The Comparison and Improvement of
Effort Estimates from Three Software
Cost Models

Dennis Kafura
Sallie Henry
Mark Gintner

TR 87-37

The Comparison and Improvement of Effort Estimates
from Three Software Cost Models

by

Dennis Kafura,
Sallie Henry
and
Mark Gintner

Computer Science Department
Virginia Tech
Blacksburg, VA 24061

Abstract

This paper presents an empirical investigation of effort estimation techniques using three
software cost models: Boehm's basic COCOMO model, Thebaut's COPMO model, and Putnam's
model. The results, based on proprietary historical project data previded by a major
computer manufacturer, are in three parts: (1) a comparison of the three models 'showing
that more accurafe estimates are obtained from the COPMO modal; {2} improvemenis in the
COPMO estimates by means of two techniques termed "submodeling” and "construciive
modeling”; and (3} the definition and evaluation of a promising new technigue, termed
"adjustment multipliers", for improving a model's estimates. Finally, a second set of
industrial data is used to confirm the general applicability of these improvement technigues.

[. INTRODUCTION

Software cost models continue to be of interest to both the research and business
communities. Researchers use cost models as a means to understand and explain the
dynamics of the software development process. More pragmatically, the business community
looks on these models as a device for estimating, and ultimately controlling, the cost of
software projects which have experienced overruns approaching two hundred percent
[DeM82]. While referring 1o these models as "cost" models they are, more specifically,
models for estimating the total effort (measured in person-months) reguired to produce a
software. product. Estimating effort is a common goal of many cost models since effort in a
key factor in the overall dollar costs of software production.

In this paper we report on the results of a collaborative study involving both the research
and industrial communities. The first goal of the study was to perform an empirical
comparative evaluation of three cost models against historical data collected from compieted
commercially developed software projects. This part of the study, similar to those conducted
by Kemerer [Kem87] and Thebaut [The83], is present in the first part of Section IV. The
second goal was to improve the estimation accuracy of one of these models specifically for
our industrial partner's environment. In the second part of Section IV we present the two
techniques-which we used and which we believe can be used not only in other environments
but also with modeis different from the one which we chose. Cne technique, termed
submodeling, employs a cost model which is calibrated differentiy for different subsets of
projects. A second technique, termed constructive modeling, produces an overall system
cost estimate by summing the estimates of individual subsystems. While these two general
techniques have been used previously, we believe that we have applied them in a different
manner. The third and most novel goal of the study was to explore a new and highly
promising cost estimation method. This new technique, which we call adjustment
multipliers, is presented in Section V. As the name implies, an adjustment multiplier is a
multiplicative factor which is used to modify the estimate obtained from a cost submodel.
This approach is interesting because two projects in the same submodel may be multiplied
by different adjustment faciors. The estimates are more accurate because they are based on
two characteristics of the project - one characteristic which determines the submodel and
another which determines the adjustment multiplier. Finally, we attempted to substantiate
our results using & second set of data from commercially developed software systems
[Kem87]. This confirmatory data is presented in Ssction VI.

in the remainder of this section we provide a broad classification of cost models which leads,
in Section If, to a description of the three cost models used in our study. Section 1 details
the historical project data as well as the measures and graphs used to assess the accuracy of
the cost models when calibrated to this datz. Section IV - VI were described above. Section
VIl summarizes the results of the study.

The cost estimation method which has emerged in the computer industry is predictive cost
modeling. Predictive cost models are equations which generate cost, effort or duration
information from some number of project parameters. The parameters which are input i a
model can inciude project size, compiexity, staff size, environment and many more.
Predictive sofiware cost models can be divided into three classes: single independant
variabie (SIV} models, multiple independent variable {MiV) models and theoretical models.
This classification is similar to the classification used by Basiii [Bas80].

-t

ingle In ngent Variabl 1V) Model

Cost models in the SIV class are based on project size as measured by thousands of source
lines of code (KSLOC). All SIV models use KSLOC as the independent variable, and are
empirically formed. The class can be subdivided into two groups.

Models in the first group determine an estimate of the total effort, measured in
man-months, to develop & software system of a given size. These models are also called
"power models" because the model equation is of the form:

Effort =a - KSLOCDb

Regression techniques are used to determine the values of a and b which vield a best-fit to
the historical data. In the power model, exponents targer than 1 mode! the proportionately
greater difficulty of producing increasingly larger systems. For example, with an exponent
of 2, doubling the system size would imply increasing the effort by a factor of 4.

Shown in-Table 1 below are the equations for several different models which have been
calibrated for different sets of historical data. As can be seen from this table, there are
significant differences in the models’ multipliers and exponents. The effect of these model
differences can be seen in the righimost column of the table which shows each model's effort
estimate for a system with 100,000 lines of source code. The range of estimates exiends
over an order of magnitude. This wide range of estimates underscores the critical
importance of calibrating a cost model to a specific application environment.

Table 1: A Comparison of Effort Estimates

Model Equation Source Effort Estimate
for Effort for KSLOC=100

0.91 Walston, Felix
0.93 Software Engineering Lab. "

L4 x KSLOC Univ, of Maryland [Bas78} 101
1.05 Boehm (Organic Mode)

24 x KSLOC TRW [Boe81] ' 302
1.12 Boehm (Semidetached

3.0 x KSLOC Mode) TRW [Boe81] 521
1.20 Boehm (Embedded Mode)

3.6 x KSLOC TRW [Bo=81] C90s
1.83

0.3 x KSLOC Schneider [Vich81] 1371

The second type of SIV models divide the system into specific types of code. The KSLOC for
each type is then multiplied by a constant for that type to calculate effort. The individual
effort values are then added up to give effort required for the overall project.

The Wolverton model is the best known of these models. Wolverton uses the code categories:
control, input/output, pre/post-processor, algorithm, data management, and time critical.
Additionally, for each code type he has an easy, medium and hard constant to represent the
difficulty of that type of code. This technique can be used to create a range or to accommodate
varying difficulty within a project [Put77].

In the Kustanowitz model [Moh81} the same code categories are used. However, the model
uses an upper and lower productivity constant rather than complexity multipiiers to get
effort. After adding up the individual effort ranges a final best/worst range is created.

The Aerospace model [Moh81] uses slightly different code categories which are: real-time,
nonreal-time system software and nonreal-time operational software (interactive, on-line,
mathematical and string manipulation). It also includes variables for system complexity and
development environment. '

The Aron model is one of the earlier models and uses the programmer productivity rate
phiiosophy. The code is divided into modules by code type. Module difficulty (easy, medium,
difficult) is determined by the number of interactions the module has with other modules.
The difficulty and expected duration are then used to determine the productivity rate from a
table of values. The estimated size is divided by the rate to give the needed effort. This
process is done for all modules giving an overall project effort estimaie [Sho79].

Multiple independent Variable (MiV} Models

Models in the MIV class use two or more independent variables in an empirically formed
model. This class also has two approaches. The first approach uses ratings for such
subjective factors as programmer experience, complexity, and development environment
reliability. These factors are termed subjective because the "true" values for these factors
cannot be determined by measurement even after the project has been completed. The other
approach is an objective method which uses estimates of sucﬁ objective factors as size,
average siaff size and ianguage.

The subjective MIV models which appear in literature are the Price-S system and the
intermediate COCOMO model. The Price-S system was developed by RCA in the mid 70's as a
byproduct of their cost estimating system for military hardware. The inpuis for Price-S
system are: SLOG, type of code, level of new/old code, experience and ability of staff, prcject
difficulty (impactable factors}, specifications and requirements and hardware resources.
These factors are then used in a proprietary parametric equation.

The Price-S sysiem has two other modes of operation. ECIRP mode allows the model to run in
reverse based on groups' past projects. This option allows a mangger to get a better
understanding of the development environment. The Design-To-Cost mode allows estimators
to see the impacts of trying to meet specified funding leveis. Price-S has been used by the

3

Avionics Division of Honeywell Inc. [Fre79], together with the Putnam mode! by General
Electric's Space Division [Jun78], and was the primary mode! of the Department of Air
Force Space and Missile Systems Organization estimating methodology, which also includes
the Doty model, the Walston and Felix mode! and the Putnam model {Las79]. The above three
groups have reported good initial results with the Price-S system but have supplied no
quantitative results.

The Intermediate COCOMQ model by Boehm uses the base equations of Basic COCOMO for the
initial effort estimate. The user must then determine a series of cost drivers in four areas.
The four areas are product atftributes, hardware attributes, personnel attributes and
development environment attributes. Each driver is essentialiy a muitiplier which can
increase, decrease or not affect the estimate. Studies of the overall package of Boehm models
is reported in [Boe81] [Bry83]. Other models in this group include the System
Development Corporation (SDC) model completed in the early 1960's for the U.S. Air
Force, the Farr and Zagorski model, and the Navai Air Development model [Moh8&1].

Objective MIV models are less common. The cost estimating model derived from Halstead's
software science metric was the first model of this area. The inputs for the Halstead mode!
include volume (V) and a language level vatue (L) [Hal77].

Thebaut's Cocperative Programming Model (COPMO} is the other objective MIV mode!.
Thebaut's model uses two components to estimate effort: programmer cost and the cost of
coordinating the programmers. Programmer cost is determined by size and coordination cost
is determined by the average staff size. The details of this model and its respective equations
are discussed in Section I.

Theoretical Models

Theoretical models are the class of models which are not empirically derived. These models
are based on a logical framework which attempts to explain project behavior. The logical
framework used in both of the models of this type is the life cycle curve of development by
Rayleigh [Nor77]. Putnam's model is the most well known of the theoretical models.
Putnam's modei attempts to quantify the effort heeded at a given point in time, from design
through maintenance. Full details of the Putnam model are presented in Section Il [Put77].

Parr's mode! is another notable model of the theoretical class [Par80]. The Parr model is
also an implementation of Rayleigh's life cycle curve, with some minor differences. The
primary difference is that the Parr model does not have effort start ai zero due to the high
level planning done before a project is initiated.

[[. Selection of The Models

This section gives a detailed explanation of the three effort estimation modeis used in this
study and describes the motivations for selecting these models. In an effort to represent the
three classes of models, a model from each was chosen. The selection was aiso affected by the
sponsoring organization's past use of the Putnam model. The three selected models were:
Boehm's basic COCOMO model (a2 SIV model), Thebaut's COPMO model (an objective MIV
model), and Putnam's model (a theoretical model). A sublective MIV mode! could not be
selected. Models of this type require information on compiexity or programmer experience

4

which was not available in the sponsor's database. Each of the three selected models is
explained in greater details below.

Boehm's Basic COCOMO Mode!

Boehm's Basic COCOMO model was selected to represent the single variable class. The Basic
COCOMO model consists of an effort predicting equation and a duration predicting equation
and can be used on three types of software. The form of the effort predicting equation is:

Effort = a - KSLOCD

where the values a and b are constants calculated with a best fit method.

Boehm calibrated three different sets of coefficient depending on the "mode" of the software
being developed. The values which Boehm found for a variety of collected data are shown in
Table 1. Organic mode software is characterized by basic adherence to requirements,
minimal use of complex or innovative architectures or algorithms, and a team of
experienced programmers who are familiar with this particular type of software. The sizs
of organic mode software is less typically than fifty KSLOC. An example of an organic mode
project is a simple payroll system.

Embedded mode is the other end of the spectrum and is characterized by a mixture of
experience in programmers, strict adherence to requirements, as well as a complexity of
external factors (hardware, regulations and procedures) which aliow little flexibility in
software. Embedded mode projects have a strict need to finish on schedule and these projects
vary greatly in size. Embedded projects most often require innovative or complex
approaches to solve the problems. An example of a embedded project is a large new operating
system.

The third mode of software is referred to as semidetached mode. The characteristics of
semidetached mode are a primarily experienced team on a slightly complex project with a
fairly strict need to adhere to requirements. A semidetached project could also be one which
is.composed of some organic traits and some embedded traits. An exampie of a semidetached
project is a simple command controi sysiem. '

Thebauts COPMO Mors!

The muitivariabie class model selected was the Cooperative Programming Model (COPMO)
by Thebaut. Thebaut's approach inciudes two methods for predicting effort and duration. The
overall emphasis of this approach is a two part model: '

The first portion of his model Ep represents the productive effort (design, development, and
testing) expended by the programmer. Ep is calculated as

Ep=a+b-KSLOC

th

where a and b are constanis calculated with a best fit method. The second portion of the mode!
E¢ represents the cost of coordinating multiple programmers' efforts. E; is calculated as

Eg=c- Pd

where P is the average number of personnel, and ¢ and d are constants calculated with a best
fit method.

As with other MIV models, the COPMO model incorporates the simple intuition that the effort
required to develop a sysiem increases with the system's size. The COPMO model, in addition
to the size component, explicitly accounts for the communication and management overhead
associated with large deveiopment staffs. This factor is only implicity considered in other
modeis. The exponent on P allows the mode! to reflect Brooks' law of programmer
interaction which states that the number of possible communication paths increases
quadratically with the number of programmers [Bro75].

Putnam's Macroestimating Mode!

The model used from the theoretical class of models is the Putnam's Life cycle model,
Putnam's model is based on the life cycle curves developed by Norden [Nor77]. The basic
equation which represents the life cycle curve is:

K 2D
Y(t) = —

1t e
D

where: Y(t} is the percentage of the total manpower used,
K is the iotal man-months,
D is the overall duration of the project,

t is the point in time.

An equstion which predicts overall effort using size and duration can be derived from the life
cycle equation. The format of the effort predicting eguation is:

3
KSLOC

. e
Duration

where ¢ is calculated through 2 best fit method.

The underlying assumption of the Putnam approach is that the amount of effort required at
any point in a project can be represented by the curve described by the "sofiware equation”
given above. This equation implies, for example, that a project with constant staffing
throughout has wasted effort initially and uses more effort over a longer period than is
needed to complete the project [Put77]. The equation also models the incompressibility of
project schedules. For example, reducing the development time by 50% only reduces the
total effort by approximately 6%.

lll. Historical Data, Measures and Graphs

The sponsoring organization for this study was a major computer manufacturer. Their goal
was to find an effort estimating model which best predicts the behavior of their development
environment. An effort to collect project data began approximately fifteen years ago. The
collected data was based on a variety of software projects for defense applications and
contained a broad spectrum of project information. Each project is composed of one or more
products. The database contains the type of product, language, estimated size, breakdown of
code {new, modified and unchanged), duration, documentation pages, effort {man-months)
per phase of development, and computer-time cost for each product. It is apparent from the
sketchiness of some poriions of the data that in these cases, the data was added after
development, or that managers did not fully understand what information was needed for
certain entries. Those projects which were poorly reported were not considered in our
study. The resulting database of historical project data contained thirty-four projects
composed of fifty-five products.

The effort information represents the product life cycle from design through integration.
There are five different product types. Examples of these could be operating systems
software or data compression sofiware. The language field has three different possible
entries. These entries are: HO (high order), AS (assembler) or SL (signal processing
language). The database also distinguishes between new code, changed code,
modified-retained code and unmodified code. New code represents code which requires design
and development. Changed code represents code that was previously developed but requires
modification te be used. Medified-retained code is code which was previously written for
another product but required examination and little or no modification to be used in the new
product. Unchanged code represents up to an entire product which was used in another
product and requires no modifications to fit into the new product or project [Crug?2].

Normalized Measures

To deveiop a single effort model it was necessary to define a normalized unit of product size
which accounis for differences in the amount of reused code and the difierences in languages.
the sponsor of this study already had a measure called Equivalent Source Lines Of Code
(ESLOC, KESLOC is one thousand ESLOC) which normalizes different code types [Crug5).
This measure is defined as:

KESLOC =New KSLOC + Changed KSLOC
+ {0.31 * Modified Retained KSLOC)
+ (0.04 * Unmodified KSLOC).

in addition, the sponsor aiso had a measure for normalizing two products of different
languages. The measure is expressed in units of Words Of Memory (WOM, one thousand
WOM is a KWOM) [Cru85]. This measure is defined as:

KWOM = (1.2 HO KESLOC) + (12 * SL KESLOC) + AS KESLOC

The coefficients in these equations were determined by the sponsoring organization based on
their own prior empirical cost estimation studies.

Accuracy Measurements

There are many ways of measuring the accuracy of a cost model's effort estimates. Typically
a number of measures are used since no single measure is sufficient to represent the full
relationship between the model's estimates and ihe observed data. As in other similar
studies [The83, Kem87] we used both numerical measures and graphical displays. Three of
the numerical measures are measures of error, either absolute (Error)or relative (R E
and MRE). A fourth numerical measure {R4) and the graphical display represent the overall
trend between the estimates and the observed data values.

Error is the simplest of the measures but a good overall indicator of the accuracy of a
model. it is defined as: _

H
2 t Actual - Estimate . I
i =1 I]

h

Error =

where n is the number of data points.

RE (averags Relative Error) is a means of determining whether a prediction equation
primarily overestimates or underestimates. The squation for this measure is:

' n (Acrual - Estdmare)

1 X ; ;
BB =%)
=1

n Acmal!
i

where n is the number of data points. The model is ovarestimating when RE is negative and
undergstimating when RE s positive. The ideal value for RE is close to zero (either
positive or negative) [The83l.

The MRE (Average Magnitude of Relative Error} is a measure of the percent error over the
whole set of points. This measure is defined by the equation:

. n | Acrual - Estimate _ I

3 i
MRE =5~ Z Acwal

i

=

where n is the number of data points.

Each of these three measures of error captures a different aspect of the overall relationship
between the estimates and the observed data and is useful to different individuals involved in
cost estimation. The Error measure is meaningiui to a project manager who needs some
indication of the additional effort which may be needed on a project. For example, this
measure might indicate that, on the average, the estimate may be in error by 20
person-months. The RE measure is useful to a corporate-level manager who is estimating
the effort over many projects undertaken by the company. Even if the total Error is large,
some projects may be significantly overestimated while others are significantly
underestimated. However, if the RE measure is close to zero, the fotal effort estimate will
be a good approximation to the total actual effort. The MRE measure is useful to a project
manager because it is expressed as a percentage of the required effort. For example, an MRE
of .10 means that the estimate vary from the actual by 10%. This relative measure helps to
discriminate between errors made on large projects from errors made on small projects.

RZ, the Coefficient of Multiple Determination, is a numerical measure which, along with the
graphical display discussed next, was used to assess the overall trend between the estimates
and the actual data values. A< is a measure of the linearity between the actual and estimated
values. The value of this measure is relative since it does not reflect how closely the values
correspond. However, it is a measure of how well the prediction equation is following the
data points [The83]. The formula for this equation is

- 2
> (Acal - f (Estimate)
R =1.4z1 : -

i
2
E (Actual - Actual)

i=1 ;

where n is the number of data points, Actual is the mean of the Actual i's, and f is that
linear function of Actual which maximizes the result.

The accuracy of the model will alsc be depicted in graphs which display the estimated effort
versus the actual effort. A perfect estimator would.be one in which all of the data points lie
on the line Y=X. For reference each graph will aiso show ihe lines Y=X, Y=.75*X, and
Y=1.25"X. The last two lines represent a region of 20% error arcund the perfect estimator.
This region is shown because, as in {The83], our criteria for an acceptable effort estimator
is that 75% of the estimates lie within 25% of the actual values.

{8}

IV. Model Comparison and Improvements

Our first goal was to compare the accuracy of each of the three models. A best-fit correlation
was done for each model over all products and for each model over all projects. This
generated the constanis for the estimating equations in Table 2. Tabie 3 gives empirical
results on the accuracy of the estimates obtained from the equations in Table 2.

Table 2. Single Product and Project Mode! Equations

COCOMO
Product . Effort
Project : Effor:

1.0
3.826 * KWOM |
4,088 * KWOM

COPMO - -
Product : Effort = 47.953 + 0.279 * KWOM + 2.017 * P
Project : Effort = 113.133 + 0.771 * KWOM + 0.369 * P

Putman
Product : Effort
Project : Effort

3 4
1.677 * (KWOM; / Duration,)
1.760 * (KWOM [Duration)

Hon

Table 3. Results for Single Product and Single Project Models

Error RE A2 MRE
Ccooovo Product : 196.5 -0,43 0.66 0.85
Project : 308.9 -0.56 G.88 0.7
CORPMOC Product : 116.0 -0.57 0.83 0.86
Proiect : 165.7 -0.83 G.g6 1.19
Putnam Product : 295.8 0.61 0.11 0.91
Project : 477.4 0.80 0.0o 0.85

There are two main observations to be made about the results in Table 3. First, the Putnam
~model is clearly the least accurate of the three models. The Putnam A2 measures are
particularly low and there is no compensating strength evident in its RE and MRE measures.

s
]

While the COPMO model has very strong A2 values its RE and MRE measures are slightly
worse than for the COCOMO model. The major drawback of the COCOMO model is the Error
in comparison with COPMO. Additional data will have to be examined in order to make a
judgement about the relative merits of the COCOMO and COPMO models.

The second observation is that none of the three models, either at the product or project
level, seems to provide acceptable estimates. For example, the MRE values range from 0.85
to 1.18. The lack of accuracy can also be seen in Figure 1 {dotted iine} which shows clearly
that many of the product estimates from the COPMO mode! lie outside our target range of
{(-25%,+25%). We, therefore, explored two methods of improving the accuracy of the
models. These two iechniques, termed submodeling and constructive estimation, are
presented below.

<<insert Figure 1: Graph of COPMO Mode! Estimates vs. Actual Effort>>
modelin

One possible reason for the model's poor estimates lies in the lack of any highly regular
pattern in the database between size and effort. For the fifty-five products KWOM ranged
from 2.7 to 225 -and effort ranged from 18 to 1300 man-months. For thirty-four projects
KWOM ranged from 2.7 to 1067, and effort ranged from 18 to 7106 man-months. The lack
of a simple relationship between size and effort implies that the projects/products may need
to be divided into subgroups so that there is a more consistent relationship within each each
subgroup. Dividing the data into groups and generating a model for each group is called
submodeling.

Four aftempts to divide the data in logical groupings io achieve more accurate results were
performed. The groupings were by Language, by Product type, by Size, and by Duration.
The best results were produced by the Duration submodel and are presented next. The
interested reader is invited to read [Gin886] for the other submodel results.

To form a duration submodel the products are divided into groups based on the duration of the
product development. The five classes in the duration submodel and the number of data points
for each class are shown in Table 4. Once again the consiants for each submode! were
generated with a best-fit method for each of the three models for all five classes. The results
are shown in Table 5.

Class 0

Class 1

Class 2

Class 3

Class 4

Table 4. Duration Submodel Equations

(Elapse < 10)
(8 products)

COCOMO: Effort= 3.670 * Kwom 1.0
COPMO: Effort=23.783 + 1.537 * KWOM + 3.710* p1.0
Putnam: Effort = 2.999 * KWOM3 / Duration 4

{10 < Elapse < 20)
(10 products)

OOCOMO: Effort = 4.624 * KWOM 1.0
COPMO: Effort=25.130 + 1.346 * KWOM + 1.028* p 1.8
Putnam: Effort =58.108 * KWOM S / Duration 4

(20 < Elapse < 30)
(1¢ products)

OO0V Effort=3.356 * KWoM 1.0
COPMO: Effort= 12.076 - 0.301 * KWOM + 25.441 * p1.0
Putnam: Effort = 2.898 * KWOM3 | Duration 4

{30 < Elapse < 40)
(11 products)

COOOMO: Effort=1.729 * KWOM 1.0
COPMO: Effort = 7.469 - 0.193 * KWOM + 34.386 * p1.0
Putnam: Effort = 1.408 * KWOM3 / Duration 4

{Elapse_< 40)
(7 products)

COCOMO: Effori= 3716 * KWom 1.0

COPMO: Effort = -56.491 + 1.441 * KWOM + 38.945 * p 1.04
Putnam: Efforf = 1.408 * KWOMS3 / Duration 4

Table 5. Duration Submodel Results

Class Model Error RE R? MRE
0 Cocoovo 52.9 .27 .66 0.47
COPMO 27.6 -.26 .78 0.42

Putnam 68.9 .68 44 0.80

1 CooovD 29.6 -07 .89 0.22
COPMO 13.6 -.03 .86 0.11

Puinam 84.7 .68 43 0.77

2 oococovD 106.3 -.20 .83 0.62
COPMO 30.0 -.08 .96 0.158

Putnam 210.1 .80 .25 0.92

3 (0008 7 8] 132.8 -.21 .81 0.98
COPMO 11.9 -.02 .89 0.18

Putnam 1516 .90 .79 0.90

4 ooV 130.6 =72 .89 1.01
COPMO 11.7 -.04 .89 0.10

Putnam 269.1 .83 .97 £.83

Combined COOOMD 82.8 17 .97 0.64
: COPVID 20.7 -.08 .98 0.18
Putnam 1198.2 .82 .82 0.86

Table 5 shows that the COPMO model is unguestionably the best predictor of the three models
considered. Overall, the COPMO model predicted with an ERROR measure of just over 20
MM, or an MRE of about 18%. This accuracy is competitive with the best claimed in the
literature for models of this kind, The only drawback of this model is the need for prediction
of ot only size but also duration. FHowever, given the accuracy of the model and the fairly
broad sizes of the classes, it is a model worth further investigation.

The accuraey of the COPMO duration submodel is confirmed by the graph shown in Figure 1
{un-dotted line). Ths values in this graph lie close to the X=Y line and have only a small
number of values outside the 25% area. Furthermore, almost 90% of the MAE vaiues
within 40% error and $5% of the MRE values within 60% error for the COPMO duration
submodel.

Lonstructive Modsling Techniaue

It is also apparent that the submodeling approach is more successiul than the single model
approach for all three models. This can be seen graphically or the COPMO model in Figure 1

13

and numerically for all models by comparing the combined measures in Table 5 with the
corresponding product measures given in Table 3. We see, for example, that the single
COCOMO model has ERROR = 196.0 and MRE = .85 while the duration submodel reduces
these measures to 92.8 and .64, respectively. improvement for the Putnam model can also
be seen.

A second technique to improve the accuracy of the models attempts to exploit the
project-product structure. Recall that a project consists of multiple products, A comparison
of the resuits of the single product model versus the single project model (Table 3) reveals
that estimation done at product level is more accurate than at the project level. However,
much contracted software is generally of a size requiring subdivision of the project into
multiple products. The product estimates can be underestimates as easily as overeslimates.
If product effort estimates were summed to form a project estimate, there can be a
cancelling effect to reduce the error in the final estimate. For example, given a project Z
which is composed of two products X and Y, estimates are generated for both products.
Suppose that the effort estimate for product X is 10 MM low, and the effort estimate for
product Y is 10 MM high. If the effort esiimate for Z is obtained by summing the estimates
for X and Y, the error would be zero. Summing up product estimates to form a project
estimate is calied the Constructive Modeling Technique (CMT).

To test the CMT, we selected from the database all multi-product projects. There were six
projects consisting of a total of twenty-seven products. The number of multi-product
projects, although small, seemed sufficient to attempt the technique. The test of CMT was
conducted in the following manner. First, we recorded the six project estimates from the
overall model. We then obtained estimates for each of the twenty-seven projects. All
projects within the same product were then summed to obtain the CMT project estimate. To
further explore the submodeling strategy we obtained the product estimates from each of the
four submodels. To measure the improvement of CMT we used summed absolute error
(SAE) which is defined as:

n

SAE = 3 | Acwual - Estimate |

i=1 1] i

Table 6. Results of CMT on Muiti-product Projects

Submode! SAE SAEW/CMT
Language 1643 1134
Product Type 1088 736
Size g72 533

Duration 327 162

14

in each case of the submodel estimates being added together to form a set of project
estimates, the SAE was noticeably decreased. Although there is only a small number of
projects to test the method, the consistent improvement by the CMT shows its potential
value. These results also refiect again that, at least for the database we used, the Duration
Submodel provided the most accurate estimates of the four submodeling strategies.

V. Adjustment Multipliers

The duration submode! presented above generates poor estimates for some products. This can
be seen for the COPMO duration submodel in Figure 1 where there are several data points
outside of our target region. Adjustment multipiiers is a method which attempts to correct
the poor estimates, withoui affecting the good estimates. The data which we present in this
section is limited to the COPMO model since it was the best of the three model we were
considering. Simifar results to those given below for the other models may be found in
[Gin86].

Adjustment multipliers is a refinement of a submodel estimate. The initial effort estimate
(from the submodel) is adjusted by the selected multiplier (based on the adjustment
- mutltiplier characteristic) to generate the final estimate. For example, suppose that the
example product has the following characteristics: expected KWOM = 28, expected P = 14,
and the expected duration is 16 months. Also suppose that we have determined that the
COPMQ model, a duration submodel and a size adjustment multiplier are 1o be used. Since the
expected duration is between 10 and 20 months, the class 1 COPMO submodel is the equation
used o generate the initial estimate. The following equation is from this size submodel
{Table 4):

COPMO: Effort=25.130 + 1.346* KWOM +1.028* p 1.8

Using KWOM = 28 and P = 14, the equation produces an initial effort estimate of 182 MM.
Next, the size adjustment multiplier is selected (from Table 7). The adjustment muitipiier
class is 1 (KWOM s between 10 KWOM and 30 KWOM), so the appropriate multiplier is
1.032. Therefore the final effort estimate is 182 * 1.032 which is equal to 188 MM,

The adjustment multipliers are generated by evaluating a besi-fit correlation between the
estimated vaiues of the submodels and the aciual effort values. The complete set of
mullipliers is available in [Gin86]. For brievity, this paper only presenis one set of
adjustment multipliers. The size adjustment multipliers on the duration submodel estimates
are presented below. The equations and results for this sei of size adjustment muitipiiers
are supplied in Tabies 7 and 8. and Figure 2.

Table 7. Size Adjustment Multipliers for Duration
Submodel| Estimates

Class 0: { KWOM < 10)
' Effort = 0.689 * Duration Effort Estimate

Class 1: (10 < KWOM < 30)
Effort = 1.032 * Duration Effort Estimate

Class 2: (30 < KWOM < 60)
Effort = 1.003 * Duration Effort Estimate

Class 3: (80 < KWOM < 100}
Effort = 0.962 * Duration Effort Estimate

Class 4: (KWOM < 100}
Effort = 1.001 * Duration Effort Estimate -

Table 8. Results of Size Adjustment Multipliers on the
Duration Submodel

Error RE Rr2 MRE
Duration :
Submodel 20.9 -0.08 0.99 0.18
Size
Adjustment 20.0 -0.003 0.99 0.13
Multipliers

<<insert full page Figure 2: COPMO Adjustment Multipliers>>

The significance of the size adjustment multipliers used on the duration submodal estimaies
are that they represent the highest accuracy achieved in this study. Furthermore, the MRE
value of 13% lies in the range of the best reported models {15%-20% [Dems82]). The
improvement shown in Tabie 8 is werih noting since the improvement is done on a highiy
accurate submodel. '

Vi, Confirmatory Data

In the previous sections we have seen that the cost estimates derived from the COPMO modsl
weré more accurate than those obtained from either the basic COCOMO model or from
Putnam's model. A major question which remains is whether his conclusion would be true
for projects undertaken in an environment difierent from the ong irom which our data was
obtained. To answer this question we repeated a portion of our experiments using data, also
from an anonymous indusirial source, which appeared in a recent paper by Kemerer
[Kem87]. :

e
o

The first confirmatery experiment, shown below in Table 9, is a comparison of the three
models. As with our own data, we observe that the COPMO model is more accurate than
Putnam’s model and, with the single exception of the RE measure, is also to be preferred
over the COCOMO model. A closer look at the COCOMO measures suggests that this model has
substantial estimating errors (low RZ measure combined with large MRE measure) where
the overestimates and the underestimaies tend to cance! each other (low RE measure). By
contrast, the COPMO model evidences less general estimating error (high RZ measure
combined with small MRE measure). However, in the COPMO model the overestimates and
the underestimates do not cancel each other as much as in the COCOMO model leading to a
higher RE measure. The lower total error of the COPMO model also confirms it better
overall estimating capability.

Table 8. Model Comparison using Kemerer's Data

Error RE R MRE

COOOVO 115.7 .07 75 .B7
COPMO 46.0 -23 .85 43
Putnam 181.6 45 48 .65

Two difference between our measures and those used by Kemerer shoutd be pointed out.
First, different regression measures are used. Kemerer uses a "more conservative”
measures that is "... adjusted for degrees of freedom, which results in slightly (sic) lower
values than RZ2." This explains why the regression measure reported by Kemerer for the
COCOMQ model is 0.68 while the value shown in Table 9 above is 0.75. Second, each mode!
which we use has been calibrated to the specific data used in each case. For example, the
COCOMO model was calibrated to our own data (resulting in the set of equations shown in
Table 2) and calibrated independently (resulting in a different set of equation constants) to
Kemerer's data. Kemerer's results, on the other hand, are based on a combination of
calibrated and uncalibrated models.

The second confirmatory experiment tested the submodeling technique presented in Section
IV. The results of applying this technique to Kemerer's data are presented in Table 10.
Kemerer's data contains 15 projects. Because of the small number of proiects only two
duration submodels were formed based on a division of the data into two groups containing 7
and 8 projects, respectively. This division placed intc one class those projects with duration
not more than 13 months and into & second class these projects with duration longer than 13
months. The fop two major divisions of Table 10 show the accuracy of each submodsi on is
own set of data points. The last maijor division of the tabie ("Combined"} shows the overall
accuracy of the estimation technicue when the estimates from the two submodeis are
composed and evaluated as a whole.

17

Table 10. Confirmation of Duration Submodel Results

Class Model - Error RE r2 MRE
Duration <= 13 QCCOMD 27.0 -.15 .06 A
(7 projects) COPMO 15.8 =02 .86 12
Puinam 73.1 55 74 .60
Duration »13 CoCoVD 110.5 A0 .91 !
(8 projects) COPMO 32.3 -12 .08 .25
Putnam 148.6 34 .84 .87
Combined 000N 0 71.5 -.02 .82 .56
COPMO 24.5 -.07 .98 .19
Putnam 113.8 43 .83 .74

Table 10 confirms two main conclusions of our study. First, it shows again that the COPMO
model provides better estimates than the other two models. Second, a comparison of the
combined duration submodel results with the measures in Table 9 (no submodeling)
demonstrates the value of the submodeling technique. For example, the submodeling reduces
the COPMO Error measure from 46.0 to 24.5 and also reduces the MRE measure from .43
fo .18.

We were not able to perform a confirmation experiment of the adjustment multipliers
because Kemerer's data was much smalier than our own data (15 projects vs. 34).
Unfortunately, this smaller size prevented the application of the adjustment multiplier
technique because each group would have had oo few data points-to yield a meaningful result.
Nor does Kemerer's data provide any project/product breakdown necessary io apply the
constructive modeling technique.

Vil. Conciusions

Within the realm of softwarg estimating models, this study has accomplished a varisty of
valuable tasks. The primary accomplishment is the comparison of Thebaut's COPMO medel
against Boehm's organic COCOMO model and Putnam's mode! (Section V). The COPMO results
reveal that it consistently performs as well as, and usually better than the COCOMO and
Putnam models (Tables 3, 5, 9 and 16). The Basic COCOMO model by Boehm shows varied
performance throughout the study. Boehm's model only occasionally matches the
performance of the COPMO model. The Putnam model, centered around the equation which
predicts the needed effort at & given point in time during the project life, produced estimaies
which were worse, sometimes far worss, than those of the other two models.

The second major result of our study is the use of two technigues to improve the estimates
obtained from the basic models {Section V). Application of submodeling (Tabie 5, Figure 1}
and consiructive modeling (Table 6) improved the estimates of all three models. The best

ot
(8 4)

product level models are the COPMO duration submodeis. The best project level model is the
constructive modeling technique used on the COPMO duration submodels. Both the best
project model and best product model have the MRE within twenty-five percent which is
considered acceptable according to the current modeling literature [Dem82]. The COCOMO
model shows its best results for three out of the four submodels: language, product and
duration, only one of which was presented in this paper. For all three submodels the MRE is
in the 60 to 70 percent range which is not acceptable but is still considerably better than
the Putnam model. The other characteristic behavior of the COCOMO model is that its RE
value is usually close to zero. This characteristic implies that the model tends to equally
overestimate and underestimate. Although the characteristic may seem insignificant, it could
be highly advantageous when used to form constructive project estimates since often the
overestimates would cancel underestimates.

The third major result is the definition and exploration of a new technique, termed
adjustment multipliers (Section V). The use of this technique resulted in further
improvements in the COPMO mode!'s estimates (Table 8, Figure 2}. This technique yields
the best results in our study because it allows an estimator to "tune” an initial estimate by
taking into account two factors. In our study duration and size were the most sensitive
factors. Although we have used only three cost models, it should be noted that adjustment
multipliers is a general technique which can be applied #© any model.

Finally, we used a second set of industry data (Section V1) to confirm that the COPMO model
provides better estimates than the COCOMO or Putnam models (Table 9) and that the
submodeling technique yielded improved estimates (Table 10). Limitations on this second
set of data prevented the confirmation of the constructive modeling technique and the
adjustment multipliers. However, the fact that the submodeling technique was successful on
this second set of data suggests that the adjustment multipliers would also be useful in cases
other than the one in which we have used it

[Aro77]

[Bas78]

[Bas80]

[Bau79]

[Boe78]

[Boe81]

[Boy84]

[Bro75]

[Brug2]

[Bry83]

[Buc77}

[Crug2]

[Cruss]

[Dem82]

References

Aron, J. D., "Estimating Resources For Large Programming Systems,"

COMPSAC?7 Tutorial, IEEE, November 1977, pp. 257-268.

Basili, V. R. and Zelkowitz, M. V., "Analyzing Medium-Scale Software
Development,” Proceedings. 3rd International Conference On_ Software

Engineering, 1878, pp. 116-123.

Basili, V. R., "Resource Models," Tutorial on Modsls and Metrics For Software
Management and Engineering, IEEE, 1980, pp. 4-9.

Bauer, T. H., "Software Cost Estimating Experience," Proceedings: IEEE Workshop
on Quaniitative Sofiware Models, IEEE, October 1579, pp. 78-81.

Boehm, B. W. and Wolverton R. W., "Software Cost Modeling: Some Lessons
Learned," Proceedings: Second Software Life Cvcle Management Workshop, U.S.
Army CSC and IEEE, August 1978, pp. 129-132.

Boehm, B. W,, Software Engineering Economics, Prentice Hall inc., Englewoods

Cliffs, NJ., 1981.

Boydston, R. E., "Programming Cost Estimate: Is It Reasonable?”, Proceedings: 7ih
Int. Conference On Software Engineering, ACM, IEEE and National Bureau of
Standards, 1984, pp. 153-159.

Brooks, F. P., The Myihical Man-Month, Addison-Wesley Inc., Reading, MA, 1875

Bruce, P. and Pederson, S. W., The Software Development Project -- Planning and
Management, John Wiley and Sons Publishing Inc., New York, NY., 1982.

Bryant, A. and Kirkham, J. A., "B. W. Boehm Software Engineering Economics: A
Review Essay," ACM SIGSQFT Notes Vol g, No. 3, July 1988, pp. 44-58.

Buckle, J. K., Managing Software Projects. Americah Elsevier Publishing
Company Inc., New York, NY., 1877,

Cruickshank, R. D., and Lesser, M., "An Approach to Estimating and Controlling
Software Development Costs,” in R. Goldberg (ed.}, The Economics of Information
Processing, Volume 2, John Wiley & Sons, Inc., 1982, pp. 138-148.

Cruickshank, R. D., personal correspondence, September 1385.

DeMarco T., Controlling Software Proiects, Yourdon Press, New York, NY., 1832,

20

[Evasa]

[Fox82]

[Fre79]

[Gaf79]

[Gin86]

[Hal77]

[Han82]

[Hor75]

[Jun79]

Evans, M. W., Piazza P. and Dolkas J. B., Princinles of Productive Software
Management, John Wiley and Sons Inc. New York, NY., 1983.York, NY., 1983.

Fox, J. M., Software and lis Development, Prentice-Hall inc., Englewood Cliffs

NJ., 1982.

Freiman, F. R. and Park, R. E., "The Price Software Cost Model," NA N
Proceedings, [EEE, 1979, pp. 280-288.

Gaffney, J. E. Jr and Heller, G. L., "Macro Variable Software Models For
Application To Improved Software Development Management,” Proceedings; [EEE
Workshop On Quantitative Models, IEEE, October 1979, pp. 63-68.

Gintner, M.G. Development of a Resource Scheduling Model, M.S. Thesis,
Department of Computer Science, Virginia Tech, 1986.

Halstead, M. H., Elements of Software Science, Elsevier North-Holland, Inc., New
York, NY, 1877.

Hannan; J. (editor) and Oliver, P., A Practical Guide To Computer Programming
Management, Auerbach Publishers inc., Pennsauken, NJ., 1982,

Horowitz, E. {editor) and Wolverton, R. W., Practical Strateqies For Developing

Large Software Systems, Addison-Wesley Publishing Company, 1975.

Junk, W. 8., "A Software Cost Estimation Methodology Creating The Structure For
Reliable Application Of State Of The Art Cost Models," Proceedings: IEEE
Workshop On Quantitative Models, IEEE, October 1978, pp. 56-62.

[Kem87] Kemerer, C. F., "An Empirical Validation of Software Cost Estimation Models,"

[Las79]

[Moh81]

[Nor77]

[Par8o]

[PUt77]

Communications of the ACM, Vol. 30, No. 5, May 1987, pp. 416-429.

Lasher, W., "Software Cost Evaluation and Estimation: A Government Source
Selection Case Study," Proceedings: IEEE Workshep on Quantitative Models, IEEE,
October 1879, pp. 42-55.

Mohanty, S.N., "Software Cost Estimation: Present and Future," Sofiwars
Practice and Experience, Vol. 11, 1981, pp. 103-121,

Norden P. V., "Useful Tools for Project Management,” COMPSACTY Tuterial. IEEE,
November 1377, pp. 113-143.

—

Parr, F. N., "An Aiternative to the Rayieigh Curve Mode! for Sofiware
Development Effort,” |EEE Transactions on Sofiware Engineering. {EEE, May
1680, pp. 291-296.

Putnam, L. H., "The Software Life Cycle: Practical Appiication io Estimating Cost,

Schedule and Providing Life Cycle Control," Compsac7? Tutorial, IEEE November
1877, pp. 3%-112.

21

[Rub83]

[San79]

[Sho79]

[Sho83]

[Ste77]

[Theg3]

[Turg4]

[Wal77]

[Wol77]

Rubin, H. A., "Macro-Estimation of Software Development Parameters: The
ESTIMACS System,” SoftFair Proceedings, IEEE, National Bureau of Standards,
and ACM, July 1983, pp. 109-118.

Sandler, G. H. and Rachowitz, B. l., "Software Cost Models --Grumman

Experience,” |EEE Workshop on Quantitative Models, October 1979, pp. 69-77.

Shooman, M. L., "Tutorial On Software Cost Models", |IEEE_Workshop On
Quantitative Sofiware Models, IEEE, 1979, pp. 1-19.

Shooman, M. L., Software Engineering, McGraw-Hill Book Company, New York,
NY, 1883.

Stephenson W. E., "An Analysis of the Resources Used in the Safeguard System
Software Development,” COMPSAC77 Tutorial, IEEE, November 1977, pp.
303-312.

Thebaut, 8. M., The Saturation Effect In Large-Scale Software Development: s
Impact and Control, Ph.D. Thesis, Department of Computer Science, Purdue
University, 1983.

Turner, R., Software Engineering Methodology. Reston Publishing Company Inc.,
Reston, VA., 1984,

Walston, C. E. and Felix C. P., "A Method of Programming Measurement and
Estimation,” I1BM Systems Joumnal, Vol. 16, No. 1, 1977, pp. 54-73.

Wolverton, R. W., "Quantitative Management: Sofiware Cost Estimating,”
COMPSAC77 Tutorial, IEEE, November 1877, pp. 145-255,

22

1500

] T —
E
3
t : _
i ﬁ V=1, 25%y
m | >
a -
t
gljooo ' |
E
i !
.F
0 1
r . Y=,75%X
t | ! 7~
. i [1
1
n
|
!
200 205 g00 500 1000
Eotual " Effort in MM

——— Actuzl Effort vs. COPMD Durztion Submode]
~——— Actua]l Effort vs. COPMD Singie Product Model

o 3 O —h —-him

4

==

1500

Om ok 0 3 otk ™M

y=1.25%Y

11000
Y=Y
Y=, 75%)
200 400 600 800 1000
Aztual Effort in MM
Size Adjustment Multiniier on Duration Submodsel Zstimztias

