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Introduction

Large space structures are much more flexible than their terrestrial counterparts®. Rotation of
large space structures may be desirable for stability, thermal or artificial gravity reasons. Previous
literature includes the large deformations due to the free rotation of a slender rod”® and a ring
about a diameter?,

An important model of a space station is a ring rotating about its axis of symmetry. If the
ring is balanced it will be stable and remain circular. The present note considers the case when
the ring is unbalanced by a mass attached to a point on the ring.

Formulation

Figure 1 shows the origin of the coordinate system located on the symmetry line opposite a
mass of magnitude m. The system is rotating in its own plane with angular velocity  about the
center of mass. Normalize all lengths by the natural radius R of the ring and all stresses by ET/R?
where ET is the flexural rigidity. The governing equation for large deformations is®

016" — 070" +6"(6')° ~ 4u6" + ¢i(8') + g8 = 0. (1)

Here 0(s) is the local inclination, s is the arc length from the origin, and ¢, and ¢; are normal and
tangential stresses caused by centrifugal forces. Consider an elemental length shown in Figure 1.
Let p be the mass per unit length of the ring. We find

g: = —Br sin{f — ¢), gn = Br cos(f ~ ¥) (2)
where
rcosth=h—y,  rsnY==z (3)

and B = pQ*R*/E] is the important nondimensional parameter representing the relative impor-
tance of rotation to flexibility. After some work Eq. (1) becomes

06" — g 4 g (") = B{f)” [(h ~ y) cos6 + z sin 4]
+ 28 [(h ~ y)sin 6 - x cos o] } (4)
Notice that A, the distance from the origin to the center of mass, is vet to be determined. The

coordinates are related by .
z' = cos b, y' =siné, (3)

The boundary conditions for half the ring are

8(0) = 2(0) = y(0) = #"(0) = 0, (6)
z(r) =10, 8(z)=r. (7)



Balancing shear force at s = 7 gives

m____ #(m)
2rpR  7wB[y(r) -k}

(4]

(8)

Here e, the mass ratio, is the other important parameter. Given B, «, the sixth order system

Egs. (4, 5) with h a variable is to be solved with the seven boundary conditions Eqs. (6
Perturbation for Small B

If B is small we can perturb from the circular state as follows:

6 = s+ B¢(s)+ O(B?),
z=sins+ BE(s)+ O(B*), y=1~coss+ Bn(s)+ O(B?).

The leading orders of Eqs. (4-7) are
" + " = 2(h - 1)sin s,
& = —psins, 7' = ¢ coss,

#(0) = £(0) = n(0) = ¢"(0) = &(x) = é(r) = 0,

o= 2T
m{2—~h)

The solution is

¢=a+1(scoss+s—g~sins),

' 1

£ = aj—l (Zs cos2s — %sian-}-scos.s—sins-}-%s—%sin?s) ,
o 1 i 9 1 9 . L 3}

= ” s+ - - [ ST ——-1,

1? o 78 8n 28+ 7 cos2s 4 s sins + cos s £73)

h=2cx{-§-11'
L4 S

Thus the normalized moments are

N =1 ¢ 2
ﬂm_1,%a 5B+ O(B%),
BTa
oy — 1 o A Te 2
5‘\,). 1L2(a+1)BT (B*)

For the maximum width a, first find the location s = &* such that £(s*) = 7/2. From Ea
: J { H

=5 = gl - 8B + 0(BY).
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Then
2a

a=2z(s ):2——a+1

(1- %) B+ O(BY). (23)

Numerical Integration

For general B, Eqs. (4-7) are converted to a nonlinear system of equations as follows: let

o= (o)) (24)

and let z(m; v), y(m; v), 8(n; v} denote the solution to the initial value problem with initial conditions
Egs. (6, 24), assuming A is fixed. Then the two-point boundary value problem (for fixed A) is
equivalent to the problem of finding the initial conditions v such that

F(v) = ( a(m; ) ) Y (25)

B(myv)— 7

Note that F(v) is an implicit highly nonlinear function of v. The system of equations is
solved by a globally convergent homotopy method, which has been described theoretically® and
algorithmically”. The mathematical software package HOMPACK" was used to perform the com-
putations. This homotopy approach in conjunction with nonstandard shooting has been described
eisewhere®, and so will not be repeated here,

Solving the nonlinear system requires partial derivatives such as Oz(7;v)/dv; (or approxima-
tions thereof). These partial derivatives can be accurately and efficiently computed as follows:

let

! 1 HY
Vo= (x?y’g’gﬁg"’g"’ _c?_r_ @, 96 Q’i_ o8" 96 >, (26)

which is the solution of the first order initial value problem

Y{ = cosYa, ¥y = (~sin¥;)Ys,

Yy = sin¥s, Yy = (cos ¥3)Ys,

¥y =Y, ¥y = Yy, (27)
Y:; =Y;, -T‘VIIG = Y1,

¥{ =Y, Yi; = Y,

YW=T/Ya, Y= (YT - T¥)/Y2,

Y(G) = (0303 Ba 7}17011’29 Oa 0307 611', O: ‘52{)1

where

3
+ 2¥2{(h - Ya)sin ¥s — ¥4 cos 4] }

fe]



and

T' = Y3(Y12 - 3Y7V10) + Y11 (Ys - Y7)
+ B{Y5 (Y2 ~ B)(sin Y3)Y¥s — Yi cos Y + ¥; (cos Ya)Ys + ¥ sin V3]

+ Y11 [(h — Y2) cos V3 + Yy sin Ys]
+ 2Y2 [(h ~ Y3} cosY3)Yy — Yysin ¥y + Yi(sin¥3)Vs — Y7 cos Yé,}

+4Y, Y10 [(h — Y3)sin Vs — ¥; cos }g]}. (28)

For example, integrating this system with i = 1 up to n=m gives Y7(r) = dz(m;v)/dvy.
However, the constant A must satisfy
. 6" (7 v)
ho= 'y(“a”) - _m: (29)
which is simply a nonlinear scalar equation for A. So, the overall algorithm is:
1} Fix a value for h.
2} Solve F(v) = 0 for v (keeping h fixed).
3) Compute y(r;v) and §"(r;v).
4) If Eq. (29) is satisfied, stop. Otherwise, adjust the value of A using the secant method and
return to step 2).
It would have been possible to formulate the entire problem as a single nonlinear system in
the three unknowns vy, vs, and k, and simultaneously solve for v and h. The above decoupling is
more efficient computationally, however,

Discussion of Results

Figure 2 shows the curvatures or normalized moments. The maximum moment occurs at s = =
or at the location of the point mass. Of much smaller magnitude is the moment at s = 0. Both
moments increase with o and B. Our approximate formulas compare well with exact numerical
integration for B < 1. Figure 3 shows the maximum length & increases with o and B while the
maximum width @ decreases. Both Figures 2 and 2 are useful in the design of freely rotating rings.
Figures 4 and 5 show the deformed configurations of the ring for some values of ¢ and B. We see
the shape is neither circular nor elliptic, but egg-shaped.
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Figure Captions

Figure 1. The coordinate system.

Figure 2. The curvature or normalized moment as a function of B for various a. — 8'(7);

----- #'(0); — — — — approximations Eq. (19) or Eq. (20).
Figure 3. The maximum length b and the maximum width . — - — « — distance h to center of
mass; — — — — approximations Eq. (21} or Eq. (23).

Figure 4. Configurations for the same rotation rate B = 2. From left io right, & = 0.25, o = 0.5,
a = 1. Cross indicates center of mass.

Figure 5. Configurations for the same mass o = 2. From left to right, B=1,8 =2, B = 3. Cross
indicates center of mass,
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