Schwarz Splitting Using ELLPACK
Bennett W. Cleveland and Calvin J. Ribbens

TR 88-2

Schwarz Splitting Using ELLPACK

Bemnett W. Cleveland* Calvin J. Ribbensf
February 3, 1988

Abstract

This report describes a high-level implementation of Schwarz splitting, an approach to solv-
ing partial differential equations whick seems particularly atiractive from the point of view of
parallelism. We discuss the basic scheme of Schwarz splitting and an implementation using
ELLPACK. We consider two numerical examples in detail. The appendices contain a listing of
an ELLPACK program which implements Schwarz splitting, and a complete set of data from
the two examples. The examples were done on a sequential machine, but they provide some
clues as to the potential for parallelism exhibited by the Schwarz technique.

1 Introdliction

The original motivation for the Schwarz alternating procedure, or Schwarz splitting, was to prove
the existence of a solution to Laplace’s equation with Dirichlet boundary conditions on the union
of two overlapping regions (see Kantorovich and Krylov [4]). Miller [7] developed a numerical
analog to this procedure for solving elliptic partial differential equations (PDEs). More recently,
Schwarz splitting has attracted attention as a way to exploit paralielism in the numerical solution
of PDEs. Rodrigue and Simon [12], [13] and Rodrigue [11] consider the convergence behavior of the
Schwarz iteration. Meier [6] looks at improving the iteration by 2 SOR-like strategy. Potentials for
parallelism are the main focus of Rice and Marinescu [10] and Tang [14]). Schwarz splitting must be
distinguished from domain decomposition, another active area of interest. Domain decomposition
methods also divide the domain into subdomains to enhance parallelism. There is no overlapping of
subdomains in domain decomposition, however. Instead a capacitance matrix approach is used to
solve for the unknowns on the interfaces between subdomains. Preconditioned conjugate gradient
schemes have drawn much interest in connection with domain decomiposition. References include
Bjorstad and Widlund [1], Chan and Resasco [2], and Keyes and Gropp [5].

The basic idea of the Schwarz splitting iteration is simple. The domain is gplit into several
overlapping subdomains. The PDE is repeatedly solved on each of the subdomains independently
(thus the potential for parallelism). Boundary conditions for subdomain boundaries which are inside
the original domain are supplied by using the approximate solutior from the previous iteration.
The iteration continues until some stopping criterion is satisfied (typically the relative change in
the solution is less than some tolerance). Rodrigue [11] characterizes this process as-an “inner”
and an “outer” iteration. The outer iteration is the Schwarz iteration over the subdomains. The
inner iteration refers to the method used to solve the PDEs on the individual subdomains. It is

“Department. of Mathematics, Purdue University, West Lafayette, IN, 47907,
'Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061.

define subdomains and grids.
initialize unknown /(% = (.
for i = 1,2,..., until satisfied do
for k = 1,2,..., ndomains do
solve for new unknown U/} on subdomain k.

S

Figure 1: Basic Schwarz splitting algorithm.

not required that an iterative method be used to solve the subproblems, of course. In fact, one of
our interests in this work is to investigate various choices for solving the subproblems, and also to
compare methods for speeding up the outer iteration. The algorithm in Figure 1 is a simplification
of the basic steps. It is easy to see that the interesting questions include: 1) how to speed up
the outer iteration; 2) how to recognize convergence of the outer iteration; 3} how to solve for the
unknowns at the innermost step.

Our purpose in this work is to explore the properties and potentials for parallelism of Schwarz
splitting. As in any preliminary investigation, we find that more questions are raised than are
answered at times. In the next section we describe a high level implementation of Schwarz splitting
and report on two experiments using this implementation. We also discuss several miscellaneous
issues that pertain to the research. In the final section we discuss future directions for research.
The appendices contain a program listing and a complete set of data from our experiments.

2 Present Work

In this section we report on experiments carried out during the summer of 1987. We first describe
an implementation of Schwarz splitting based on the ELLPACK system (see Rice and Boisvert [8]).
We then report extensively on two examples which illustrate some of the properties and potential of
Schwarz splitting algorithms. Finally, we discuss a few other issues which pertain to this research.

2.1 Initial ELLPACK implementation of Schwarz splitting

We first investigate the feasibility of implementing Schwarz splitting using ELLPACK. ELLPACK
is a powerfu] system for numerically solving elliptic PDEs. It includes a very high-level problem-
statement language and a library of over fifty precompiled problem solving modules. Several reasons
for considering this approach are evident: '

1. We take advantage of good implementations of well-known numerical methods.

2. We implement the Schwarz scheme in a high-level way. This should be easier and quicker
to do than a complete low-level FORTRAN implementation of Schwarz splitting. It is also
easier to understand and maintain, and it may make identifying parallelism easier as well.

- 3. We get rough estimates of potential parallel speed-ups, without implementing on a particular
parallel architecture,

4. We get a convenient framework for investigating properties of Schwarz splitting; it is easy
to vary parameters and splitting strategies, as well as discretization, indexing, and solution
methods.

5. We would like to estimate the added cost of the high-level ELLPACK approach. This would
require implementing a low-level FORTRAN version of Schwarz splitting for purposes of
comparison.

Since the ELLPACK language is FORTRAN based, it is possible to do rather complicated things
in an ELLPACK program. One simply includes the necessary FORTRAN code to control the other
ELLPACK problem-solving steps, or in fact, to do anything yvou would like. The simplest ELLPACK
program solves a single two-dimensional, linear, elliptic problem. However, by including extra
FORTRAN code in the ELLPACK program, and providing additional FORTRAN subprograms,
ELLPACK can be used to solve time-dependent problems, non-linear problems, and systems of
elliptic equations (see Rice and Boisvert [8] for examples). The common theme in these more
complicated ELLPACK applications is that the computation is arranged as an iterative process, in
which the kernel is the solution of a single linear, elliptic problem. Obviously, Schwarz splitting is
exactly this kind of scheme. In each Schwarz iteration we solve a single elliptic problem on each
of the subdomains. Of course, in an jdeal parallel implementation each of these solves would occur
simultaneously, and the only iteration would be the outer one. In a sequential environment we are
forced to solve on each subdomain in turn. Our initial ELLPACK implementation is on a sequential
computer, the Ridge 32.

Our ELLPACK implementation is presented in considerable detail in-the program in Ap-
pendix A. The in-line comments help io explain some of the details. Notice that the user is
aliowed to choose the number of subdomains in each direction and the relative overlap between
subdomains. A few aspects of the implementation bear emphasis:

1. In order to switch subdomains, it is necessary to reset all of the variables in the ELLPACK
discrete domain interface. These are the variables which define the domain and grid. ¥ they
are set 1o the correct values, any ELLPACK module invoked will treat the current subdomain
as if it were the entire domain of interest. Our strategy is to define each of the subdomains
and grids initially, save the information in private common blocks, and copy it into the official
ELLPACK interface as needed. The extra cost of this copying is small compared to the cost
of an entire computation, since it varies Huearly with the size of the grid. In Example 1 below,
for Method 1, a 3 X 3 subdomain partition, and a 9 x 9 grid on each subdomain, the time
taken to do the copying is less thar 1% of the total time. In a multiprocessor implementation,
if each processor has iocal memory, the copying may not even be necessary.

2. The boundarv conditions defined in the BOUNDARY segment are given in terms of functions
GEAST, GVVEST GNORTH, and GSOUTIL. If the specified point is on the boundary of the
original domain, these functlons return the value of the original boundary condition there.
If the specified point is inside the original domain, these functions return the value of the
currernit approximate solution U,

3. We store a table of unknowns for the solution on each subdomain (these are function values
or coeflicients of basis functions, in general). If a high order discretization method is used,
spline interpolation is necessary, so we save the spline coefficients in this case. In order to
evaluate the solution at a point where two or more subdomains overlap, we take the average
of the unknowns defined on each of the subdomains involved.

. Another major overhead of our implementation is unnecessary repetition of the discretization
step. As the oufer iteration proceeds, the discretization matrix for each subdomain does not

His

change. The changing values of the boundary conditions only affect the right side of the
linear system. It is possible to build and save the discretization matrix exactly once for each
subdomain. This would require very large storage arrays indeed. Hence, at present we simply
recompute the discretization matrix at each iteration. This extra cost can be significant,
especially for PDEs with variable (and expensive to evaluate) coefficients. For fine grids
however, the cost of discretization tends to be small compared with the cost of solving the
linear systems. For Example 1 below, with Method 2, 3 X 3 subdomains, and a 9 x 9 grid
on each subdomain, 68% of the overall time is spent building the linear systems; but with
a 65 x 65 grid, only 34% of the time is used to build the linear systems. It would clearly
be worth the effort to avoid these redundant discretizations. Another possible improvement
would be to factor the linear system once and for all with a direct method, and then only
do forward and back substitutions for each new right hand side. However, the discussion in
Section 2.4.1 below suggests that this may not be the best approach either, especially for fine
grids. Finally, we note that in a paraliel implementation it may be possible for each processor
to keep track of its own discretization matrix.

Our ELLPACK framework for Schwarz splitting is useful but far from perfect. It does allow
quick implementation and easy experimentation. A more efficient scheme within ELLPACK would
probably be to define a Schwarz TRIPLE module. This would make it easier to avoid some of the
unnecessary overhead mentioned above. In terms of a parallel implementation of Schwarz splitting
in ELLPACK, the task of designing a parallel version of ELLPACK itself may have to be considered
first, and that will be a formidable task. It is likely that extensions to the language will be needed.
1If a parallel ELLPACK is built however, a parallelization of Schwarz splitting would be reasonable.

2.2 Example 1
We first consider a test problem with variable coefficients, Problem 1 from Rice, et al. [9]:

1

“Trart" flz,),

(e™ug)e + (67 uy)y
where f is chosen so that the true solution is
u(z,y) = 0.75e™ sin(xz) sin(;ry),

We impose Dirichlet boundary conditions on the unit square. We use two different variations of
Schwarz splitting to solve this problem. In both cases the subdomain problems are solved using
ELLPACK modules 5 POINT STAR (discretization), RED BLACK (indexing), and REDUCED
- SYSTEM CG (solution). We also use ELLPACK module SET UNKOWNS FOR 5 POINT STAR
to initialize the vector of unknowns for the reduced system iteration. We use the solution from the
previous Schwarz iteration to initialize the unknowns for each reduced system iteration. The only

. difference between the two methods for Example 1 is in the choice of Schwarz “ocuter” iteration
scheme. Method 1 computes the new solution U(} at Schwarz iteration i as

ot = F(L, £, U061,

where F represents the subdomain solution procedure just described, and L is the linear elliptic
operator. We term this a “jacobi” outer iteration. Method 2 on the other hand, computes U by

U6 = (1 —w0)Ut-D 4 wF(L, £, U6-D),

4

For Method 2 we color the subdomains in a typical red-black fashion (see Hageman and Young [3]
for example). Subdomain solutions are computed on all the red subdomains first, using the solution
from the previous Schwarz iteration. Then the black subdomain problems are solved, this time using
the new red solutions just calculated. A scheme such as this is necessary if one wants to do an
sor-like outer iteration, while still preserving as much potential parallelism as possible. Even so,
the degree of parallelism is cut in half, since only half the subdomain solves can be done in parallel.
For obvious reasons, the approach of Method 2 may be termed “red-black sor” outer iteration.

The data for Example 1 (reported in detail in Appendix B) is based on runs with 2, 3 and 4
subdomains in each direction (i.e. 4, 9, and 16 subdomains in all). The overlap parameter is taken
as 0.25 in all cases. This means that 25% of a subdomain is overiapped by a neighboring subdomain
on each side (in one dimension). For example, with 2x 2 subdomains in the unit square, the internal
subdomain boundaries are horizontal and vertical lines at 3/7 and 4/7. We varied the number of
grid lines on each subdomain, and recorded error estimates, the number of Schwarz iterations, and
time for each case.

Consider first the eflect of increasing the number of subdomains. The plots in Figure 2 show
the effect on each method as we increase the number of subdomains in each direction from 1 (no
splitting) to 2, 3, and 4. Each plot shows log{error) vs. log(ptime). We estimate error by taking the
maximum relative error over a 40 x 40 grid on each subdomain; ptime (parallel time) is the total
time divided by the number of subdomain solves that could be done in parallel. The parallel time -
is thus a very rough estimate of the time the algorithm might take on a parallel machine. For the
jacobi outer iteration (Method 1) we divide sequential time by the number of subdomains; for red-
black sor outer iteration (Method 2) we divide sequential time by half the number of subdomains.
Figure 2 suggests that as the number of subdomains increases, the Schwarz approach will win
over the no-splitting case for Method 1, although the evidence is certainly not overwhelming. For
Method 2 however, the results seem even less promising for Schwarz splitting. Problems with
Method 2 (discussed below) make the performance of the splitting runs less than expected. It does
appear that increasing the number of subdomains does help, however.

Next, we fix the number of subdomains, and compare the performance of the two methods.
The series of plots in Figure 3 seems to indicate that as the number of pieces increases, Method 1
(jacobi outer iteration) is better than Method 2 (red-black sor outer iteration). This is not at all
what we had expected, especialy since the number of Schwarz iterations for a given grid size is
significantly reduced by using Method 2—seemingly enough to compensate for the Joss in potential
parallelism due to red-black coloring. However, we notice that for a given grid size, Method 1 is
more accurate than Method 2. This suggests that something besides discretization error is affecting
the error estimates, especially for Method 2. We find, in fact, that this is the case, It appears that

“we are actually doing too many Schwarz iterations for both Methods I and 2, in the sense that
the best solution is achieved several iterations before the convergence criterion is satisfied. The
solution actually gets worse during these extra iterations. Table 1 illustrates this situation for
the 3 X 3 subdomain case. Notice that both methods would have achieved better accuracy if the
Schwarz iteration had been stopped earlier. We conjecture that the red-black sor outer iteration

- (Method 2) suffers more from this problem simply because of its speed of convergence. Not only
does it converge quicker, but if too many iterations are done, the answer begins too diverge more
quickly also. We are not sure how to remedy this problem at present. We had hoped that our
choice of stopping criteria eps would not unfairly penalize any one method. It appears that this

is very difficult to do. One obvious idea, for experimental purposes, would be to set eps = [lell,

rather than 0.1||e]| (see the discussion in Section 2.4.2). We are not at all confident that this is a

Method 1

log(erry -3 4

Method 2

log(err) -3

= | ! T I
0 1 2 3 4
log(ptime)

Figure 2: Log-log plot of error vs. time for the two methods on Example 1. The curves are labeled
by the number of subdomains in each direction.

2x2

log(err) -3 —

ot
L]
(¥]
i oY

t
(]
i

log(err)

[
[
L}]
I~

4x4

loglerr) -3 —

i I i
1 2 3 4

log{ptime)

Figure 3: Log-log plot of error vs. time for 2, 3, and 4 subdomains in each direction. The curves
are labeled by method number.

-1

Table 1: Number of Sch_warz iterations and error for both methods on Example 1, with 3 x 3
subdomains. The best iterate and the final iterate are listed for each grid size (the number of grid

lines in each direction on one subdomain). :
Method 1 Method 2

Best Final Best Final

Grid | Iteration Error | Iteration FError i Iteration Error | Iteration FError
5 32 6.4e-3 38 6.7e-3 10 8.5e-3 11 8.6e-3

7 39 2.0e-3 46 3.2¢-3 11 2.3e-3 18 4.5e-3

9 43 8.2e-4 47 1.2e-3 8 1.3e-3 15 1.8e-3

13 50 3.6e-4 54 B5.le-4 11 4.2e-4 17 7.7e4
17 55 1.6e-4 58 2.be-4 13 2.4e-4 19 4.3e-4
25 61 7.2e-5 64 1.0e-4 15 9.8Be-5 21 1.8e-4

safe thing to do in all cases, however.

Finally, we consider the effect of refining the grid on the number of Schwarz iterations. Figure 4
shows that for the most part, the number of Schwarz iterations rises quite slowly with respect to the
number of grid lines. The independent variable in these plots is 1/h, where & is the grid spacing.
We do not yet understand the nonsmooth behavior for 2 x 2 and 3 x 3 subdomains using Method 2.

2.3 Example 2

As a second example we consider the Helmholtz equation

Uge + Uyy — % = f(:c,y)._

Again we impose Dirichlet boundary conditions on the wunit square, and select f so that the true
solution is the same as for Example 1. Very fast elliptic solvers may be applied to this problem. We
use ELLPACK module HODIE FFT with a 4th order accurate discretization. We compare three
variations of Schwarz splitting for this probiem:

Method 1. Subdomain solves are done with ELLPACK modules 5 POINT STAR, RED BLACK,
and REDUCED SYSTEM CG (as in Example 1); the outer iteration is red-black sor.

Method 2. Subdomain solves are done with ELLPACK module HODIE FFT; the outer iteration
is jacobi. _

Method 3. Subdomain solves are done with ELLPACK module HODIE F FT; the outer iteration
is red-black sor.

The first set of plots (see Figure 5) show log(error) vs. log(ptime) for each method. We plot one
curve for each rumber of subdomains. Also plotted are the curves for the no-splitting cases: one
using 5 POINT STAR (F) and one using HODIE FFT (H). We see that Method 1 improves very
slightly as the number of pieces increases, to the point where it may be competitive with the no-
splitting 5 POINT STAR curve; but it is no where near as efficient as HODIE FFT with no splitting.
Method 2 shows no improvement at all as the number of subdomains increases from two to four.
In fact, the performance appears to degrade a little. Method 3 shows no significant improvement

8

Method 1
100 -
3
Schwarz
lterations
50 -
/ 2
0 1 i |
0 50 100 150
1/h
Method 2
100 —
Schwarz
Iterations
50—
A3 2
\//—-——_ /_/
0 T T i
0 50 100 150

Vh

Figure 4: Plot of Schwarz iterations vs. 1 [k for each method on Example 1. The curves are labeled
by the number of subdomains in each direction.

A A

Lirse A bt et

Ei
:

%
i
K
3

log(err
glerr) P

-8 -]

Method 1

[y
2
(8]

-2

log(err)

Method 2

Iog(er})

Method 3

N

Figure 5: Log-log plot of error vs. time for the three methods on Example 2. The curves are labeled

| I |
1 2 3

log(ptime

by the number of subdomains in each direction.

10

I —]

either, and needs a great deal of improvement before it could be considered competitive with HODIE
FFT with no splitting.

Figure 6 contains a set of plots which compare the three methods, for a given number of
stbdomains. As expected, in all three cases Methods 2 and 3 are preferable to Method 1; and
it appears Method 3 is slightly better than Method 2. With the Hodie methods, we did not
encounter the problem described in the previous section where too many Schwarz iterations caused
the accuracy to get worse. Instead, the solution seemed to converge and then remain essentially
stationary as more Schwarz iterations were done. Method 1 does exhibit this problematic behavior,
however.

Finally, the plots in Figure 7 show again that the number of Schwarz iterations rises fairly slowly
with respect to increasing numbers of grid lines. Notice the dramatic decrease in the number of
Schwarz iterations as we switch from Method 2 to Method 3.

2.4 Other issues

In this section we discuss several other issues which pertain to our investigation.

2.4.1 Complexity analysis

It is often instructive to use computational complexity analysis to estimate the relative performance
of numerical methods. Consider first the choice of linear system solution method for the subprob-
lems if the standard 5-point finite difference discretization is used. Suppose we have an nx n grid on
each subdomain. Gauss elimination may be used to factor the banded system (bandwidth = 2n+ 1)
at a cost of O(n*) operations. With appropriate changes to our implementation, this factorization
could be done only once. At each outer iteration of the Schwarz scheme only the right side of the
linear equation is changed. The cost of a forward and back solve at each iteration is O(n®). Hence
the total cost for k Schwarz iterations is O(n? + kn®) per subdomain.

By comparison, if an iterative method such as SOR is used to solve the linear systems at
the inner iteration, we have O(5n?) operations per SOR. iteration {we use Reduced System CG
in the examples above; its overall performance is usually better than SOR). Suppose we do p
SOR iterations per subdomain, and k£ Schwarz iterations in all. The total cost per subdomain is
then O(5kpn®). An estimate of the required number of SOR iterations p is 1.1n (see Rice and
Boisvert [8]). Hence, an iterative method is likely to be better if

5.5kn% < n? + kn®

or
5.5k < n+k.

I k& were a constant with respect to n, then this analysis would suggest that as n grows, the iterative
method would be faster. We cannot treat k as a constant with respect to n however, since the
number of Schwarz iterations may grow as n does. We conjecture however, that & grows much
more slowly than »; and in fact our experiments so far have born this conjecture out. If k& does
grow quite slowly with respect to n, then the analysis still favors the iterative methods, especially
for very large n. _

A second useful complexity analysis deals with using a fast direct method such as HODIE FFT
for the inner solution. This is not always possible, of course, but in problems where fast methods
‘do apply, the question is: “can Schwarz splitting ever he effective compared to simply solving the

11

-3 3x3
-4
1

log(err) p
-
2
| 3
-10

log(ptime)

Figure 6: Log-iog plot of error vs. time for 2, 3, and 4 subdomains in each direction. The curves
are labeled by method number, '
12

%

Method 2

Method 1

200 ¢thod 200
150 - 150 4

Schwarz Schwarz

Iterationls Iteran'oni;
50 - 4 50

;:/‘_________/_’—:_—_—z—__—_—s 2
0] I I ! 0
4] 50 100 150 0
1/h
200 Method 3
150 -
Schwarz
Iterationf
4
50 - ?‘ 3
f e
0 1 I I
0 50 100 150
1/h

Figure 7: Plot of Schwarz iterations vs. 1 /b for each method on Example 2. The curves are labeled

“by the number of subdomains in each direction.

13

50

o

106
1/

150

problem on the original domain (with no splitting) with a sufficiently fine grid?”. Suppose we solve
the PDE without splitting using an n x n grid. HODIE FFT is expected to take time proportional
to n’logn. If we split the domain into m X m subdomains, and define an n/m X n/m grid on
each subdomain (so that the grid spacing is approximately the same as in the no-splitting case),
then the time for HODIE FFT on each subdomain }s O(k(n/m)?log(n/m)), where k is the number
of Schwarz iterations. Assuming perfect parallelism {all subdomain solves done in parallel} the
splitting approach is best if

k(n/m)*(logn/m) < n?logn
or
k < m2___1(£7}___-
logn ~logm
For typical choices of n and m {n > m) the expression on the right in this inequality is only
slightly larger than m2. So to be preferable, the Schwarz iteration must converge in about as many
iterations as there are subdomains. We have not been able to achieve this kind of rapid convergence
so far.

2.4.2 Stopping criterion for outer iteratjon

A difficult question for any iterative numerical method is a stopping criterion. Our initial approach
was to stop when the maximum relative change in the solution was less than some fixed threshoid
eps. Meier [6] uses this approach. Other researches have used reduction in the residual as 2, criterion,
but the residual is notorious for giving misleading information and our attempts at using it were
very unsatisfactory. The problem with picking a single threshold for the relative change in U is
that it may not be fair to compare two methods using one fixed eps. For example, if for method A
the stopping criterion is such that the iteration stops just after discretization error is reached, while
for method B the iteration continues until the change in U is two orders of magnitude smaller than
the discretization error, then we unfairly penalize method B by our choice of eps,

Our approach is to use an “optimal” eps for each method/grid combination. With this choice
we lose something in terms of what is realistically possible in a real-world probiem, but we remove
the misleading influence of a fixed stopping threshold. We are primarily interested in comparing
Schwarz splitting methods, not choices for eps. By “optimal” we mean that eps is chosen as 0.1}jel],
where |fe]| is an estimate of the size of the discretization error. We estimate liell by assuming
llel] = ChP, where C is a constant, 4 is the mesh size, and p is a known constant which depends
on the discretization method. We estimate C by solving the PDE initially on a few coarse grids
without splitting, and using the known true solution to our test probiems. If the true solution is
not available, one could solve the problem on a coarse grid and on one twice as fine, and use the
change in the solution to estimate the discretization error.

2.4.3 Stopping criterion for REDUCED SYSTEM CG

The choice of stopping tolerance zeta jor ITPACK module REDUCED SYSTEM CG has a con-
siderable effect on the number of iterations needed to converge. We choose the reduced system
stopping tolerance as

zete = min(0.001, 0.01 max{eps, dfmin)),

where

14

eps = convergence threshold for outer iteration
dfmin = minimum relatjve change in the unknowns in the last two Schwarz iterations

The reasoning behind this choice of zefa is as follows. The requirement zeta < 0.001 ensures that
the tolerance will never get too big. (Obviously, these numbers need to be scaled by the magnitude
of the solution; for our examples the true solution is of size 1). Further, zeta > 0.01eps because
there is no point in solving a subdomain problem to several orders of magnitude more accuracy than
you expect based on the discretization error. Finally, in the range 0.0leps < zeta < 0.001, zeta gets
smaller as dfmin does. The idea is that zeta can be fairly large during the early Schwarz iterations
because the solution is so far from the final answer, and is changing significantly from iteration to
iteration. As we near convergence of the outer iteration, zeta must get smaller, because we want
to solve the subproblems more and more accurately. At each step we must solve the subdomain
problems with enough accuracy to make sure the Schwarz iteration continues toward convergence.

2.4.4 Relaxation factor for red-black sor outer iteration

An optimal relaxation factor w is known for linear systems resulting from discretizing many simple
linear elliptic operators (see Hageman and Young [3)). However, for the red-black sor outer iteration,
the choice of w is not so well-founded. Meier [6] uses the optimal w associated with the PDE and
gets good results. We experimented with using the w chosen by the ELLPACK SOR. module for
solving the linear system at the inner iteration, but this did not vield the experimentally observed
best w. In the examples above we use w = 1.25 for 2 X 2 subdomains, and w = 1.4 for 3 X 3 and
4 X 4 subdomains. These are values that we observe to be nearly optimal. We have no theoretical
basis for our choices at this time. We plan to investigate this guestion more in the future,

3 Future work

There are many aspects of our investigation of Schwarz splitting which need further work. The
most important next step is probably to implement our scheme on 2 parallel computer. We plan
to develop a parallelized version of our Schwarz splitting ELLPACK program on a Sequent Bal-
ance 21000. This machine is a shared memory design. The configuration we have available has 12
processors. This should give us Jjust enough realistic parallel computing power to investigate the
speed-ups achievable with Schwarz splitting. We plan to Implement a prototype parallel version of
ELLPACK as part of this investigation. This version of ELLPACK should make the handling of
- the multiple processors and processes as transparent as possible to the user. Obviousty, this work
has implications beyond Schwarz splitting alone. _

There are several improvements that could be made to our present implementation. For one,
the unnecessary discretization steps mentioned above should be avoided. This will take a bit more
programming and ELLPACK expertise than we were willing to expend on our injtial implemen-
tation, but it should be looked at soon. Furthermore, a better understanding of such problem
parameters as overlap and the number of subdomains is needed. We also plan to investigate the
effect of the elliptic operator on the performance of Schwarz splitting. For example, do non-smooth
coefiicients degrade the convergence behavior of the outer iteration? :

Finally, and most importantly, we plan to pursue other possibilities for speeding up the algo-
rithm as a whole. We have locked already at using fast direct methods for the inner iteration. This
needs more attention. Other discretization methods (eg. collocation) should also be considered.

“15

The outer iteration too, needs to be improved, possibly by applying a conjugate-gradient-like accel-
eration scheme, or different subdomain coloring strategies. We pian to investigate these possibilities
in the near future. We believe the Schwarz splitting approach can be improved enough to be very
competitive as a parallel algorithm. Many researchers have concentrated on capacitance matrix
methods (often called “domain decomposition” methods) for splitting domains. It js not clear at
this point whether the Schwarz splitting approach is better or worse (in terms of ultimate paralle
performance) than domain decomposition. Both theoretical and experimental analysis is needed.

References

[1] P. E. Bjorstad and O. B. Widlund, “Solving elliptic problems on regions partitioned into
substructures”, in Elliptic Problem Solvers i1, G. Birkhoff and A. Schoenstadt, eds., Academic
Press, New York, 1984, PP 245-255.

[2] T. F. Chan and D. C. Resasco, “A domain-decomposed fast poisson solver on a rectangle”,
STAM J. Sci. Stat. Comput,, 8{1987), pp s14-s26.

(3] L. A. Hagemarn and D. M. Young, Applied Iterative Methods, Academic Press, New York, 1081.

[4] L. V. Kantorovich and V. L. Krylov, Approzimate Methods of Higher Analysis, Interscience,
New York, 1964.

[5] D. E. Keyes and W. D. Gropp, “A comparison of domain decomposed techniques for elliptic
pdes and their parallel implementation”, SIAM J. Sei, Stat. Comput., 8(1987), pp 5166-5202.

[6] U. Meier, “Two paraliel SOR variants of the Séhwarz alternating procedure”, Parallel Comput.,
3(1986), pp 205-215.

[7] K. Miller, “Numerical analogs to the Schwarz alternating procedure”, Numer. Math., 7(1965),
pp 91-103.

[8] J. R. Rice and R. F. Boisvert, Solving Elliptic Problems Using ELLPACKE, Springer-Verlag,
New York, 1985. '

[9] . R. Rice and E. N. Houstis and W, R. Dykser, “A population of linear, second order elliptic
partial differential equations on rectangular domains”, Math. Comp., 36(1981), pp 479-484.

[10] J. R. Rice and D. C. Marinescu, “Analysis and modeling of Schwartz splitting algorithms
for elliptic pde’s” in Advances in Computer Methods for Partial Differential Eguations VI R,
Vichnevetsky and R.S. Stepleman, eds., IMACS, New Brunswick, N.J., 1987, pp 383-386.

{11} G. Rodrigue, “Inner/outer iterative methods and numerical Schwarz algorithms”, Parallel
Comput., 2(1985), pp 205-218.

[12] G. Rodrigue and J. Stmon, “Jacobi splittings and the method of overlapping domains for
solving elliptic pdes”, in Advances in Computer Methods for Partial Differential Equations v,
R. Vichnevetsky and R.S. Stepleman, eds., IMACS, Brussels, 1984, pp 383-386. :

[13] G. Rodrigue and J. Simon, “A generalization of the numerical Schwarz algorithm?, in Com-
puting Methods in Applied Sciences and Engineering VI, R. Glowinski and J .L. Lions, eds.,
North-Holland, Amsterdam, 1984, pp 273-283.

16

[14] W. P. Tang, “Schwarz splittin

g: a model for parallel computations”, Ph.D, thesis, Stanford
University, 1987.

Appendices

A ELLPACK program

In this appendix we include a listing of the ELLPACK program that implements Schwarz splitting,
This particular program is for Example 1, Method 2. We do not show several FORTRAN functions

*

*

*

* inner iteration: S5ps + reduced system cg

* outer iteration: red-black sor (user picks omega,)

x
**
**

options

output level 0
ma¥ x and y grid lines

* R X % ox x

**

options.
level = 0
max ¥ points = 65
max y points = 85

*

* declarations

%

* haxpcx,maxpcy max pieces in eack direction

* maxpcs max total number of pieces

* maxzits max number of iterations

* npcs current number of pieces

* npcsx, npesy number of pieces in each direction

* kpe current piece

* IXMZX, nNymax max number of x and y grid lines

* kordmx max order of spline interpolant

* intype interpolation type {O=quad, i=gplineg)
* unkcur saved unknowns for each riece (current)
* unkold saved unknowns for each piece (old)

18

* xmin, xmax X grid ranges

* ymin, ymax ¥y grid ranges

* ngrdx, ngrdy number of grid points for each piece
* hgrdx, hgrdy grid spacing for each priece

* ugrdx, ugrdy uniform grid switch for each piece
¥ gridx, gridy X and y grid lines for each piece
¥

* other wvariables

* eps epsilon for stopping criterion

* errcon estimate of constant ¢ such that

* err = ck¥hik*2

* z estimate for itpack parameter zeta
*

**

declarations.
parameter (maxpcx=4,
+ maxpcy=4,
+ maxpcs=16,
maxits=100)
common / csplit / npcs, npesx, npesy, kpe, nxmax, nymax,
a kordmx, intype

common / cunkcu / unkcur($i1ngrx,$i1ngry,maxpcs)
common / cunkol / unkold($i1ngrx,$i1ngry,maxpcs)
commor / csplax / xmin(maxpcx)

common / csplbx / xmax (maxpcx)
common / csplay / yoin(maxpcy)
common / csplby / ymax (maxpey)
common / csplnx / ngrdx (maxpcs)
common / csplny / ngrdy (maxpcs)
common / csplhx / hgrdx (maxpcs)
common / csplhy / hgrdy(maxpcs)
common / esplux / ugrdx(maxpcs)
common / cspluy / ugrdy (maxpcs)

logical ugrdx, ugrdy
commor / cgridx / gridx($iingrx,maxpcs)
common / cgridy / ridy($iingry,maxpcs)
integer iters{maxpcs)

equation. (exp(x*y)ux)x + (exp(~x*y)uy)y - 1./(1.4+x+y)u = {x,y)

n
O RO

boundary. = gwest(x,y) on x
= geast(x,y) on x
= gsouth(x,y) on y

gnorth(x,y) on y

It

]
H

(S I P

19

fort.

nxmax = $iingrx
nymax - = $iingry
intype = D
errcon = 0.687

c

c Input parameters

C

print *, ’Input number of Pieces in x and y’
read *, npcsx, npesy

Bpcs = npcsx * npesy

print *, ’Input overlap factor p’

read *, p

print *, ’Input initial grid size (nx,ny)’
read *, nx, ny

print =*, "Input number of grids?

read *, ngrids

print *, ’Input omega'’

Tead *, xomega

print 900, DPCSX, npesy, p, xomega
900 format(//’Number of Pieces in x =’, i3

a /’Number of pieces in y =, i3
/’0verlap factor Co=', £8.3
c /’Relaxation parameter =’, £8.3)

Set piece boundaries.

call initpc (npesx, p, xmin, xmax)
call initpc (npesy, p, ymin, ymax)

Big loop over grids

do 300 ig = 1, ngrids
soltim = 0.0
call gitime(t0)
nhXny = nx * ny
print 1000, nx, oy
1000 format(///’ New grid size =, 2i3
a /4 iter maxdifen zeta’,
b : ! Teduced system iterations’)

20"

Define and save grids. Initialize solution to 0.
Pieces are numbered left to right, bottom to top.

o0 00

do 100 j = 1, npecsy
do 100 1 = 1, npcsx
kpc = i + (j-1)#npesx

rlaxgr = xmin(i)
ribxgr = xmax(i)
riaygr = ymin(j)
Tibygr = ymax(j)
c
c define grid and initialize solution to zero
c
grid. nx x points § ny y points
triple. set(u=zero)
fort.
save unknowns and grid
call unksav (ritabl, nxny, unkold(1,1,kpc))
call grdsav (kpc, gridx(1,kpe), gridy(1,kpc))
100 continue
c
c set stopping criterion eps as function of h*x
< since 5ps is 2nd order method.
c

b = amaxi(hgrdx(1),hgrdy(1))
eps = 0.1 % errcon * h¥h
print 1100, eps

1100 format(’ eps =7, &11.3)

schwarz iteration until change in u is less than eps

iter = 0
dfmin = 1.0
50 continue
iter = iter + 1
z = amini(0.0i*amaxi(eps,dfmin),1.0e-3)
dfmax = 0.0 '

21

red black loop
do 210 irdbl = 0, 1
loop over pieces

do 200 kpc = 1, npcs
J = (kpe-1)/npesx + 1
i = kpc - (j-1)*npcsx
if (mod(i+j,2) .ne. irdbl) goto 200
call grdres (kpc, gridx(i,kpc), gridy(1,kpe))
call gitime(tt0)

disc. 5 point star

proc, set unknowns for § point star (uest=uold)
ind. red black

sol. reduced system cg (zeta=z)

fore.

call qitime(tti)

soltim = soltim + tt1 - ttp
iters(kpc) = iparm(1)

call ¢3&pvl

linewd = .falise.

do sor step (puts new answer in unkecur)
call sor (xomega, unkcur(1,1,kpc), ritabl,
a unkold(1,1,kpe), nxny)

compute max change in u on this piasce
and update max and min over all pieces

DO o o

dfu = diffu (unkcur(1,1,kpc), unkold(i,1,%pc), nxny)
dfmax = amax1(dfmax,dfu)
 dfmin = amini(dfmax . dfu)
200 continue '

29

205

210

1030

1020

grid.
out.
fore,

copy red (black) unknowns from unkcur to unkold

do 205 kpc = 1, npcs

j = (kpc-1)/npcsx + 1

i = kpc -~ (j~1)*npesx

if (mod{(i+j,2) .ne. irdbl) goto 205

call unksav (unkeur(i,1,kpc), nxny, unkold(l,1,kpc))
continue

continue

print 1030, iter, dfmax, z, (iters(k), k = 1, npcs)
format(2x,1i3,2e12.4,x,16i4)

check for convergence
if ((dfmax .gt. eps) .and. (iter .lt. maxits))} gote 50
call qitime(t1)
print 1020, iter, t1-t0, soltim
format(/’ iterations 7,18
/’ total time ’,f8.2
/7 solution time’,f8.2)
pPut grid on entire domain and evaluate error
riazgr =
ribxgr =

riaygr =
ribygr =

H O~ O
S0 o0

20 x points § 20 y points

max (abserr, 40, 40)
nx = 2*nx-1
ny ='2*ny—1_

300 continue

- 93

subprograms,
function true(x,y)
common / cirvgl / riepsg, riepsm, pi
true = .75*exp(x*y)*sin(pi*x)*sin(pi*y)
return
end

function f(x,y)
common [/ cirvgl / Tiepsg, riepsm, pi

PX = pixx

PY = pixy

spx = sin(px)

SPY = sin{py)

exy = exp(x*y)

f = .75*(exy*exy*spy*((2.*y*y—pi*pi)*spx+3.*pi*y*cos{px)}+
$ pi*spx*(x*cos(py)-pi*spy)-exy*spx*spy/(1.+x+y))
return

end

end.

24

B Experimental data

Table B.1: Data for Example 1, Methods 1 and 2. Column N is the number of grid lines in each
direction per subdomain, $I is the number of Schwarz iterations, ST is sequential time, PT i
parallel time, Error is the maximum relative error over a 40 X 40 grid on each subdomain.

2 % 2 Subdomains

Method 1 Method 2
NS ST PT Error | S ST PT Error
5|21 36 9 1.9e-(2 & 14 7T 2.0e-02
7125 66 17 8.6e-03) 11 28 15 9.3e-03
925 97 24 3.3e-03¢ 10 38 19 3.7e-03
13 29 230 58 1.5e-03 | 11 &6 43 1.6e-03
17131 423 106 T7.9e-04 { 12 162 81 8.8e-04
25 |34 1108 277 3.3¢-04 | 14 442 221 3.9e-04
33136 2239 560 1.8e-041 15 894 447 2.1e-04
49139 6691 1673 8.0e-05 | 16 2583 12902 0.2e-05
65 1 42 14686 3672 4.6e-05 27 7164 3582 4.8e-05
97 - - - - | 37 23953 11977 2.3e-05
3 x 3 Subdomains
Method 1 Method 2
N| S ST PT Error | SI ST PT Error
5| 38 147 16 6.7e-03j 11 42 9 8.6e-03
7146 277 31 3.2e-03 1 18 106 24 4.5e-03
947 415 46 1203115 = 120 29 1.8e-03
13 | 54 ga79 109 5.1e-04 | 17 300 67 T.Te-04
7158 1821 202 2.5¢-04 19 577 128 4.3e-04
25| 64 4782 531 1.0e-04 | 21 1507 335 1.8e-04
33| 69 9837 1093 6.0e-05 ; 22 2003 665 1.0e-04
49 | 75 29409 3268 2.7e-05 - 25 8918 1982 4.4e-05
65| - - - - 142 25828 5740 2.5e-05
_ 4 x 4 Subdomains .
Methed 1 Method 2 _
N | 81 ST PT Error | SI ST PT Error
5 70 488 31 3.0e-03 | 34 233 29 4.5e-03
7Ty 76 821 - 51 1.4e-03 27 286 36 2.3e-03 |
| 83 1331 83 4.5e-04 | 28 441 55 0.5e-04
13 92 3013 188 1.4e-04 | 30 964 121 3.8e-04 |
171 99 5656 354 0.1e-05 |32 1787 223 2.1e-04
25 | 109 14863 920 3.4e-05| 35 4619 577 9.1le-05
33 | 116 30267 1892 2.0e-05 [-37 9275 1159 5.1e-05
49 - - - - | 40 26859 3357 2.2e-05

Table B.2: Data for Example 2, Methods 1,

2 and 3.

26

2 x 2 Subdomains
Method 1 Method 2 Method 3
N | SI ST _PT Error | ST ST PT Error | ST ST PT FError
7111 26 13 9.6e-03 | 44 38 15 5.8e-051 18 24 12 5.5e-05
9! 9 30 15 3.6e-03 1 47 35 24 1.4e05 |17 35 18 1.3e-05
13] 11 73 37 1.6e-03 | 53 209 52 1.8e-06 ¢ 19 76 38 1.6e-06
17 | 12 134 67 0.1e-04 | 57 364 91 5.7e-07 | 21 136 65 4.9¢e-07
25| 13 343 172 4.0e-04 | 64 850 215 1.0e-07 | 24 326 163 8.%e-08
33| 14 707 354 2204 68 1539 385 3.1e-08 | 26 596 208 2.6e-08
49116 2197 1099 9.9e-05| 74 3622 906 5.4e-09 28 1387 694 4.5e-09
6528 6385 3193 5.5¢-05| 79 6655 1664 1.7e-09 | 30 2559 1280 1.4e-00
97 1 30 17102 8551 2.9e-05 - - - -1 33 6295 3148 2.8e-10
B 3 X 3 Subdomains
Method 1 Method 2 Method 3]
N SI ST PT Error SI ST PT Error | SI ST PT Error
7117 92 20 4.6e-03 | 88 293 33 1.4e-05(30 101 22 1l.le-05.
9113 99 22 1.8¢-03| 93 460 51 3.2e-06 ; 25 125 28 2.5e-06
13115 225 50 7.7e-04 | 105 997 111 b54e07 {30 288 64 3.8¢-07
7|17 438 97 4.4e-04 1114 1741 193 1.60-07 33 509 113 1.1e-07
25119 1156 - 257 1.9e-04 | 127 4011 446 2.7e-08 | 38 1214 270 1.8e-08
337121 2446 544 1.0e-04 | 136 TITT 797 8.1e-09 | 42 2242 408 5.4e-09
49 124 7638 1697 4.7e-05 | 148 16736 1860 1.7e-09 | 47 5378 1195 1.1e-09
05 | 25 16201 3600 2.6e-05| - - - -1 81 9988 2220 3.4e-10
4 x 4 Subdomains _
. Method 1 _ Method 2 _ Method 3
N|SI - ST PT Error SI ST PT Error | 8T ST PT Error
7126 233 32 22e-03 1§ 153 954 60 4.8¢-06 | 48 301 38 3.6e-06 |
9427 376 47 9.6e-04 | 165 1531 96 1.2e-06 | 47 440 55 7.9e-07
131 29. 794 99 3.9e-04 | 186 3269 204 1.8¢-07 33 937 117 1.1e-07
17132 1503 188 2.3e-04 | 200 8614 351 6.2¢-08 | 58 . 1645 206 3.7e-08
2535 3870 484 1.0e-04 | 221 12682 793 1.1e-08 | 64 3701 463 6.9e-09
33137 7892 087 5.6e-05 | 235 22485 1405 3.7¢-00 | 69 6660 833 2.2e-09
: 'L49 40 23617 2952 2.5e-05 - - - -1 75 15386 1923 4.4e-10

Table B.3: Data for Example 1 with no splitting. ELLPACK modules used are 5 POINT STAR,
RED BLACK, and REDUCED SYSTEM CG. N is the number of grid lines in each direction, Time
is given in seconds. Error is estimated by the maximum relative error over a 40 x 40 grid.
N Time Error
5 1.3 8.67e-2
7 15 2.9e-2
9 1.7 1.31e-2
13 2.6 5.63e-3
17 4.0 2.9%e-3
25 9.7 1.23e-3
33 192 6.85e-4
49 55.1 2.96e-4
65 121.2 1.64e-4
97 385.7 7.30e-5
129 8855 4.08e-5

Table B.4: Data for Example 2 with no splitting, using two methods: & POINT STAR -+
RED-BLACK + REDUCED SYSTEM CG. and HODIE FFT.
: 5 POINT STAR | HODIE FFT |
N | Time Error Time Error
T 14 294e2] 0.2 6.770.04
9] 1.6 13le2| 0.3 1.49.04
3] 22 564e3| 0.7 1.84e-05
170 3.4 3023 11 4.1le06
B 7T 130e3| 25 6.77e-07
331 153 6.98e4 | 4.3 2.180.07
40 | 440 3.07e4 | 9.7 4.18¢-08
651 967 1.74e4| 168 1.33008
97 1 310.8 7.72e-5 | 39.2 2.69e-09
| 120 | 7147 4985 | 67.0 898010

27

