-

Please enter choice here : 2_

Appendix 1. Sampie CODER Retrieval Session 218

Mol d agou -4 e Pty ey dotumerts
1. heievance

2. Auther’s fast name

3. Date (most recent)

Please enter chojce here : {_

-

!
i
]
3
t
i
1
F
b
i
1
F
H
]
H
]
1
i
H
I
H
I
r
1
i
1
I
1
]
i
]
]

e s worvha gyt

2803 S el § vary wy e
Higne~ Recal]
2. Higher Precision

2. Balonce Recall onmg Prezicion
4. Den“t Know

Piease enter cheice here @ 3_

Appendix [. Sample CODER Retrieva! Session

ez |

Y] t-im'r:!:n‘-f-!\:tr-
Hhole document

2. Paragraphs

2. Document Header oniy
Please enter choice here : -

o

—itix ¥

© Wou wish ic enter structured knowiedge for gquery matehing? Win/neind

i
§
i
1
¥
i
’
]
!
L
]
1
!
]
i
I
]
r
i
|
i
P
1
:
|
l
]
1}
'
|

Appendix I, Sample CODER Retrjeval Session

220

. Digest |ssue

2. Digest Hessage
3. Document Type
4. Deocument fAuthor
S

&

7

1
i
f
i
]
1
I
i

1

i

i 5. Date Range of Doc

| &. Reference o Person
[7. Expiain Options

| B. Exit

|Plecse enter choice here : 6
I

|

]

I

i

I

f

]

i

!

T0alue en frg
iDe uou knov the person’s nome? y

Appendix 1. Sample CODER Retrieval Session

2

oc

e
&
¥
£
J
c
W
L
TR

1
i
i
i
f
i
t
i
[
1
t
|
F
1
H
i

Dominsky_

Le=t name

——

Appendix I. Sample CODER Retrieval Session

1
i
3
i
i
]
-
t
I
i
i
i
!
i
1
T

Hiddle name or inftial:

Do usu know the Persen’s postg) adohess

n-—

Appendix I. Sample CODER Retrieval Session

2

1 £l
}De you Know the persen’s electronje
| address? Jin/melpy n_

I

I L5
iDe You Know the pPerson’s phone nuRper?
Win/helip i

i
1
!

1
1
3
i
!
1

Appeadix 1. Sample CODER Retrieval Session 224

Affiliation: _

]
i
i
I
[
i
i
4
t
i
]
1
H
i
|
f

Dipest issue
Digest Nessage
Document Tupe
Documen + Ruthor
Dote Range of Doe
Reference io Ferson
Explain Options

. Exit

ease enter choice here -

S B

- m

&)
12
[

Appendix 1, Semple CODER Retrieval Session

T e — j"""""“"""?" ..

{

1¥You houe completed entry of
istructured detg know | edge ,
iPlease press TAB to continue,
1

10uery Entrg——
106 you wish 1o enter terms fom Query moiching? W/in/heip) Lo

i
1
H
3
1
]
r
i
1
I
]
4
1
i
H
I
i
I
I
i
1
I
!l
1
H
3
H

Appendix I. Sample CODER Retrieval Sessfon

)

. Term Uesctor

. Explain Seareh Pethods

. Ne Rdd]tienal Search Desired
ase enter choice nare H

of booleon Queries, Users gre refieved of the responsibility of
Knowing where to place BHD, OR and NOT Cperaiors in gqueries,

Rfter entering‘primnrg subject oreos known as facets, the susiem
wil] Prompt uou te enter hore specific terms for ecch grec.
Those terms wil! be used to formuigte o beciean guery whjech
the sustem will use io find relevans GoCuments, :

The primary focets entered wil{ not be used in your guery,
instead, the terms used o geseribe eash focet will pe

~ ORed together, gl Sroups of terms will be ANDed together,
Tnerefore, the suctem mues Tind at least one {erm from
each set of terme for each focet in oroer for ¢ cocument to
be selected.

To continue witn this sessjon, Piease press Taz,

The Query Formuigtor module was designed to aid users irn the formation

The guery formulator module wil) ouide you through your uery entry,

Appendix 1. Sample CODER Retrieval Session

.................. 7

t2art vp i onntion”

Hould you |ike explanation of the Boolean assistance facilit? (y/ny y_

r
1
]
i
1
t
4
i
H
I
3
1
f
1
I
1
I
!
!
1
i
1
]
1
|
T
1
I
!
!
i

g T T T ETTIT T e e f:7
- The Query Forpu|otor wili help you to perform the Toliowing steps - !

1. ldentify the main Facets of your guery

2. Deseribe fully the facete

2. Impose excebtions if Hou expect toc many documents
%. Edit the document uniil uou ore satisfied

]

1

!

i

]

1

]

i

]

1

1

I

i

i

i

Facets are subject PFRIAS whigh Uou name to deseribe o Query. Yoy]

should enter & |jet cf focets, thet is, ¢ fer brogg subject areas !
retated to Your guery. Rfiae entering those facets, uvou wifl be i J

prompted o expand each ene, providing more specific lerms and !

phrases about the focat. The terms for each focet wjl] pe {

DRed topether, Groups of terms per fazet will bz ANDed together - i

in the Guery which will pe fermulated. i

:]

i

i

{

i

i

]

13

Press PF2 to serot| forworg.

Appendix [, Sampie CODER Retrieva) Session

28

.....-.....-n.--.........---.....-......u.................-.-..............-...............-..‘.........-...............

-grert Earh
Enter primary facets (e.g,, paraliel, computers, languages} : search methods

I
— . . ———————— ————
f"“"""‘"‘"“""""“'“""“""""""“"""'"""""‘““"""““'"""""""‘"""""""""”“

H“
escribe the cbove faoget by naming keywords and reigied terms: poth trouerse

I

O

1
i
1
|
i
i
i
|
§
i
i
!
1
i
i
1
]
i
i
i
|
i
i
i
]
!
1
i
r
t
!

Appendix I, Sample CODER Retrieval Session

-
TTT—— — -

!

any terms o be exeluped {l.e., terms will pe Gttached to ROT) - minimax

!
]
i
1
I
1
]
T
1
I
1
]
!
t
I
]
!
[}
i
H
I
T
I
|
f
1
H

Appendix 1. Sample CODER Retrieyal Session

39

Current Query State -

path DR traverse
AND
me thods

- ROT minimax

i

I

I

|

i

i

i

i

]

t

I

|

]

1

i

1

i

! This is uvour current guery. Please revier it for correctness.
| You will be given an opportunity to edit vour guery,
|
1
1
i
i
]
3
L
L
1
1
1
i
i
1
i
I
i
I
I
]
I

Please pressg TAB to continue

dit Query

8=t
b
iHould vou like %o edit pour cuery? (y/nd n_

1
]
i
1
1
[}
]
§
H
I
I
[
]
i
1
1
i
i
1
]
I
i
1
!
i
i
1
!

Appendix I, Sample CODER Retrieval Session 231

.rmm ..

the auantity of documents that mateh, thic step
ionger than the previous ones. Pjease be patient,

Press TAB to View retrieved documents

1
i
{
i
1
13
1
1
i
i
I
1
f
1
H
i
f
F
i
i
1
I
t
1
i
i
1
1
|
¥
1
i
1
1
i
t
i
I
I
3
i
]
1

| ‘eved cocument fj |, for uger vViewing,
=% {5 be Osveiopag

Please press TAB to coentinue .

¥]
Ly
a

Appendix], Sample CODER Retrieval Session

AR

Do you wish to enter another guery? {y/n/healpd n

N o scaie o

tisfied?, enter sctisfaction: 5

lé=gc

=1g, ¢ 1=dissat‘rsfied,

3
i

O

233

Appendix 1. Sampie CODER Retrieval Session

EVEanE-Of Uorumen t= Patrisat thot mere umatal 2

- Fense ot imy e the
1. unoger 28%

2, 20-33%

3. 34-50%

4. S1-GBE

5. 67-98f

E. over OgR

lease enter che'ice here 3.

._.____,...___...._...um__._‘;__q...______-ﬂ.._..
-
B

i. found whgt you wamted

2. found enough informotion

3. ore frustrated with this systean

4. ran out of time

FPleose enter choice here : 4

]
]
3
£
1
1
i
1
1
1
i
1
1
1
i
1
1
I
F
]
]
i
I
1
Ed
L
1
1
i
:
L

2
73]
E=N

Appendix 1. Sample CODER Reatrieval Session

IR L LT —

Yo

frustrqting and easy to use? (Y/n2

]
n -
nhv ¢
F3

a

%

h

")

"]

&.m .

W

[v]

= 4

Jsten,

garding this s
© continue,

naf comments re
try, press TRR 1

eny additip
ed your gnt

lease entem
heve finish

12
ot

Appendix I, Sample CODER Retrieval Session

i
i
i
i

..,_H_k,—i—a_.,,

H .:?QHHR. .\:'D.U-‘ ...

iIhe CODER sustem is now refreshing files, jogg
iretrieug) session, ong preparing for uour pext
H

1This ends this coderrun Searching with the RIL

The Coper Sustem wil| Automatically termingie
S0 PLEpsE PRESS TABs TC LEfuz TRE SYSTEH,

TRE. The sustem wili automuti:a!lg terningte
Processing.)

Appengix I, Sample CODER Retrieval Session

ing information about yous
visit,

1sT collection, 11 vou haue

Jany Suggestions on how 1o improve thie service, piease semd mail to
j D, Fox, Beth Heover op Qifan Chen (fox, veavert, eheng), Thank yoy.

itself when Uou presc TRE,

{This screen will pot necessor] jy diseppeo~ immedicteiy wvhen you Press

When i< hao finished its

36

	TR-88-06a.pdf
	TR-88-06b.pdf
	TR-88-06c.pdf
	TR-88-06d.pdf
	TR-88-06e.pdf
	TR-88-06f.pdf
	TR-88-06g.pdf
	TR-88-06h.pdf

