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Abstract. Polynomial systems consist of n polynomial functions in n variables, with real or
complex coefficients. Finding zeros of such systems is challenging because there may be a large
number of soclutions, and Newton-type methods can rarely be guaranteed to find the complete
set of solutions. There are homotopy algorithms for polynomial systems of equations that are
globally convergent from an drbitrary starting point with probability one, are guaranteed to find
all the solutions, and are robust, accurate, and reasonably efficient. There is inherent parallelism at
several levels in these algorithms. Several parallel homotopy algorithms with different granularities
are studied on several different parallel machines, using actual industrial problems from chemical
engineering and solid modeling.

1. Introduction. Solving nonlinear systems of equations is a central problem in numerical
analysis, with enrormous significance for science and engineering. A very special case, namely small
polynomial systems of equations, occurs frequently enough in solid modeling, robotics, computer
vision, chemical equilibrium computations, chemical process design, mechanical engineering, and
other areas to justify special algorithms. To put polynomial systems in perspective and for the
purpose of this discussion, there are three classes of nonlinear systems of equations: (1) large
svstemns with sparse Jacobian matrices, (2) small transcendental (nonpolynomial) systems with
dense Jacobian matrices, and {3) small polynomial systems with dense Jacobian matrices. Sparsity
for small problems is not significant, and large systems with dense Jacobian matrices are intractable,
so these two classes are not counted. _

Large sparse nonlinear systems of equations, such as equilibrium eguations in structural me-
chanics, have two characterizing aspecis: highly nonlinear and recursive scalar computations, and
large matrix, vector operafions. There is a great amount of parallelism in both aspects, but the
nature of the paralielism is very different (or so it seems). Small dense transcendental systems of
equations pose a major chalienge, since they involve recursive, scalar intensive computation with
& small amount of linear algebra. Finally, polynomial systems are unique in that they have many
solutions, of which several may be physically meaningful, and there exist homotopy algorithms
guaranteed to find all these meaningful solutions. The very special nature of polynomial systems
and the power of homotopy algorithms are often not fully appreciated, perhaps because globally
convergent probability-one homotopy methods are not widely known.

These globally convergent homotopy algorithms for polynomial systems have inherent par-
allelism at several levels. The purpose of the present paper is to study-different granularities of
parallel homotopy algorithms for polynomial systems, corresponding to different decomnposition
and communication strategies.

T The work of these authors was supported in part by AFOSR Grant 85-0250.
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_ Muck work has been done on solving linear systems of equations on parallel computers, mostly
on vector machines [4], [5], [7], [8], [10}-]12], [14]-[16], [18], [23], [25). Some work has been done
on nonlinear equations and Newton’s method [28], [31], [36], [37], and on finding the roots of a
single polynomial equation [9], [27]. Parallel algorithms for polynomial systems were proposed by
Morgan and Watson [22], but have not been studied much, nor have parallel homotopy algorithms
for nonlinear systems of equations. .
Section 2 summarizes the mathematics behind the homotopy algorithm, Section 3 discusses
the special case of polynomial systems in some detail, and computational results on several parallel
machines are presented and discussed in Section 4.

2. Homotopy algorithm. :

Let E™ denote n-dimensional real Euclidean space. The fundamental mathematical result
behind the homotopy algorithm for solving the nonlinear system of equations
F{z)=1q, (1)

'Y

where F: E™ — E™ is a C? (twice continuously differentiable) function, is as follows:
Proposition 1 ([6], [33]}. Let p:E™ x [0,1) x E® — E™ be a C? map and define p,(A,z) =
p{a, A, z). Suppose that

L the n X (m+n + 1} Jacobian matrix Dp has full rank on p71(0), the set of zeros of b

2. pa(0,z) = 0 has a unique solution W of £ {depending on the homotopy parameter vector a

of E™};

3. pa(lyz) = F(z);

4. the set of zeros of p,(), z) is bounded.
Then for almost all @ of E™ there is a zero curve 7 of po(A,z) along which the Jacobian ma-
trix Dpg(A,z) has full rank, emanating from {0,W) and reaching a zero 7 of Flz) at A = 1.
Furthermore, -y has finite arc length if DF(Z) is nonsingular,

The general idea of the aigorithm is to follow the zero curve 7 of pg from (0, W) until a zero

-z of F(z)is reached at A = 1. though the homotopy algorithm for solving the nonlinear system-

of equations is conceptually simple, it is nontrivial to develop a viable numerical algorithm for
tracking the curve. A tvpical form for the homotopy map is

pw-().,x) = AF(.’C) + (1 - )\)(.’C -— W) = 0, (2)

which has the same form as a stendard contintation or embedding mapping. However, two crucial
differences exist. In standard continuation methods, the embeddirg parameter A increases mono-
tonically from 0 to 1 as the trivial problem £ — W = 0 is continuously deformed to the problem
F(z) = 0. Homotopy algorithms permit A to both increase and decrease along v with no adverse
“effect. The second difference is that in hemotopy algorithms there are no “singular points” which
~adflict standard continuation methods. This is guaranteed by the way in which the zero curve v of
Pa is followed and the fact that Dp, has full rank along v .
The zero curve v of the homotopy map pe(A,z) can be tracked by many different technigques.
The present work used HOMPACK [34], a software package for solving systems of nonlinear equa-
~ tions based on the homotopy method. HOMPACK provides three approaches for tracking v : 1)

an ODE-based algorithm with some special refinements for the homotopy context; 2) a predictor-

corrector algorithm whose corrector follows the flow normal to the Davidenko flow (2 “normal iow”
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~ algorithm}; and 3) a version of Rheinboldt’s linear predictor, quasi-Newton corrector algorithm (an
. “angmented Jacobian matrix” method). Since the “normal flow” algorithm is the technique used

. by HOMPACK to solve polynomial systems of equations, the other two algorithms will not be
discussed in this paper.

The normal flow algorithm has three phases: prediction, correction, and step size estimation.
© In the prediction phase, the next point on the zero curve is predicted. Starting from the predicted
- point, the correction phase then iterates until a point on the zero curve is reached. An “optimal”
step size is then estimated for the prediction of the next point on the curve.

Normai Flow
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igure 1. The prediction and the correction phases of the normal flow algorithm.

The normel fiow algorithm is so called because the iterates of the correction Dhase converge
from the predicted point back to the zero curve along the fiow normal to the Davidenko fiow (ses
Figure 1). The Davidenko fiow is ahe family of zero curves formed from varying the parameter
vector g of the homotopy map po.

The zero curve 7 of p.(A, z) is C? and can be parametrized by the arc length s. Thus A = Als)
and z = z(s) with initial conditions A(0) = 0 2nd z{0) = W. Wher (&) = 1, the corresponding
z(5) = Z is a zero of F{z). _

Given that the following are available from previous calculations : two previous points on
the curve, P(s1) = (A(s1),2(s1)) and P(sa} = (A(s2),2(s2)}, their corresponding tangent vectors,
Pls1) = (dA/ds{s1),dz/ds(s1)) and P'{es) = (dA/ds{es),dz/ds(s,)), and h, an estimate of the
next “opiimal” step size (in arc length}) to take along ~ , the next point on the zero curve can be
estimated b}’ _

29 = H(s; + b, )
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where H(s) is the Hermite cubic polynomial which interpolates P(s) at s; and s,. Thus, H(s;) = |
P(s1), H'(31) = P'(s1), H(s3) = P(Sg)? and H'(s3) = P'(s,).

- Since
pa(A(s),z(s)) =0 (4)

on the zero curvey ,
22 1pe(N(6),2(5))] = Dpa(A(5), a(6))(d s, da )T = o, 5

where (dA/ds,dz/ds) is the tangent vector to the curve, Thus, the tangent vector can be calculated
by finding the kernel of the Jacobian matrix Dpa(A(s),z(s)), which has rank n by Proposition 1.
Once the kernel is found, the derivative (dX/ds,dz/ds) at a given point on the zerc curve can be

uniquely determined by '
[l(dA/ds, dz /ds)||; = 1 (6)

and continuity of the tangent vector.
Starting at the predicted point Z{®), the iteration in the correction phase is

2040 = gk _ [Dpa (Z(”))]Tﬂa(z“’), E=0,1,... (M)

where [Dp,(Z(¥ )]Jf is the Moore-Penrose pseudoinverse of Dp,. Reordering the equation, the
. corrector step AZ = ZU+1) _ 2(k) i5 the unique minimum norm solution of

[Dpa(Z2B)]AZ = —p (2. (®)

Fortunately AZ can be calculated at the same time as the kernel of [ng} with just a little more
effort. Normally for dense problems the kernel of [Dpa] is found by computing the QR factorization
of [Dp,], followed by back substitution. By applying this QR. factorization to — o and using back
substitution again, a particular solution to (8) car be found. Let u be any nomn-zero vector in
the kernel of [Dpa]. Then the minimum norm solution is

i
AZ =y Z2y (9)
utn
Since the QR factorizations of [Dpu] are computationally very expensive,' the gumber of
iterations required for convergence of (7) should be kept small (say <= 4) by adjusting the step
size. An alternative is to use the QR factorization of Dp, at the first predicted point Z© for
several iterations. However, this results in linear convergence, which is not cost effective when
compared to the asymptotically quadratic convergence of (7} '
Note that the kernel of [DpaJ is needed for the tangent vector used in the Hermite cubic
interpolation at the beginning of the next step. When the iteration converges, the final jterate
Z(k+1) is accepted as the next poiat on v . Rather than calculating the tangent vector at the new
point Z+1) on ~ | o Jacobian matrix evaiuation and a QR factorization can be saved by using
the tangent vector calculated at Z(F). This substitution should not seriously affect the caleculation _
of the next point on the curve since this tangent is used only in the prediction of the next point,
-and the tangent vecior at Z{F) is a good estimate of the tangent vector at Z (k1)
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Thé.:estima,tidn of an “optimal” step size A is an attempt to balance the number of iterations
in the correction phase of the algorithm with the number of steps necessary to reach the “end”
point on the zero curve where A(%) = 1. Increasing the step size decreases the number of steps.
" necessary to reach the “end” of the curve. However, taking too large a step size would result in a
" substantial increase in the number of iterations necessary to correct the predicted point.
' In order to estimate the next “optimal® step size ki, a few parameters for “measuring” the
" performance of the step size used in the last prediction must be defined, Let

_ 20— 50
R

(10)

be the contraction factor,
| _ e (zM)])

=l (1)

be the residual factor, and

_ 11z - 27|

= )

be the distance factor (where Z* = lims_ ., Z(* is the point on the zero curve v to which the
iteration (7) converges). Assume that the ideal values of L, R, and D are chosen to be I, 2, and
D, respectively. When a step size produces a “bad” prediction, at least one of the factors would
have a large value (close to 1.0) indicating slow convergence (refer to Figure 1). The objective then
is to improve the rate of convergence by reducing the step size by a fraction related to the Tatio of
the “worst indicator” factor’s ideal value to that indicator factor’s actual observed value, Stated
mathematically, the goal is to achieve '

P ~
— ~

(13}

B b
k|
] o
2l

for a given ¢, where % is the distance from Z* to the previous point A(sy) ound on ¥ . let
k= (min{I/I,R/R,D/D}) 4 - (14)

be the worst case choice. To prevent chattering and unreasonable values, constants Ay, (mini-
mum allowed step size), Am,, (maximum allowed step size), Bmin {coniraction factor), and B .y

= {expansion factor) are chosen to place bounds on & by choosing h in the following way:

h := min {max{h,’nin,l?mm k, E},Bmxh, hmax} L : (15)

The choice of & can be refined further. If (7) converged iv one iteration for the previous
~ correctjon phase, then A should certainly not be any smaller than A. Otherwise, % would not be
the “optimal” choice. Thus, set _
- : h:=max{h,h} (186)

if (7) converged in one iteration in the previous step. |

I (7) has not converged after K iterations, the value of k is saved in Aoy (the last step
size which has been known to cause (7) to fail to converge after K iterations), & is halved and a

"
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new prediction is computed. The value of | continues to be halved until the step size taken for
predicting Z() is small enough such that (7) converges within K iterations. -
If in the previous step, the convergence of (7) had failed, the new & should not be greater than
the value hojq known to produce failure. Hence in this case

hi= mjn{hoid,fz}. (17)

| Finally, if (7) required the maximum K iterations, the step size should not increase,_éo in this

' case set _ _
h:=min{h,h}. {18)

“ The logic in (16-18), when invoked, has a stabilizing effect on the algorithm.

3. Polynomial systems.

Section 2 described a homotopy algorithm for finding a single solution to a general nonlinear
system of equations F(z) = 0. Proposition 1 provided the theoretical guarantee of convergence.
-The rich structure and multiple solutions of polynomial systems dictate that the general theory in
Section 2 must be sharpened. This section develops a globally convergent (with probability one)
homotopy algorithm that finds all solutions to a polynomial system, and provides the theoretical
Jjustification for that aigorithm.

Suppose that the components of the nonlinear function F(z) have the form

Fi($)=2a,-kaj‘”, t=1,...,n. (19)
k=1 i=1

| The ith component Fi{z) has n; terms, the a;; are the (real) coefficients, and the degrees d;;). are
nonnegative integers. The total degree of Fj is

d,' ot mf.};Zd;jk. . (20)

=1

For technical reasons it is necessary to consider F{z) as a map F : C™ — (", where C® is
_ n-dimensional complex Euclidean space. A system of n palynomial eguations in n unknowns,
F(z) = 0, may have marny solutions. It is possible to define a homotopy so that all geometrically
isolated roots of (19) have at least one associated homotepy path. Generally, {19) will have roots at
infinity, which forces some of the homotopy paths to diverge to infinity as A approaches 1. However,
{19) can be transformed into.a new system which, under reasonable hypotheses, can be proven io
- have no roots at infinity and thus bounded homotopy paths. Because scaling can be critical to
the success of the method, a general scaling algorithm {34] is applied to scale the coefficients and
variables in (19) before anything else is done.

Since the homotopy map defined below is complex analytic, the homotopy parameter ) is
monotonically increasing as 2 function of arc length [21]. The existence of an infinite number of
solutions or an infinite number of solutions at infinity does not destabilize the method. Some paths
will converge to the higher dimensional solution components, and these paths will behave the way
paths converging to any singular solution behave. Practical applications usually seek a subset of
the solutions, rather than a1l solutions [19], [20]. However, the sort of generic homotopy algorithm
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considefed'here must find all solutions and cannot be limited without, in essence, changing it into

: ;' ‘a heuristic.
. Define G:C™ - C" by

Gi(z) = j.'cjd" - aj, ji=1...,n, (21)

where a; and b; are nonzero corﬁplex numbers and d; is the (total) degree of Fj(z), for j = 1, ... ) T

" Define the homotopy map ‘
PA;2) = (1= 2) G(z) + A F(z), (22)

- where ¢ = (g,b), a = (a1,...,a,) € C™ and b = (b1y...,b,) € C™ Let d = dy---d, be the
- total degree of the system. The fundamental homotopy result, proved and discussed at lengtii in
[19)-f21], is: | |

Theorem. For almost all choices of @ and b in C™, p71(0) consists of d smooth paths emanating
from {0} xC*, which either diverge to infinity as X approaches 1 or converge to solutions to F{z) = 0
as A approaches 1. Each geombtrically isolated solution of F(z) = 0 has a path converging to it.

A number of distinct homotopies have been proposed for solving polynomial systems, The
homotopy map in (22) is from [20]. As with all such homotopies, there will be paths diverging
to nfinity if F(z) = 0 has solutions at infinity. These divergent paths are {at least) a nuisance,
" since they require arbitrary stopping criteria. Solutions at infintty can be avoided via the following
projective transformation.

Define F'(y) to be the homogenization of F{z}):

Fi) = 1™ Fi(1/¥ns1se o, UnfVns1)s = L...,n. (23)

Note that, if F/(y%) = 0, then &/ {ag®) = 0 for any complex scalar c. Therefore, “solutions” of
F'(y) = 0 are (complex) lines through the origin in C™+1. The set of all lines through the origin in
O™ 55 called complex projective n-space, denoted CP™, and is a smooth compact (complex) n-
dimensional manifold. The solutions of F' (¥) = 0in CP™ are identified with the {finite) solutions
and solutions at infinity of F(z) = 0 as follows. If L € CP" is & solution to F'(y) = 0 with
Y= (41,9, - ¥n+1) € L and gpyq £ 0, then z = (1/Ynt1, 92 /Y23, - Y fYner) € C™ 35 &
solutior to F(z) = 0. On the other band, if z € C* is a solution to F(z) = 0, then the line
tarough y = (z,1) is a solution to Fily) = 0 with g, = 1 # 0. The most mathematically
- satisfying definition of solutions to F(z) = 0 at infinity is simply solutions to F' (y) =0 (in CP")
generated by y with Ynt1 = 0.

A basic result on the structure of the solution set of a polynomial system is the following
classical theorem of Bezout [21}: :
~~Theorem. There are no more than d isolated solutions to F'(y) =0 CP™. If F'(y) = 0 has
only 2 finite number of solutions in CP", it has exactly d solutions, counting multiplicities.
Recall that a solution is isolated if there is a neighborhood con’céining that solution and no other
~ solution. The multiplicity of an isolated solution is defined to be the number of solutions that
appear in the isolating neighborhood under an arbitrarily small random perturbation of the system
coeflicients. If the solution is norsinguiar (i.e., the system Jacobian matrix is nonsingular at the
sofution), then it has multiplicity one. Otherwise it has multiplicity greater than one.

Define a linear function

Y1y Y1) = E121 + Eayo + oo Ent1¥ns1 (24)
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ﬁhere £1yee. ,f,".,.l are nonzero complex numbers, and define F"' : 71 ., 7t by

—F;f(y)=F;(y)r 7=1..,m,

ot (25)
Fn+1(y) = u(y) -1
So F"(y) = 0 is a system of n + 1 equations in n + 1 unknowns, referred to as the projeciive
transformation of F(z) = 0. Since u(y) is linear, it is easy in practice to replace F"' (y)=0byan
_-equivalent system of n equations in n unknowns. The significance of £ (y) is given by
| Theorem(19]. I F'(y) = 0 has only 2 finite number of solutions in CP™, then F"(y) = 0 has
exactly d solutions (counting multiplicities) in C"*! and no solutions at infinity, for almost all
£ecntl, '

Under the hypothesis of the theorem, 21l the solutions of F (y) = 0 can be obtained as lines
through the solutions to F(y) = 0. Thus 2ll the solutions to F(z) = 0 cen be obtained easily
irom the solutions to F(y) = 0, which lie on bounded homotopy paths (since F''(y) = 0 has no
solutions at infinity). - _

The projective transformation functions essentially 2s a scaling transformation. Its effect’is
to shorten arc lengths and bring solutions closer to the unit sphere. The coeficient and variable
scaling is different, in that it directly addresses extreme values in the system coefficients. The two
scaling schemes work well together; see [21) and [34).

X

v

X

gure 2. The set p71(0) for a transformed polynomial system.

. The import of the above theory is that the nature of the zero curves of the projective transfor-
‘mation F"(y) of F(z) 15 o5 shown in Figure 2. There are ezactiy d (the total degree of F) zero
curves, which are monoione in )\ and have finite arc length. The homoiopy algorithm is o truck
these d curves, which contain all isolated (transformed) zeros of F.
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4. Computational results. o '

- There are two extreme approaches for parallelizing the homotopy algorithm. For the coarsest
- form of parallelism, each individual processor tracks as many solutions (paths) as possible until
all the solutions for the system of polynomial equations are found. In the other extreme, where

the granularity is the finest, the primary task of tracking the solutions is delegated to one of the
processors and only during polynomial system evaluations, Jacobian matrix evaluations, and other

- numerical calculations is the work distributed among the processors. '

In the first case, the division of work is at the highest level. Initially, the parameters defining
the system of polynomial equations (F(z) = 0} are distributed to the processors. Each processor
then works independently of the other processors. When a processor completes the tracking of a
path, it takes the next path to be tracked. Since there is no knowledge about the paths, they are
assigned on a first-come-first-serve basis. Thus, if a “bad” path exists {(one which requires a large
number of function evaluations with respect to the remaining paths to be tracked), the load would
not be distributed evenly among the processors. The processor with the “bad” path would cause
the other processors to remain-idie after all the remaining paths have been tracked.

The second approach is an attempt to balance the load more evenly, hopefully, resulting in
an overzll speedup over the coarser grained algorithm. In this paper, the fine-grained parallel
homotopy algorithm distributes the work of evaluating the system of polynomial equations and its
partial derivatives to N processors, where N is the number of equations or the maximum number
of processors, whichever is smalier.

Two parallel versions, a coarse-grained version and a fine-grained version, of the homotopy
_ élgorithm for polynomial systems were developed from the parallelization of HOMPACK. They
- Were executed on several paraliel machines: Balance 21000, Elxsi 6400, Alliant FX /8, and the Intel

iPSC-32. The execution times are shown in Table 1 along with those for the execution of the _
seria] algorithm. Superscript 1 denotes the coarse-grained version, superscript 2 the fine-grained

- version, and no superscript the serial version. The efficiencies are listed in Table 2. The problem
number refers to an internal numbering scheme used at General Motors Research Laboratories.
For example, problem 403 is

Fj(.’ﬁ) = a_ﬂa:f + ajgzg T+ 8;323%2 + aj4T1 + 5527 + g5 = (1, forj = i3,
“'here .
ax; = —.00098 @34 = —235 an = —01 ag4 = 00987
a1 = 878000 a15 = 88900  gqg = —.084 Gng = —.124
a3 = —9.8 a1 = —=1.0 . @35 = ~29.7 @9 = —.25

The exact solutiorns {to four significant figures) are

(z1,22) = (.09089, —.09115),
(2342, -.7883),
(.01615 -+ 1.6854,.0002680 ~ -0044287),
(.01615 — 1.6851,.0002680 — 0044287).
These problems are all real engineering problems that have arisen 2% Generz] Motors and elsewhere.

The number in parenthesis beside the problem number is the number of equations in the polynomial
system. It is also the maximum number of processors which caa be uiilized by the fine-grained
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algorithm. The total degree of a problem refers to the number of solutions in the system of
- polynomial equations. Thus, if a machine has infinitely many processors, the maximum number of

. processors which can be utilized by the coarse-grained algorithm is determined by the total degree
of the problem. _

This paper is primarily concerned with the results obtained on bus-oriented, shared-memory

~ paraliel machines. The primary difference between implementations of parallel homotopy algo-
rithms on shared-memory machines and implementations on distributed-memory machines is that,
in distributed-memory machines, the master processor must communicate the tasks to the siave
processors jndividually and wait for the results through some form of communication medium.
After a set of results is received from one of the slave processors, the master processor assigns
the next task to that free processor. Both the master processor and the slave Pprocessors must
handle the processing of the communication protocols. Results for the Intel iPSC-32 are included
for comparison only - granularity issues for solving polynomial systems on distributed Iemory
machines are the subject of future work.

In shared-memory machines, the task of communicating the problem ard obtaining the results
is much simpler. It is handied through shared-memory, whick is accessed by ail the DPTocessors.
The primary processor sets up the problem in the shared-memory, initiates the processors, and
handles portions of the problem like the other spawned processors. Since the coordination of the
processors is done through mutual exclusion of certain critical shared memory locations, no master
processor is needed.

The calculations for the coarse-grained cfficiencies are based on the maximum number of
processors used on each of the parallel machines. The number of processors used on Sequent’s
Balance 21000, Elxsi's 6400, and Alliant’s FX/8 are 8, 10, and 8, respectively, except for problems
402 and 403, where the total number of paths to be tracked is only 4.

The efiiciencies for the coarse-grained algorithm with various number of processors on Alliant’s

'FX/8 are shown in Table 3. As one would expect, the efficiency improves as the number of

PTOCESSOTS decreases.

5. Conclusions.

1t is deceiving to compare the efficiencies of the two parallel homotopy algorithms from Table
2. One might conclude that for some problems, the fine-grained zalgorithm is just as efficient as
the coarse-grained algorithm. As shown by Table 3, the efficiencies improve as the number of
processors decreases, Whern the efficiencies of the two algorithms are compared using an egual
- number of processors, the coarse-grained algorithm is found to be more efficient than the fine-
grained algorithru. The reason is that on the average over 90 percent of the serial time can be
parallelized with the coarse-grained aigorithm. On the other hand the fine-grained algorithm can
paralielize only 50 to 80 percent of the serial time. The overhead cost of using shared memory can
also be substantial, as shown by problems 803 and 5001 on the Eixsi (¢f. Table 2}.

In terms of speedup, the coarse-grained algorithm outperforms the fine-grained algorithm.
This is due to the fact that the coarse-grained algorithm can use as many processors as are available &
on the parallel machine, unless the number of solutions to be tracked is smalier than the number
of processors available. In this case, the coarse-grained algorithm is limited by the number of
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'.solutzons The fine-grained algorithm is always limited by the number of equations in the system
of polynomial equations.
©The problem with the coarse-grained algorithm is that when some solutions have long paths
with respect to other solutions, the efficiency can be very low. This depends on the order in which
the solutions are found and the total number of solutions with respect to the number of processors.
As shown in Figure 3 and Table 3 pertaining to the Alliant FX/8, the efficiency of a problem
" can vary drastically. Figure 3 demonstrates that by changing the order in which the solutions (of
problem 602) are found, the distribution of the work load can either be very unbalanced or very .
well balanced.

The results in Figure 3 are based on the assumption that the execution time for each solution
is proportional to the number of function evaluations performed in obtaining the solution. This is
a reasonable assumption based on what has been observed on the actual assignment of processors
to the solutions of problem 602 and other problems in the tables. In most cases, the processor
assigned to track the solution which requires the least number of function evaluations is assigned to
track the next solution. It is possible only when the difference in the number of function evaluations
required between two solutions is not significant that a processor with the “longer™ path (requiring
more function evaluations) be assigned to track the next solution first.

In Figure 3, curve 1 shows that the work load can be distributed qmte evenly among the
processors when the “long” paths are assigned first. The distribution of the work load in the
actual assignment of the paths (for problem 602) is shown by curve 2. The worst distribution
(curve 3} occurs when the “longest” path is assigned last while the rest of the paths are assigned
in decreasing order in terms of the number of function evaluations. From these distributions, curve
1 has the “best” efficiency (0.99) and curve 3 has the “worst™ efficiency (0.56), whereas the actual
efficiency was 0.67.

The distribution of work in the fine-grained algorithm may not necessarily be balanced. Since
the decomposition is by the components of the polynomial system, some processors may have to
handle more difficult components than others.

As stated previously, the percentage of the serial execution time that can be parallelized on
the average ranges from 50 to 80 percent. This is the percentage of the serial time that is spent on
function evaluations. Thus, as the complexity of the polynomial equations increases, the amount
of time spent in the evaluation of functions increases.

In generzl, the coarse-grained parallel homotopy algorithm is more efficient and permits a
higher degree of parallelism than the fine-grained algerithm. However, since the number of func-
tion evaluations required for each path can not be predicied, the efficiency of the coarse-grained
algorithmn can be very low. A possible solution to this problem might be a combination of the two
algorithms. The coarse-grained algorithm could be used until there are no remaining paths to be
tracked. Then the fine-grained algorithm could be used to finish the tracking of the uncompleted
. paths. :
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Table 1. Execution time (secs).

Problem | total {80286/ VAX | VAX IBM |SUN-2 | SUN-3 ICRAY
number [degree | 80287 |iPSC-321 11/750 [11/780 3090/200 /50 /160 | X-MP
102(4) 256 | 16257 645 2438 1248 77| 10545 8041 251
103(4) - B25 | 34692 1616 5260 | 2656 163 ] 22634 | 17126 535
402(2) 4 255 54 41 18 2 158 113 5
403(2) 4 84 19 14 6 1| 54| 388 1
405(2) 64 3669 335 703 334 14 2958 2429 84
601(2) 60 9450 257 1707 796 78 7417 5803 249
602(2) 60; 28783 “2795 4332 2054 124 218987 | 16831 462
603(2) 12 1200 243 323 152 9 1339 1060 37
803(8) 256 —_ 11527 29779 16221 667 13031_1 Y7113 | 2523
1702(4) i6 1635 163 216 112 7 986 638 21
1703(4) | 16| 1637 162] 216 112 71 984| e8| o1
1704(4) 16 1628 108 216 112 6 1005 667 21
1705(4) 81 ] 14336 378 1884 999 55 8907 6313 204
5001(8) 576 — 11786 | 49736 | 27815 1997 — |237685 5148
Table 1 (contirued). Execution time (secs).

Problem | total |Balance |Balance Balance | Elxsi | Elxsi | Fixsi

number |degree | 21000 | 210007 | 210007 | 6400 |6400" |§400?

102(4) | 236| 4436 6821 1120 508{ 83! 449

103(4) 625 9316 1428 2379 1081 127 936

402(2) . 4 72 i8 37 16 7 11

4—03(2) 4 23 6 12 3 3 5

405(2) 64 118§ 171 605 1241 28 167

601(2} 3] 3400 822 13211 392| 105| 280

602(2) 60 6775 683 28991 769 135( 558

603(2) 12 577 133 334 631 20 64

803(8) 256 33746 6094 9061 | 6901 750 | 3045

1702(4) 16 389 81 140 50 15 37

1703(4) 16 399 81 142 50 15 37

1704(4) 16 359 68 129 50 11 34

1705(4) 1 3507 494 1053 428 53| 287

BOOI(S) 576 | 97550 | 17829 32049 17449 1829 | 9051

ey
o




Table 1 (continued). Execution time (secs).

Problem | total |Alliant | Alliant | Alliant Encore
number |degree | FX/8!FX/8! | FX/8? |Multimax
102(4) 256 362 52 215 1022
103(4) 625 769 108 457 2157
402(2) 4 6 2 4 21
403(2) 4 2 1 1 5
405(2) 64 96 16 55 287
601(2) 60 245 35 126 836
602(2) 60 793 148 406 2317
603(2)| 12 47 13 32 133
803(8) 256 | 4459 7114 1642 10428
1702(4) 16 36 9 16 81
703(4) 16 36 9 16 92
1704(4) ;. 16 35 7 15 91
1705(4) 81 308 46 134 800
5001(8) 876 | 11579 | 1765 4736 28969

Table 2. Efficiency: [(serial time)/(parallel time)] /(number of processors used ).

Problem | total Balance |Balance | Elxsi | Elxsi |Alliant | AYiant
number |degree |IPSC~32' | 210007 | 210007 |6400" {6400 | FX /8! FX/8°
102(4) | 256 .76 81 081 81| .29 .87 42
103(4)| 625 - .65 821 98] 85| .29 .80 42
402(2) 4 .94 1.00 971 36¢ 40 .72 £3
1 403(2) 4 B8 95 8961 25| .28 .83 .80
405(2) 64 331 .88 597 48] 5% .75 87
601{2) 60 1.11 .53 1.321 .37 .68 .88 97
602(2)! 60 .31 86 1171 57| .69 67 .98
663(2) 120 - .38 54 86 320 .49 45 .7
803(8)| 256 - .69 B8] 92| .20 .78 34
1702(4) 16 .60 62 Tl .33 .34 48 54
1703(4) 16 60 .62 70| .33 .34 47 54
1704(4) 16 .89 .73 JT| 457 .37 87 57
1705(4) 1 81 1.15 .89 83| 80| .40 .84 .58
5001(8)| 576 — 68 L1 950 .24 .82 31
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Table 3. Comparison of efficiencies on Alliant FX/8.

Problem | total Coarse Grain Fine
number | degree | 8] 6| 4 2 | Grain

102(4) | 256|.87].92].96|1.00] .42
103(4) | 625|.89].92].95/1.00| .42
402(2) 4| —| —|.71| 89| .83
403(2) 4| —| —|64) 79| .80
405(2) 64|.75|.89.95| 98| .87

601(2) 60].88].89].93] 99| .97
602(2) 60|.67|.75|.84| 93| .98
603(2) 12|.45] 58172 100 .74
803(8) ! 256 |.781.88|.93| .98| .34

1702(4) 16|48}.62|.80| 97| .34
1703(4) 16|.47|.62].79| 981 .54
1704(4) 16|.67|.791.85| 971 .57
1703(4) 81|.84|.891.93| .98} .58
5001(8){ 5761.82|.91|.951 .99| .31
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