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Abstract.

Polynomial systems of equations frequently arise in many applications such as solid modelling,
robotics, computer vision, chemistry, chemical engineering, and mechanical engineering. Locally
convergent iterative methods such as quasi-Newton methods may diverge or fail to find all mean-
ingful solutions of a polynomial system. Recently a homotopy algorithm has been proposed for
polynomial systems that is guaranteed globally convergent (always converges from an arbitrary
starting point) with probability one, finds all solutions to the polynomial system, and has a large
amount of inherent parallelism. There are several ways the homotopy algorithms can be decom-
posed to run on a hypercube! The granularity of a decomposition has a profound effect on the
performance of the algorithm. The results of decompositions with two different granularities are
presented. The experiments were conducted on an iPSC-16 hypercube using actual industrial
problems.

1. Introduction.

Solving nonlinear systems of equations has enormous significance for science and engineering,
A very special case, namely small polynomial systems of equations, occurs frequently in solid
modelling, robotics, computer vision, chemical equilibrinm computations, chemical process design,
and mechanical engineering. There are three classes of nonlinear systems of equations: (1) large
systems with sparse Jacobian mairices, (2) small transcendental (nonpolynomial) systems with

~ dense Jacobian matrices, and (3) small polynomial systems with dense Jacobian matrices. Sparsity

for small problems is not significant, and large systems with dense Jacobian matrices are intractabie,
so these two classes are not considered.

Large sparse nonlinear systems of equations, such as equilibrium equations in structural me-
chanics, have two aspects: highly nonlinear and recursive scalar computations, and large matrix,
vector operations. There is a great amount of parallelism in both aspects, but the nature of the
paralielism is very different (or so it seemns). Small dense transcendental systems of equations pose
a major challenge, since they involve recursive, scalar intensive computation with a small arnount
of linear algebra. It has been argued that the communication overhead of hypercube machines
makes them unsuited for such problems, but the issue is still open and algorithmic breakthroughs
are yet possible. Polynomial systems are unique in that they have many solutions, of which several
may be physically meaningful, and there exist homotopy algorithms guaranteed to find all these
meaningful solutions. The very special nature of polynomial systems and the power of homotopy
algorithms are often not fully appreciated, perhaps because globally convergent probability-one
homotopy methods have not received widespread attention.

Algorithms for solving nonlinear systems of equations can be broadly classified as (1) locally
convergent or (2) globally convergent. The former includes Newton’s method, various quasi-Newton
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_ m.ethods,' and inexact Newton methods. The latter includes continuation, simplicial methods, and
probability-one homotopy methods. These algorithms are qualitatively significantly different, and
 their performance on paralle] systems may very well be the reverse of their performance on serial
processors. The overall purpose of this research is to study how nonlinear systems of equations
might be solved on a hypercube; this paper addresses a small part of that topic, namely granularity
issues for probability-one homotopy methods for polynomial systems.

Much work has been done on solving linear systems of equations on paraliel computers, mostly
on vector machines [6], [7], [9], [10], [14]-]16], [17}-{19], [20], [26], [27], [28]. Some work has been
done on nonlinear equations and Newton’s method [31], [33], [35], [40), {41], and on finding the
. roots of a single polynomial equation [12}, [30]. Some work has been done in nonlinear optimization
on paralle] computers [5], [11], {32]. Parallel algorithms for polynomial systems have been studied
in [25]. Characteristics of large granularity have been described in [13]. Granularity issues for
solving polynomial systems on shared memory machines have been discussed in [2].

Section 2 summarizes the mathematics behind the homotopy algorithm, and sketches a com-
puter implementation based on ODE techniques. Section 3 discusses the special case of polynomial
systems in some detail, giving the theoretical justification for the claim that the homotopy algo-
rithm is guaranteed to be globally convergent and to find all solutions. Section 4 describes two
parallel homotopy algorithms for polynomial systems. Computational results on an Intel iPSC-16
hypercube are discussed in section 5.

2. Homotopy algorithm.

Let E? denote p-dimensional real Euclidean space, and let F : EP — E” be a 2 (twice
continuously differentiable) function. The general problem is to solve the nonlinear system of
equations

@ - | Flz) =0,

- The fundamental mathematical result behind the homotopy algorithm (see [8], [22]~[23], [36]-[39])
- is

Proposition 1. Let F : EP — EP be ¢ (? map and p: E™ x [0,1}) X E? — EP a C? map such
that
1) the Jacobian matriz Dp has full rank on p~1(0);
and for fired a € E™
2) p(e,0,z) = 0 has a unique solution W € EP;
8} pla,1,2) = F(z);
4) the set of zeros of pa(X,z) = pla, A, z) is bounded.
Then for almost all a € E™ there is a zero curve ¥ of

Pe(A, m) = p{a, A, m),

along which the Jacobian matriz Dpy(\,z) has full rank, emanating from (0, W) and reaching a
zero T of F' at A = 1. Furthermore, v has finite arc length if DF(Z) is nonsingular.

The homotopy algorithm consists of foliowing the zero curve v of p, emanating from (0, W)
until & zero & of F(z) is reached (at A = 1). It is nontrivial to develop a viable numerical
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a.lo‘orlthm based on that idea, though, conceptually, the algorithm for solving the nonlinear system
of equations Fz)} = 0 is clear and simple. A typical form for the homotopy map is

2) - pw(X2) = AF(@) + (1= N)(z = W),

which has the same form as a standard continuation or embedding mapping. However, there are
crucial differences. In standard continuation, the embedding parameter ) increases monotonically
from 0 to 1 as the trivial problem z — W = 0 is continuously deformed to the problem F(z) = 0.
- In homotopy methods A need not increase monotonically along v and thus turning points present
no special difficulty. The way the zero curve v of p, is followed and the full rank of Dp, permit
A to both increase and decrease along v and guarantee that there are never any “singular points”
along v which afflict standard continuation methods. Also, Proposition 1 guarantees that v cannot
just “stop” at an interior peint of [0,1) x E?.

The zero curve 7 of the homotopy map pa(A,z) (of which pw (X, z) in (2) is a special case)
can be tracked by many different techniques; refer to the excellent survey {1] and recent work
[38], [39]. There are three primary algorithmic approaches to tracking v that have been used in
HOMPACK [38], a software package developed at Sandia National Laboratories, General Motors
Research Laboratories, Virginia Polytechnic Institute and State University, and The University of
Michigan: 1) an ODE-based algorithm, 2) a predictor-corrector algorithm whose corrector follows
the flow normal to the Davidenko flow (a “normal flow” algorithm); 3) a version of Rheinboldt's
linear predictor, quasi-Newton corrector algorithm [3], [29]), (an “augmented Jacobian matrix”
method).

Only the ODE-based algorithm will be dlscussed here. Alternatives 2) and 3) are described
in detail in [38] and [3], respectively. Assuming that F(z)is C? and a is such that Proposition 1
holds, the zero curve v is C* and can be para,metnzed by arc length s. Thus A = A(s), z = z(s)
along 7, and

pa(As),z(s)) =0

identically in s. Therefore

®) 757 0E),2(6) = D) a(s)) (D =,
dz
&
o fifdr de
“ |(%%)].-

‘With the initial conditions
(5) _ AM0)=0, =z(0)=W

the zero curve 7 is the trajectory of the initial value problem (3-5). When A(3) = 1, the corre-
sponding z(3) is a zero of F(z). Thus all the sophisticated ODE techniques currently available can
be brought to bear on the problem of tracking v [34}, [37].
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’i‘ypical ODE software requires (dA/ds,dz/ds) exp]jciﬂy, and (3), (4) only implicitly define
the derivative (dA/ds,dz/ds). Since the dimension of the kernel of the Jacobian matrix

Dpa(X(s),2(s))

. is one (this follows from the fact that Dp, has full rank p by Proposition 1), the derivative
(dX/ds,dz,ds) can be calculated from any nonzero vector z € ker Dp,. Note that the deriva-
tive (dA/ds,dz/ds) is a unit tangent vector to the zero curve . For computationa) efficiency it is
imperative that the number of derivative evaluations be kept small. Complete details for solving

" the initial value problem (3-5) and obtaining z(¥) are in [36] and [37]. A discussion of the kernel

- computation follows.

-The Jacobian matrix Dpg is p x (p + 1) with (theoretical) rank p. The crucial observation
is that the last p columns of Dp,, corresponding to D.p,, may not have rank 7, and even if
they do, some other p columns may be better conditioned. The ob Jective is to avoid choosing p
“distinguished” columns, rather to treat all columns the same {(not possible for sparse matrices).
There are kernel finding algorithms based on Gaussian elimination and p distinguished columns
[20]. Choosing and switching these p columns is tricky, and based on ad hoc parameters. Also,
computational experience has shown that accurate tangent vectors (d\/ds,dz/ds) are essential,
and the accuracy of Gaussian elimination may not be good enough. A conceptually elegant, as
well as accurate, algorithm is to compute the QR factorization with column interchanges {4] of
Dpa,

K oeee k%
Q) Dp, PtPz = .Y P Pz=0,
0 * %

‘where ¢ is a product of Householder reflections and P is a permutation matrix, and then obtain a
- vector z € ker Dp, by back substitution. Setting (Pz),41 = 1 is a convenient choice. This scheme
provides high accuracy, numerical stability, and a uniform treatment of all 2+ 1 columns. Finally,

- where the sign is chosen to maintain an acute angle with the previous tangent vector on 7 . There
- Is a rigorous mathematical criterion, based on a (p + 1} x (p + 1) determinant, for choosing the
sign, but there is no reason to believe that would be more robust than the angle criterion.

Several features which are a combination of common sense and computational experience
should be incorporated into the algorithm.. Since most ordinary differential equation solvers only
control the local error, the longer the arc length of the zero curve + gets, the farther away the
computed points may be from the true curve 4. Therefore when the azc length gets too long, the
last computed point (X, Z) is used to calculate a new parameter vector @ such that

(6) _ pﬁ(j\:f) ={

exactly, and the zero curve of ps (), z) is followed sta,rtihg from ()_\, T). A rigorous justification for
this strategy was given in [37]. If p, has the special form in (2), then trivially

a=(AF(E)+(1-2)3)/(1-N).
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For more general homotopy maps p,, this computation of  may be complicated.

Remember that tracking ¥ was merely a means to an end, namely a zero £ of F(z). Since 4
itself is of no interest (usually), one should not waste computational effort following it too closely.
However, since v is the only sure way to %, losing 7 can be disastrous. The tradeoff between
computational efficiency and reliability is very delicate, and a fool-proof strategy appears difficult

* to achieve. None of the three primary algorithms alone is superior overall, and each of the three
__beats the other two (sometimes by an order of magnitude) on particular problems. Since the
_ .algorithms’ philosophies are significantly different, a hybrid will be hard to develop.

In summary, the algorithm is: _
1. Set s: = 0,y:=(0,W), ypold : = yp: = (1,0,... ,0), restart : = false, error : = initial error
tolerance for the ODE solver.
2. f 1 < 0 then go to 23.
3. If s > some constant thed
4, s:=1Q.

5. Compute a new vector a satisfying (6). If
lnew a — old a]| > 1 + constant * [old all,

- then go to 23.

6. ode error : = error.
7. If |lyp — ypoldi|e. > (last arc length step) * constant, then ode error : = tolerance < error.
| 8. ypold : = yp. ' _
9. Take a step along the trajectory of (3-5) with the ODE solver. yr = y'(s) is computed for the

. ODE solver by 10-12: _
 10. Find a vector 7 in the kernel of Dp,(y) using Householder reflections.
11. If 2 ypold < 0, then z: = —z,
12, yp = z/||z|]. _
13. If the ODE solver returns an error code, then go to 23.
14. If 1 < 0.99, then go to 2.
15, X restart = true, then go to 20.
_____ 16. restari: = true.
17 error : = final accuracjf desired.,
18. H g1 2 1, then set (s,y) back to the previous point (where y; < 1).
19. Go to 4. |
200 Iy < 1 then_go to 2. _
21. Obtain the zero (at 4, = 1) by interpblating mesh points used by the ODE solver.
22. Normal return.

23. Error return.



3, Polynomial systems.

- Section 2 described a homotopy algorithm for finding a single solution to a general nonlinear

. system of equations F(z) = 0. Proposition 1 provided the theoretical guarantee of convergence.

The rich structure and multiple solutions of polynomial systems dictate that the general theory in

Section 2 must be sharpened. This section develops a globally convergent (with probability one)

homotopy algorithm that finds all solutions to a polynomial system, and provides the theoretical
Jjustification for that algorithm.

Suppose that the components of the nonlinear function F(z) have the form

. ni k3
’ diy .
(7) Fi(z) = E a;kaJ—"‘, i=1,...,n
k=1  j=1

The ith component Fi(z) has n; terms, the a;; are the (real) coefficients, and the degrees dijx are
nonnegative integers. The total degree of F: is

T
di = Inléci.x Z d,'jk.
i=1

For technical reasons it is necessary to consider F(z)as amap F: C® — C", where C" is n-
dimensional complex Fuclidean space. A system of n polyromial equations in n unknowns may
have many solutions. It is possible to define a homotopy so that all geometrically isolated solutions
of (1) have at least one associated homotopy path. Generally, (1) will have solutions at infinity,
which forces some of the homotopy paths to diverge to infinity as A approaches 1. However, (1)
can be transformed into a new system which, under reasonable hypotheses, can be proven to have

. 1o solutions at infinity and thus bounded homotopy paths. Because scaling can be critical to

~ the success of the method, a general scaling algorithm [38] is applied to scale the coefficients and
variables in (7) before anything else is done. '

- Since the homotopy map defined below is coraplex analytic, the homotopy parameter A is
monotonically increasing as a function of arc length {23]. The existence of an infinite number of
solutions or an infinite number of solutions at infinity does not destabilize the method. Some paths

- will converge to the higher dimensional solution components, and these paths will behave the way
paths converging to any singular solution behave. Practical applications usually seek a subset of
the solutions, rather than all solutions [22}, [23]. However, the sort of generic homotopy algorithm
considered here must find all solutions and cannot be limited without, in essence, changing it into
a heuristic.

Define G : C™ — C* by
(8) Gi(z)=bja;% ~ a5,  j=1,...,n,

where a; and &; are nonzero complex numbers and d; is the (total} degree of Fy(z), for j = 1...,n.
Define the homotopy map

ONE peX2) = (1= ) G(2) + A F(z),
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" where ¢ = (a,b), ¢ = (.al,...,an) € C" and b = (by,...,by) € C*. Let d = di---d, be the
. total degree of the system. The fundamental homotopy result, proved and discussed at length in
[22]-[23], is:

Theorem. For almost all choices of a and b in C", p7Y(0) consists of d smooth paths emanating
from {0} x C™, which either diverge to infinity ¢s A approaches 1 or converge to solutions to
F(z) =0 as X approaches 1. Each geometrically isolated solution of F(z) = 0 has a path converging
to .

A number of distinct homotopies have been proposed for solving polynomial systems. The
homotopy map in (9) is from [23). As with all such homotopies, there will be paths diverging
to infinity if F(z) = 0 has solutions at infinity. These divergent paths are (at least) a nuisance,
since they require arbitrary stopping criteria. Solutions at infinity can be avoided via the following
projective transformation. -

Define F'(y) to be the homogenization of F(z):
(10) Fiy) = Yn41™ Fi(v1 /yne, v YnfUns1), J=1...,n

Note that, if #/(y°) = 0, then F* (ey?) = 0 for any complex scalar a. Therefore, “solutions” of
F'(y) = 0 are (complex) lines throngh the origin in C™*1. The set of all lines through the origin
in €™+ js called complex projective n-space, denoted CP", and is a smooth compact (complex)
n-dimensional manifold. The solutions of F/(y) = 0 in CP™ are identified with the finite solutions
and solutions at infinity of F(z) = 0 as follows. If [ € CP™ is a solution to F'(y) = 0 with
Y= (1,%,.,Ynt1) € L and ypyy # 0, then z = (1/9n4 1,92 /¥nt15 -3 Un/Yng1) € C™ is &
solution to F(z) = 0. On the other hand, if # € C™ is a solution to F(z) = 0, then the line
through y = (z,1) is a solution to F'y) = 0 with ypyq = 1 # 0. The most mathematically
satisfying definition of solutions to F(z) =0 a infinity is simply solutions to F'(y) = 0 (in CP")
generated by y with y,4q = 0. :

_ A basic result on the structure of the solution set of a polynomial system is the following

classical theorem of Bezout [24]: '

.. Theorem. There are no more than d isolated solutions to F'{y) = 0 in CP™. If F'(y) = 0 has

only a finite number of solutions in CP™, it has exactly d solutions, counting multiplicities.

- Recall that a solution is isolated if there is a neighborhood containing that solution and no other

solution. The multiplicity of an isolated solution js defined to be the number of solutions that
appear in the isolating neighborhood under an arbitrarily small random perturbation of the system
coefiicients. If the solution is nonsingular (i-e., the system’s Jacobian matrix is nonsingular at the
solution), then it has multiplicity one. Otherwise it has multiplicity greater than one.

Definie a linear function

WYty Yng1) = &t + oy + 00 L Ens1¥nt1

where £1,...,&,41 are nonzero complex numbers, and define F" : 71 . 041 by

Fly)=F{y), i=1,...,n
F;;’-H(y) = u{y) - 1.

7
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So F'(y) = 0 is a system of n + 1 equations in n + 1 unknowns, referred to as the projective
- transformation of F(z) = 0. Since u(y) is linear, it is easy in practice to replace F'(y) = 0 by an
equivalent system of n equations in # unknowns. The significance of F'(y) is given by

Theorem[24]. If F'(y) = 0 has only a finite number of solutions in CP", then F"(y) = 0 has
“ezactly d solutions (counting multiplicities) in C™! and no solutions at infinity, for almost all

‘E € Cn+1'

. Under the hypothesis of the theorem, all the solutions of F'(y) = 0 can be obtained as lines
through the solutions to F'(y) = 0. Thus all the solutions to F(z} = 0 can be obtained easily
from the solutions to F'(y) = 0, which lie on bounded homotopy paths (since F” (¥} = 0 has no
solutions at infinity).

The projective tra,nsform%tion functions essentially as a scaling transformation. Its effect is
to shorten arc lengths and bring solutions closer to the unit sphere. The coefficient and variable
scaling is different, in that it directly addresses extreme values in the system coefficients. The two
scaling schemes work well together; see [22] and {38].

. il

T T e L
Figure 1. The set pa(0) for a transformed polynomial system.

The import of the above theory is that the nature of the zero curves of the prajective transfor-

mation F"'(y) of F(z) is as shown in Figure 1. There are ezactly d (the total degree of F} zero

curves, which are monotone in A, and have finite are length. The homotopy algorithm is to track
these d curves, which contain all isolated (iransformed) zeros of F.
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4. Parallel algorit hms.

Given that d homotopy paths are to be tracked, there are two extreme approaches when
executing the homotopy algorithm in parallel. In one extreme, when the granularity is the coarsest
possible, each individual processor tracks as many paths as possible until all the solutions for
the polynomial system of equations have beer found. The host processor reads in the data and
initializes parameters (this includes the starting point for each path). It then distributes paths
to each node keeping as many nodes as possible busy. When a node finishes tracking one path
the host prints the result of that path and assigns a new path to that node. Since there is no ¢
priori knowledge about the length of the path, the assignment is made on a first come first serve
basis, i.e., paths are assigned in the order they are generated during the initialization process.
However, this results in poor performance on those occasions when a few extremely long paths are
tracked last. In this case most of the processors will be sitting idle while a few processors will be
tracking the long paths. i some knowledge about the length of the paths were available, the paths
could be assigned in the decreasing order of their length. This would result in much better load
balancing among the nodes. Omitting the tracking and initialization details of the algorithra, the
coarse-grained parallel algorithm is: '

FOR THE HOST:

(1) Initialize the data space and calculate a starting point for each path.

(2) SEND initializations and a starting point to a node.

(3) If the message in (2) is incomplete, go to (2).

(4) I another path needs to be assigned and a node is available, go to (2).

(5) Now wait for a message from a node.

(6) RECEIVE a “ready to transmit solution” message from a node (call it the “current” node).
(7) SEND an acknowledgement (“ready to receive” message) to the current node.

(8) I a “ready to transmit” message is received from another node, put-the node identification
- Into a queue until the current node completes transmitting a solution.

(9) RECEIVE a “solution” message from the current node.
(10} If the “solution” message is incomplete, go to (8).
- (11} Process the solution sent by the current node and print it,

(12) If another path needs to be assigned, SEND initializations and a starting point to the current
node. =

(13) If the message in (12) is incomplete, go to (12).

(14) If any nodes are in the queue (see (8)), remove the first node from the queue, call it the current
node and go to (7).

(15) If awaiting messages from any other nodes, go to (5).
(16) -All paths have been assigned and all nodes have reported back, so STOP.

FOR EACH NODE:
(1) RECEIVE initializations and a starting point from the host.
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(2) I the message in (1) is incomplete, go to (1).
- (3) Track the path associated with the starting point.-
(4) SEND a “ready to transmit solution” message to the host,
(6) RECEIVE a “ready to receive” message from the host.
(6) SEND the “solution” message to the host.
(7) If the message in (6) is incomplete, go to (6).
(8) Go to (1)-

- Note 1: The initialization and solution messages may be longer than permitted by the fnessage
buffer. If this is the case the information must be passed in multiple messages.

Note 2: The computation carried out by each node is a loop of the form:

RECEIVE initializations — track homotopy zero curve — SEND solution.

In the other extreme, where the granularity is the finest possible, the primary task of tracking
the solutions is delegated to the host processor and only during the evaluation of the polynomial
systera and its Jacobian matrix is the work distributed among the nodes, It has been observed that
in the serial version of the algorithm about 60% of the execution time is spent in evaluating these
values. Thus in the finest granularity version about 60% of the serial algorithm is parallelized.
However, one possible advantage of this approach is a better load balancing among the nodes. A
high level description of the fine-grained algorithm is:

FOR THE HOST:
(1) SEND initializations and other parameters to all nodes.
(2) Start tracking all the paths.

(3) Continue tracking all the paths. If all paths are completed, then STOP. When a. function
needs to be evaluated at some point, SEND the location of the point and the index of the next
row to the first available node. '

~ (4) If all the rows have been assigned, go to (9).
(3) I all the nodes are busy, go to (7). -
(6) Assign next row to next available node. Go to (4).
(7) Wait for a node to send the calculated values. .
(8) RECEIVE the desired values from one node and go to (8).
(9) Wait for all the nodes to send their results back to the host.
i (10) RECEIVE the desired values from all the nodes and then go to (3).

FOR EACH NODE:

(1) RECEIVE initializations and other parameters.

(2) Wait for host to send a point jocation and row index.
(3) RECEIVE the location of the point and the row index.
(4) Evaluate the functions and derivatives,

{5) SEND the results to the host and go to (2).
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5. Computational resulis.

Polynomial systems of equations arise frequently in such diverse areas as computational ge-
ometry, robotics, chemical engineering, mechanical engineering, and computer vision. A small
problem has total degree d < 100 and a large problem has d > 1000. An example of a chemical
equilibrium problem (403 in Table 1) is

. 2 -
FJ(J:) = G,jlil,"‘l? + G;2%3 + Qj3T120 + G;4%1 + Q5572 + a5 = 0, for 7=1,2,

where
ap; = -—.00068 a4y = =235 da; = —.01 az4 = 00087

Q19 = 97800_0 a15 = 88900 agy = — 984 Qa5 = —.124

a1s = —0.8 a1g = —~1.0 doy = —29.7 Ugg = —.25

The exact solutions (to four significant figures) are

(z1,22) = (.09089, —.09115),
(2342, —.7883),
(01615 + 1.6854,.0002680 -+ .0044285),
(01615 — 1.6854,.0002680 — .0044285).

Table 1. Execution time (secs).

Problem | total| Elxsi Elxst | Elxsi { Alliant | Alliant | Alliant
number [degree | 6400 6400 | 6400 | FX/8 FX/8)| FX/8
o (serial) |(coarse) |(fine) (serial) {(coarse) {fine)
102(4) | 256 508 63| 442 362 52 215
103(4) | - 625| 1081 127 | 936 769 108 457
402(2) 4 10 71 11 6 2 4
403(2) 4 3 3 5 2 1 1
405(2) 64 124 261 107 96 16 55
601(2) 60 392 1051 289 245 35 126
602(2) 60 769 135 ] 558 - 793 148 406
603(2) 12 63 20 64 47 13y 32
803(8)| 2567 6991 7591 3045 | 4459  711| 1642
1702(4) 16 50 15 37 36 9 16
1703(4)| - 16 50 15 37 36 9 16
1704(4) 16 50 11 34 35 7 15
1705(4) 81 426 531 267 308 46 134
L5001(8) 576 | 17449 18291 9051 | 11579 1765 4736
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Table 1 (continued). Execution time (secs).

Problem | total | Encore |[iPSC-16 [iPSC-16 iP5C-16 [iPSC-32
number |degree |Multimax
(serial) | (coarse) |  (fine) (coarse)
102(4)| 256 1022 6480 5411 11277 645
103(4) | 625 2157 | 13753 1032 | 23839 1616
402(2) 4 21 108 35 198 54
403(2) 4 5 35 13 66 19
405(2) 64 287 1615 301 11277 335
601(2) 60 836 4045 383 4382 257
602(2) 60 2317 11782 1400 12283 2795
603(2) 12 133 869 195 1559 243
803(8)} 256 10428 — i 13750 -1 11527
1702(4) 16 91 605 180 862 163
1703(4) 16 92 605 180 862 162
1704(4) 16 91 593 151 811 108
1705(4) 81 800 5302 463 5762 378
5001(8) | 576 28969 — | 14061 — | 11786

Table 2. Efficiency: [(serial time)/(parallel time)] / (number of processors used).

Problem | total | Elxsi | Elxsi | Alliant | Alliagt iPSC-16 (iPSC-16
number |degree 6400 f 6400 | FX/8 | FX/8
(coarse) |(fine) |(coarse) (fine} | (coarse) (fine)
102(4) 256 81 .29 87 42 75 14
163(4) 625 851 .29 .89 42 .83 14
402(2) 4 361 .40 - .72 .83 - LTT 27
403(2) 4 251 .28 .65 .80 67 27
405(2) 64 481 .58 75 871 7 .33 32
601(2)| 60 37] .68 88| .97 66 31
602(2) 60 BS7] .69 .67 .98 B30 24
603(2) | . 12 32] 49 450 .74 37 19
803(8) 256 D21 .29 .78 .34 — —
1702(4) | - 16 33| .34 481 54| 21 18
1703(4) 16 33 .34 AT 54 21 A8
1704(4) 16 451 .37 67 ST 25 A8
1705(4) | 81 80( .40 841 58 731 . 93
5001(8) 576 95 24 82 317 — —

Tables 1 and 2 contain the results of a study designed to examine the granularity effects on an
Intel iPSC hypercube and some other machines. The iPSC-32 was an 80286 based machine, while
the iPSC-16 was a newer 80386 based system with special message routing hardware not available in.
the older system. Although this paper is mainly concerned with the results for the hypercube, the
others are included for the sake of completeness. The problems are all real engineering problems
in solid modelling, chemistry, and robotics that have arisen at General Motors and elsewhere,
The problem number refers to an internal numbering scheme used at General Motors Research
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Laboratories; complete problem data is available on request. The number in parentheses is the
number of equations n. The total degree refers to the number of paths d to be followed.

It can be seen from Tables 1 and 2 that for the Inte] iPSC the coarse grained parallel algorithm
always outperforms the fine grained algorithm. It is also evident from Table 1 that for the Intel
iPSC the performance of the fine grained parallel algorithm is worse than that of the serial version.
This is due to the fact that the communication overhead in the fine grained version is greater than
the amount of computation done in paraliel, The quantum of computation done in each stage in
evaluating the polynomial system and its Jacobjan matrix is small. From Table 2 it can be seen
that the efficiency for the coarse grained algorithm is sometimes rather low. However, increasing
the number of processors will almost always (whenever the number of Processors is less than the
number of paths) speedup the computation substantially. This happens because a relatively small
polynomial system can have a reasonably large number of paths. All the paths can be tracked in
parallel if a sufficient number of processors are available, This explains why the execution times
of both the iPSC-32 and iPSC-16 are almost the same for problems 102, 103, 405, 803, 1705, and
5001 even though each node of the {PSC-32 is about half as fast as each node of the 1PSC-16.
In general, shared memory machines (Elxsi, Aliant) have many fewer Drocessors than distributed
memory machines. Thus for large problems the hypercube has a speedup advantage over a shared
memory machire. As the total degree of the polynomial system increases, the efficiency of shared
memory machines goes down significantly for the fine grained algorithm, possibly because of more
memory contention. This is apparent from the results of problems 803 and 5001 which have
efficiencies of .34 and .31 on the Alliant and -29 and .21 on the Elxsi. The serial version and the
fine grained version on the hypercube take too long for these two problems and thus ‘were not rumn.

As stated previously, the percentage of serial execution time that is spent in the evaluation
_ of the polynomial system and its Jacobian matrix ranges from 50%-80%. The percentage depends
on the complexity of the polynomial system. As the complexity increases the fraction that can
be parallelized increases. This also increases the granule of parallelization and thus the ratio of
communication overhead to computation carried out in parallel also decreases. This suggests that
for certain classes of polynomial systems (complex function evaluation and large Jacobian matrix),
the fine grained version can perform substantially better than the serial version. In this case a
mixed strategy can be employed. The coarse-grained algorithm can be used until there are no
paths remaining to be tracked. Then the fine-grained algorithm can be used to finish the tracking
of the uncompleted paths.

Future work will consider the parallelization of some of the linear algebra subroutines used in
the HOMPACK package, and “medium grained” versions of the homotopy algorithm.
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