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ABSTRACT

The Model Analyzer is a utility that renders automated and semi-automated sup-
port of the model development process. ‘A prototype of this tool, demonstrating the
capability for diagnostic analysis of non-executable model representations, is described
from both a user and designer perspective. Key concepts affecting design decisions are
discussed in the context of an underlying theory of model representation and analysis.
The importance of world-view-independent model representation is stressed as a precur-
sor to the early employment of mode! diagnosis and analysis. An example serves to illus-
trate the capability of the current prototype and the importance of the design concepts
and the UNIX Y utilities yacc and lex in the Analyzer development.

CR Categories and Subject Descriptors: 1.6.1 [Simulation and Modeling}: Simu-
lation Theory; 1.6.4 [Simulation and Modeling]: Model Validation and Analysis; D.2.5
[Software Engineering]: Testing and Debugging — Diagnostics; D.2.6 [Software
Engineering): Programming Environments.

Additional Key Words and Phrases: Mode! diagnosis, model verification, data type
hierarchy, credibility assessment.

§ UNIX is a trademark of AT&T Bell Laboratories.
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1. Introduction

A Model Analyzer is a required element of a Minimal Model Development Environ-
ment (MMDE) toolset (see BALO83). Within the integrated, automated support of
simulation model development, provided by the MMDE, the Anaiyzef performs diagnos-
tic analyses on non-executable model representations. These analyses are based on both

static (attribute based) and dynamic (graph based) aspects of model representations.

This report describes the initial prototype of the Model Analyzer. By way of back-
ground and motivation and to provide a r_elativeiy self—contaihed treatment, Sectiop 2
discusses the underlying theory of model representation and analysis. This discussion
addresses the topics of world-view-independent model representation, graphical represen-

tation of model dynamics, and model diagnosis.

Section 3 outlines the primary conceptual contributors: the role of UNIX §, the lex,
and yacc utilities, and the implementation decisions to employ a hierarchy of abstract

data types. Together, discussion of these elements sets forth the design philosophy for

+ This research was supported in part by the Office of Naval Research and the Naval Sea Systems
Command under Contracs No. NB60821-83-G-A165 through the Systems Research Center at
Virginia Tech.

§ UNIX is a trademark of AT&T Bell Laboratories.
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Generator, and

b) assisting in communicative model verification.

The prototype tool described herein is intended to partially satisfy the first of these

requirements.

The functionality provided by the Model Analyzer prototype resides in its ability to
perform several of the attribute- and graph-based diagnostics (including complexity
[WAILJ85]) defined in [OVEC82,NANRSS6]. Only a subset of the graph-based diagnos-
tics are available in the current prototype. The Analyzer, the primitive model represen-
tation language on which it operates, and the diagnostics it performs are described in the

remainder of this report.

2.1. Primitive Representation Using the Condition Specifica,tion

Overstreet and Nance [OVECS5] propose the Condition Specification {CS)asa
nonexecutable representational form especially amenable to diagnostic analysis. Use of
the CS, which consists largely of formal {syntactic) components, enables the realization

of the following benefits:

(1) Model specifications (MSs) that are independent of the three traditional
world-views and automatic transtation of such MSs to their world-view depen-
dent equivalents. o

(2) Diagnostic analysis of MSs before the mode] implementation stage is reached.
Among other advantages, this facilitates the verification of models earlier in
the modeling effort [OVEC84, p. 3].

(3) Automatic derivation of graphical representations that permit mode} simplifi-
cation through diagnostic assistance prior to an executable model form {pro-
gram) [NANRS6].

(4) Automatic production of documentation from MSs.

Further, the CS formalism leads to establishment of the unsolvability of various general

+ The teader is referred to [NANRSI1] for a discussion of the role of communicative models in a
MDE, to [BALOgS] for the requirements for the Model Generator, and to [HANRS4! for details on
a Model Generator prototype.
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Table 1. Syntax and Function of Condition Specification Primitives
(Reprinted from [OVECSS5, p. 197]).

Name

Syntax

Function

Value change

Not specified

Assign attribute values

description

Set Alarm SET ALARM( < alarm name > Schedule an alarm
[( < argument list > )],
< time delay > )

When Alarm WHEN ALARM( < alarm name exp > | Time sequencing condition
[ < parameter list > )] )

After Alarm AFTER ALARM( < alarm name > Time sequencing condition

Cancel Alarm

& < Boolean exp >
[ ( < parameter list > }})

CANCEL ALARM( < alarm name >
[, < alarmid > ])

Cancel scheduled alarm

Create CREATE( < object type > (Generate new model object
[, < objectid > 1}
Destroy DESTROY!{ < object type > Eliminate a2 model object
[, < objectid > )
Output Not specified Produce output
Stop Not specified Terminate simulation experiment
Comment { < ahy text not including a "}" > } Comment

taken when the condition is evaluated as “true.” Specification via the CAP construct
_requires the modeler to prescribe the condition(s) under which defined attiributes change
value and the expressbn effecting the change. CAPs with identical conditions are
grouped into an action cluster (AC). Figu.re 1 explains and illustrates the relationships
among the object specification (definition stage), the CAP (specification stage), and the

action cluster.

Although both static and dynamic representations are produced in the generation
process, the current version of the Model Analyzer addresses the model dynamies

exclusively. Accordingly, the context free grammar on which the Analyzer is based



Object Specification Extract

repairman: status :(avail, travel, busy)
location :(idle, i:1..n)

Condition Action Semantics
( <condition>> , <action set> }
Condition Action Pair Examples {and Explanations}

(WHEN ALARM arr_facility (i:1..n), status :=busy)
{When the repairman arrives at a facility, he is immediately
busy repairing the facility.}

(WHEN ALARM arr_idle, status :=avail)
{When the repairman arrives at the idle location, he is
available to repair fatled facilities.}

(WHEN ALARM arr_facility {i:1..n}, location :=i)
fWhen the repairman arrives at a facility, his location is
that facility.}

Action Cluster Formation

WHEN ALARM arr_facility (i:1.n);
SET ALARM (end _repair (i), neg_exp(mean_repairtime});
status =busy;
location :=i;

END WHEN

Figure 1. Illustration of the Relationships in Attribute Definition and Specification.
(Reprinted from [NANRSE, p. 10.})

{given in BINF in Appendix A t } describes the detailed syntax of object definitions and
CAPs only.

The reader is assumed to be familiar -with the BNF formalism and is referred to
[OVECS2] for an in-depth discussion of the CS grammar. For the purposes of this
report, further detalls are provided- as necessary in subsequent sections. However, before

proceeding, the following departures from the original C5 grammar are noted:

+ Examples of mode! representations in this language are contained in Appendix B.

-6 -



(1) The symbols “{{” and “}}" are used to delimit the list of possible values for
enumerated type attributes.

(2) A CAP may be preceded by the name of the AC to which it belongs.
(3) An attribute reference may include the name of the object to which it belongs.
(4) 1Inthe sequencing primitives, no provisions are made for

saving and restoring parameter lists,
alarm identifiers (for CANCEL), or
object identifiers (for CREATE and DESTROY).

2.2. Translation to Action Cluster Incidence Graphs

Many of the model diagnostics presented in [OVECS4] and implemented in the
Analyzer depend on a graphical representation known as an action clustev.r tncidence
graph (ACIG). The ACIG is derived from the action cluster attribute graph {ACAG) that
maps the (relatively static) attribute description into the dynamic description in terms of

action clusters.

An action cluster (AC) is defined as “a collection of model actions that must always
oceur concurrently. It may involve attribute changes for several objects, but these
changes are ‘atomic’ in the sense that they must always occur as a unit”. [OVECS2, p.
3.45] Given a set of CAPs, the equivalent set of ACs is formed by combining (the actions
of) each subset of CAPs whose conditions are equivalent. The common condition within

each subset of CAPS becomes the condition of the resultant AC.

“Aq action cluster is a delermined (DAC) if its condition is determined (purely
time-based), contingent (CAC) if its condition is contingent {based on state attributes},
and mized if its condition is mixed (both time and state)” [OVECS2, p 3.46]. The
importance of distinguishing between time- and state-based attributes is explained in

[NANRS1].

The following definitions are taken from [NANRSS, p. 13]:

“An attribute z is a control atiribute of an action cluster if z appears in a condition
expression of the action cluster.



An attribute z is an output attribute of an action cluster if the action cluster can
change the value of attribute z.

An attribute z is an snput ettribute of an action cluster if the value of z affects the
output attributes of the action cluster.”

An ACIG provides a grraphical representation of the dynamics of a model by show-
ing possible interaction between AC pairs. The arcs in an ACIG represent cause/effect
relationships between AC occurrences. An ACIG is defined (roughly) as follows: (See

[OVECS4, pp. 14-15] for a more precise statement.)

Let acy, acy, . . ., ac, be the ACs of a CS. For each 1, let

C; = set of control attributes for ac; and
O; = set of output attributes for ac; .

Then for each 4, 7, the ACIG contains a directed arc from ac; to ac; iff Oy M C; # Q.
Arcs may be classified as time-based or non-time-based depending on the nature of the

associated attribute(s).

2.3. The Forms of Diagnostic Assistance

Overstreet and Nance [OVECS84, p. 2] identify the following as the purposes of

model diagnosis:

(1) to assist in the identification of conceptual errors (misperceptions) or deserip-
tive errors (misrepresentations) as early as possible in the modeling effort,

(2) to suggest alternatives that might be less prone to errors or might offer more
efficient mode! development and experimentation, and

(8) to provide guidance and checks on the modeling effort.

They categorize diagnostic assistance as foliows:

. Analytical diagnosis: “determination of the existence of 2 property...”

e Comparative diagnosis: “measures intended to depict differences among multi-
ple representations of a single model or between representations of different
models.”

© Informative diagnosis: “includes assistance in the form of characteristics

- 8-



extracted or derived from model representations.”

Table 2 is extracted from [NANRS6] and included here to illustrate diagnostics in each
category. Those diagnostics marked “¥ in Table 2 are implemented lully in the Model
Analyzer prototype; those marked “t” are in various stages of partial completion; and

those that are unmarked have not yet been addressed in developing the Analyzer.

3. Design Approach

Given the requirements for the Analyzer, in terms of both general requirements and

diagnostics to be provided, the primary factors influencing its design are:

(1) Use of the UNIX operating system in general and lex and yacc (vet another
compiler compiler) in particular.

(2)  Treatment of Condition Specifications, both the components and the graphi-
- cal representations, as abstract data types.

3.1. The UNIX Support

Lex [LESM75] and yacc [JOHS78] are two well known and widely used supporting
tools provided by the UNIX operating lsystem. Both lex énd yacc can be considered
meta-tools in the sense that they generate language recognizers. Lex generates recogniz-
ers for type 3 (regular) languages; yacc generates parsers for LALR(1) languages. A
common practice (intended by the authors of lex and vacc) is to use a lex produced

scanner in conjunction with (to supply tokens for} a yace produced parser.

A brief introduction to these two tools is given here. The reader is referred to

[LESM75] and [JOHST78] for further details.

The main components of a lex specification are regular expressions and associated

actions. Each regular expression describes a set of possible tokens. The action associ-

-9-



Table 2. Categorized Summary of Diagnostic Assistance
(Reprinted from [NANRSS, p. 27]).

Properiies, Measures, or Techniques
Applied to the Condition Specification {CS)

Basis for Diagnosis

Category of Diagnostic
Assistance
1)  Analytical: Determination of | a)*
the existence of a property of
a model Tepresentation.
bl
c]
d)
et
)t
)i
b}
2}  Comparative: Measures of it
differences among multiple
made] representations.
)
k)
3)  Informative: Characteristics | I}*
extracted or derived from
model representations.
m)
n)

Astribute Utilization: No attribute is defined
that does not affect the value of another
uniess it serves a statistical (reporting)
{unction.

Attribute Initialization: All requirements for
initial value assignment to attributes are met.
Action Cluster Completeness: Required state
changes within an action c¢luster are possible
Atiribute consistency: Attribute Typing
during model definition is consistent with
attribute usage in model specification.
Connectedness: No action cluster is isclated.

Accessibility: Only the initialization action
cluster is unaffected by other action clusters.
Qut-complete: Only the termination action
cluster exerts no influence op other action
clusters.

Revision Consistency: Refinements of a model
specification are consistent with the previous
version.

Attribute cohesion: The degree to which
atiribube values are mutually influenced.

Action Cluster cohesion: The degree to which
action clusters are mutually influenced.
Complexity: a relative measure for the
comparison of a C8 to reveal differences in
specification (clarity, maintainability, etc.) or
implementation (run-time overhead) criteria.

Attribute Classification: Identification of the
function of each attribute (e.g. input, outpu,
control, ete.)

Precedence Structure: Recognition of
sequential relationships among action clusters.
Decomposition: Depiction of subordinate
relationships among eomponents of a C8.

Action Cluster Attribute Graph
(ACAG)
ACAG
ACAG
ACAG
Action Cluster Incidence Graph
(ACIG)
ACIG

ACIG

ACAG

Attribufe Interaction Matrix
{originates with the ACAG)

Action Cluster Interaction Matrix

{originates with the ACAG)
ACIG

ACAG

ACIG

ACIG

ated with 2 regular expression specifies, in C programming language statements (or in

Ratfor statements [LESMY75, p. 1]}, the steps to be executed when an element of the

corresponding set is recognized.

Regular expressions and actions may be modified independently of each other and

regular expression/action combinations may be added or deleted as riecessary. (Due to

possible order dependencies, caution should be exercised in cases where the sets denoted

-10-




by two or more regular expressions have elements in common.) These characteristics
enhance the ability to develop and implement a lexical analyzer and the underlying lex
speciﬁcation in a plecewise manner.
An action may be as simple as returning a token type when a keyword is recognized
as in:
signal  {

}

or an action may perform a certain amount of processing before returning, as in the fol-

return( SIGNALSYM );

lowing, which executes the necessary steps when an identifier is recognized:
[a-zA-Z] [a-zA-Z0-0]*
code = lookup(yytext,attribute); t
if (code == HT_OK)
return(ATR-get-type(attribute);

else

install(yytext);
return(UNTYPEDID);

}
h

The philosophy underlying yacc is similar to that underlying lex. A yacc specifi-
ca{;ion is centered on a set of rules and associated actions. The yacc generated parser
executes actions as it matches pieces of 2 stream of tokens with designated components
of rules. As with lex, the ease with which a yacc speciﬁcation may be modiﬁed,.

expanded, or contracted facilitates an incremental design and implementation strategy.
The capabilities of yacc are necessarily more sophisticated than those of lex. Rules

for 2 yacc specification constitute the production rules of an LALR{1) grammar (see, for

example, [AHOAT7]) that describes the language 10 be accepted. Actions may be placed

+ Yytext is a predefined variable that holds the text of the token most recently extracted from the
input stream. '



at the beginning, end, or between any two elements {terminals and nonterminals) of the
right hand side of a rule. A single rule may contain multiple actions in different posi-

tions of its right hand side. Yace also provides a simple mechanism for error recovery.

The production rules in a specification enable yacc to construct a parse table for
the desired language. Typically, éspeciﬁcation also contains and depends on many data
structure definitions, variable declarations, and support routines. A number of these
routines can be identified as being generie to the parsing task. The purposes of the oth-
ers depend on the requirements of the particular task. Support routines are invoked

from within actions to accomplish the necessary steps during parsing.

At its lowest level, the yaec specification for the Analyzer depends on the following

types of data structures:

(1) List.
{2) Queue.
(3) Hash table.

Higher level data structures are defined in terms of these primitive ones. Support

routines included in this specification include the following:

(A) Base level list, queue, and hash table management routines.

(B) Routines that handle the internal representation of a CS and its components,
which include an object table, attribute tables, 2 condition-action pair list,
and an action cluster table.

(C) ACIG construction and management routines.
Complexity and other gra yased diagnosis routines.
(D) Complexi d other graph based diag t

(E) Input/output routines.

3.2. Abstract Data Types

.Ea,r]y in the development of the Analvzer the decision was made to base the design
(and implementation) on a view of a C§ and its components as abstréct dats types
(ADTs). Thus, for each of the siructures mentioned in (1) to (3), (B}, and (C) in Section

- 12 -



3.1 a set of operations exists by which the structure is created, modified, and accessed.
Conceptually, no other operations on the structures are allowed. In general, the potential
benefits of the ADT approach include increased modularity, reduced complexity, and

increased modifiability of the resultant software.

4. Operation and Implementation

4.1. The Modeler’s View

The typiéai user views the Model Analyzer as a combined interactive/non-

interactive tool that:

(1) Takes as input a Condition Specification of a simulation model.

(2) Parses the representation, halting with the message “syntax error” if it detects
an error.

(3) Compiles diagnostic information on the model representation.

(4) Allows the modeler, through menu selections, to view components of the
model representation and pieces of the diagnostic information.

(3) Produces and (if possible) displays a graphical form (an ACIG) of the model
representation.

4.1.1. Condition Specification Input

The Analyzer expects its input to be a CS model representation that follows the C3
syntax given in Appendix A According to this grammar, a CS representation is arranged
as explained in the following paragraphs. (This explanation is imprecise and the formal

grammar of Appendix A should be consulted for the exact syntactic rules.)

Following the name of the Cs, one or more objects are defined. Each object defini-
tion consists of the name of the object and zero or more attribute declarations. The
name of the first object must be environment. This object represents the environment
component of the model and also acts as a repository for global attributes. Attribute

- 13-



declarations follow a Pascal-like [JENK74] syntax. Valid attribute types are real,
integer, boolean, (time-based) signal, and modeler-defined enumerated types.
Numeric types may be preceded by one of the qualifiers positive, nonnegative, ﬁon-
positive, or negative.

After the object definitions, the model dynamics are specified in the form of a
nonempty list of condition-action pairs. Each CAP may be prefixed by the name of an

action cluster. The effect of these prefixes is this:

(1) If a CAP is preceded by an owner (AC) prefiz, it becomes part of that AC.

(2) If a CAP is not prefixed, then if z is the most recently named owner prefix, the
CAP becomes part of AC z.

(3) All CAPs that are given before the first prefixed CAP become unowned CAPs.

The pu-rpose of owner prefixes is to enable a straightforward mechanism for the
transformation of a list of CAPs to a set of ACs. It is desirable to have the transition
specification read as a list of CAPs. However, various diagnostics (including complexity)
require the existence of the corresponding set of ACs and an Action Cluster Incidence
Graph. Use of owner prefixes enables automatic production of ACs and an (unsimpli-

fied) ACIG without having to appeal to a higher level of algorithmic intelligence 1,

The condition and action comp.onent of each CAP can be either szmple or com-
pound. A simple condition is an arbitrary, boolean-valued expression, a when expres-
sion, an after expression, or the initialization condition (start). A compound condition
is a simple condition preceded by one of the keywords forall or forsome. A stmple
action is an assignment statement, an input/output operation, a set_alarm /cancel

operation, a create/destroy object operation, a function call, or the temination action

(stop).

¢ AC production and various operations inveiving ACIGs have been identified as candidates for
future applications of artificial intelligence techniques.

- 14 -



Within eonditions and actions, the following syntactic conventions govern reference
to attributes. An attribute name may be given in parenthesis with a valid object name
preceding the left parentheses. In this case, the reference is interpreted as a reference to
an attribute of the designated object, whose declarations must contain one for the
named attribute. If an attribute s named without an associated object, the reference is
bound to an attribute declaration, if one exists, in the environment object. In either

case, a syntax error is indicated if an appropriate declaration does not exist.

A CAP may also contain references to local variables. A local variable name is a
percent character followed by any (Pascal-like) identifier name (except keywords that
have special meanings to the Analyzer). Local variables are not declared and references

to them may appear in many places where attribute references are expected.

4.1.2, Error Detection

Currently, the Analyzer contains no provisions for error recovery or reporting and
also lacks some error detection capabilities (most notably, those associated with type

checking). Two primary implications of these shortcomings are

® Detection of a syntax error causes processing to halt without any diagnostic
messages.

e Either by intent or accident, attributes may be intermixed freely in CAPs
without regard for type compatibility. {The type signal represents an excep-
tion to this statement.)

4.1.3. Compilation of Diagnostic Information and Post-parsing Operations

During parsing, the entire CS representation is saved internally in a composite data
structure. The specifics of this data structure are generally transparent to the modeler.
In addition to saving objects and CAPs as read, the Analyzer also constructs and saves

ACs and records sets of input, output, and control attributes for each AC. Further, the



Analyzer augments the data structure with three pieces of diagnostic information for

each attribute. This information indicates whether the atiribute is:

. Referenced.
. Used as a control or input attribute.
. Initialized (before being referenced, for example, on the right hand side of an

assignment statement).

Immediately following the successful parsing of a CS representation, the Analyzer
initiates an interactive session during which the modeler may view various components
of the model as well as the previously noted attribute-based diagnostic information. The
modeler determines the information to be displayed by making selections from the menu
of Figure 2. Some selections require additional input, such as an AC or attribute name,
from the modeler. Note that the attribute-based diagnostic information is contained in
the attribute and object displays.

Display information for:
(O to exit)
1) entire condition specification
2) all objects
3} single object
4) single attribute
5) all condition action pairs
6)
7)

all action clusters
single action cluster

Figure 2. Model Analyzer Menu

The final actions of the Analyzer are the construction and display of an ACIG. As
previously discussed, the ACIG depicts cause/effect relationships between action cluster
occurrences. The Analyzer displays the ACIG in two forms if possible. Irrespective of
the output device, an adjacency matrix representation of the graph is displayed first. If
the output device is a Ramtek 6221 color graphics terminal, the traditional graphical
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representation is also displayed.

Currently, the graph- (ACIG-) based diagnostics are not completely implemented
and thus are not available to the modeler. These diagnostics, to be provided in future
prototypes, include:

s Connectedness.
° Reachability.
. Complexity.

~ The current design is that, following the construction of an ACIG, the Analyzer is to ini-
tiate a second menu-driven session that will allow the modeler to view the ACIG and the

graph-based diagnosis results.

4.2. Implementor’s view

Primarily to provide documentation for tho_se who are to maintain and expand the
Analyzer, th’ls section describes the Analyzer data structures, ADT implementations, and
general logie flow.

The Analyzer is most naturally viewed as a parsing and information collecting rou-
tine that relies on two layers of data type implementations. It uses the procedures of
.these implementations to build, access, and modify the composite data structure that is

the internal representation of a Condition Specification.

4.2.1. Base Level Abstract Data Types

The base level of the Analyzer consists of generalized implementations of a number
of standard data types. Three basic data types, as follows, are inciuded in the current

version of the Analyzer:

¢ Doubly linked list.
e Bucketed hash table.
. Queve.



Although exceptions exist, instances of these structures are accessed and modified in an
ADT fashion, through predefined operations. Operations such as inspecting the middle

element of a queue or accessing a hash table bucket as a pointer are generally avoided.

As with the remainder of the Analyzer, these data types are implemented in C.
The typedef facility, structures, and pointers are used, and the logic flow of each rou-

tine is straightforward.

A clear advantage of using the C language is the ability to create generalized data
type implementations. C provides Pascal-like data structure definition capabilities; but
unlike Pascal, C allows considerable flexibility with respect to operations involving
pointers and aggregate data types. Specifically, this flexibility enables the implementor
to define a data structure, declare that its base elements are to be characters (single
bytes), and then place into the structure elements of arbitrary size and internal composi-
tion. The implementor may thus define the data structure and write its support rou-
tines once and reuse the resultant package for évariety of applications regardless of the

base elements of interest.

Consider, for example the data structure “queue”. It can be defined in C by the
declarations
typedef struct AQUEUE_LINK
r

QUEUE._LINK *next;
char *thing;

typedef struct QUEUE_HEAD

QUEUE_LINK f{irst;
int thingsize;

. H

typedef QUEUEHEAD *QUEUE;

and a collection of routines including

QU_new,
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QU.add,
QU._remove, and
QU_front.

In each instance of QUEUE_LINK, the “thing” field will be a pointer to an instance of
the base element.

Now suppose the generic base element is defined as
typedef struct IDENT_REC

char name[20];
int type;

¥;
typedef IDENT-REC *IDENTIFIER;
The following code fragment constitutes the core of QU_add, which adds & new ele-
ment to the front of a queue:

int

QU_add(aqueue, object)
QUEUE aqueue;
char *object;

QUEUE_LINK *newlink;
int objectsize;

/* Assume at this point that aqueue is a valid queue, that“thingsize”
has been properly initialized, and object is not a nil pointer. */

newlink = (QUEUE.LINK *) ma.lioc(sizeof(QUEUE_T.‘INK));

objectsize = aquene—> thingsize;

newlink —>> thing = (char *) malloc(objectsize);

strmepy(newlink—>> thing, object, objectsize); _

/* strmepy coplies a sequence of n bytes regardless of their contents. */

newlink— > next = aqueug— >first;

aqueue—>{irst = newlink; ' 6

SN TV I S

n

J5
Tn this fragment, first space for a new link is allocated (line 1), Then space for a

copy of the object to be enqueued is allocated (line 3). The smportant function is the
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copy of an object as a sequence of bytes into the space allocated for it (line 4). No part
of this routine (and others of a similar nature) makes explicit reference to the structure
of the object to be enqueued. It is only necessar;v, through QU_init, to initialize “thing-
size” for each instance of the data structure QUEUE upon its creation.

The generalized list, hash table, and queue ADT packages provide a basis for imple-
menting the higher level components of the Condition Specification. Ideally the ADT
implementations may be modified, and even replaced, without affecting the second level

routines.

4.2.2. The Second Level Data Structures

The second level of data structures within the Analyzer consists of the following:

et

Untyped identifier list.
Object table.

Attribute table.
Condition-action pair list.

[V )

1N

Action cluster table.

fo2]

Condition specification.
Rebuttable successor table

~3

r-\/""\r'—“\fc—;?/‘—\/—\/"‘—\r""\

Q0

Variable type (rebuttable successor) table.

These structures are based on the first ievel ADTs as follows:

LIST: (1), (2), (4) - (8).
HASH TABLE: (3).

Additionally, there exist structures within the (incompiete) graph-based diagnostic rou-
tines that depend on the QUEUE ADT.

Many of the routines associated with structures (1) - (8) are merely interfaces to the
underlying ADT routines. That is, they pass the given parameters to the ADT routines
and return success codes with little or no processing. In some cases, a signiﬂcant amount
of additional processing is necessary. However, the second level data structure packages
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exist primarily to provide a second layer of abstraction through which basic ADT opera-
tions may be performed on the CS components in a well defined manner. Considering
the needs and the desired functionality, a search tree or similar sort/search structure

should be implemented as the basis for (2), (5), (7), and (8) above.

4.2.3. Top Level Routines and Logic Flow

The top le;\rel of the Analyzer consists of a lex generated lexical analyzer, a yacc
generated parser, ACIG routines, graph-based diagnosis routines, and a collection of I/O
routines for displaying the compiled information under modeler control. This section
provides a detailed explanation of the logic flow through the Analyzer during the parsing
of a CS. The actions (as coded into the lex and yacc source files) that are executed at

various points during the parse are the focus of this explanation.

Recall that although a full Model Specification consists of an interface specification,
a specification of model dynamics, and a report specification, the current version of the
Analyzer deals only with the model dynamics component. Further, the function specifi-
cation part of this component is assumed to be null since its syntax is expected to be of
the conventional high Jevel language type; thus its ineclusion is not eritical in a research

prototype of the Analyzer. So, the input to the Analyzer consists of

. A set of object specifications.
. A transition specification.

Before these two components are read and parsed a CS structure is initialized
(CS—init) and its object table is created (OT_init). Following these operations, a set of
one or more objects is read '. As each object specification is successfully parsed, an

object structure is added to the object table (OT—add}.

+ A minimuln size object set consists of a single object whose name is “environment”.’




An object specification requires the parsing of zero or more attribute declaration
lines. A declaration line is given in Pascal-like syntax: a list of atiributes followed by
their type. The important aspect of this syntax is the position of the type keyword at
the end of rthe line. As the line is parsed, an attribute table record is created for each
atiribute. However, these records cannot be completed and installed in the attribute
table of the object until their type is determined. Thus, until the end of the line is
reached, the incomplete attribute records are accumulated in an untyped attributes list.
After the type is read, it is copied into each of the records (UA—update), which are then

transferred to the attribute table (UA_transfer).

In cases where the type is an enu_ﬁleration list ( a list of possible values for an
enumerated type), each member of this list is installed as an “enumeration value”
(ENUMV_EC) in the attribute table of the environment object. The attributes in ques-
tion receive the type “enumerated”. Additionally, a list of the enumeration values is
constructed and linked into each attribute record. (This list is not used in the current

Analyzer prototype but may be useful for error detection in future versions.)

When all declaration iinés of an object have been parsed, the parsing of the object
is complete. The attribute table is then linked into the object structure
| (OB._add_attrtable) and the object is added to the object table. In this way, the entire
set of object specifications is parsed and an internal representation constructed. The
final action in this sequence is the linking of the object table into the CS structure
(CS_add_objuable).

In preparation for & transiticn specification, the CAP list and AC table are created
next {CL_init and CTnit, respectively). Once completed, these structures contain two
separate but equivalent internal fepreseatations of the transition specification. Recall

that a CAP may be preceded by the name of the AC to which it belongs. In such a case,
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if the named AC exists in the AC table, the CAP is added to that AC (AC_add.action).
If the AC does not exist in the AC table, 2 new AC structure is created (AC_new) and
the CAP is added to this AC {AC_set_condition and AC_add_action). Following this
action, the CAP is added to the CAP list (CL_add). All CAPs that are listed before the

first AC prefix is given become (implicitly) unowned CAPs.

In addition to building the CAP list and the AC table, the primary tasks accom-
plished during the parsing of a transition specification are the compilation of attribute
diagnostic information and the recording of attribute use information. The first of these
tasks is carried out by setting the appropriate flags in attribute table entries. As noted
in a previous section, each attribute record contains the fields “initialized”, “referenced”,
and “.usedci” (“used as control or input”). Setting these fields is accomplished through
attribute table lookups (AT lockup, called by ident_actions) and attribute updates
(ATR_setref erenéed, called by setfl1_ATRa and setf2.ATR, ATR setusedci, called by

setf1_ATR, and ATR_setinitialized, called by setf2_ATR).

To accomplish the second task, three lists are maintained in each AC structure.
When the AC is complete, these lists {“conattrs”, “inpattrs”, and “outattrs”} contain
respectively the names of the control attributes, input attributes and output attributes.
As the components of a CAP are parsed, the variable “attruse” is update to reflect attri-
bute uses in the CAP (and in its owner AC). The value of attruse (CONTROL, INP, or
OUT) at the point of an attribute reference determines the correct i{st placement for this
oceurrence of the attribute. The name of the attribute is placed in one of the lists
(AC_add_conattribute, AC_add_inpattribute, and AC_add. _outattributle, called by
addﬁolistJ&TR) and processing continues. Output actions cause deviations from this
sequence. Within an output list, atiributes are treated as REPORT attributes unless

they appear as function arguments or array indices. Report attribute names are not
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added to any of the three lists.

Sipee the function and report sections are assumed to be null, the parsing of the
final CAP completes the parsing of the CS. A description of post-parsing operations fol-

lows the details on the identifier lookup and typing mechanism given below.

Identifier lookups and typing of identifier references that occur in a transition
specification are handled by the routine ident_actions in the lexical analyzer. If the inte-
rior of a CAP is being processed, an object table lookup is attempted. If the identifier
name exists in this table, a pointer to the object structure is saved and the type OBJID
is returned. Otherwise, an attribute lookup is attempted. In most cases of this type, a
previous lookup has caused the saving of a pointer to an object. (The environment
object is assumed if such a pointer has not been saved.) The attribute table of this
object is searched for the current identifier. On success, a copy of the attribute is saved
and the appropriate attribute identifier type (INTID, REALID, BOOLID, SIGNALID,
ENUMID, or ENUMCONST) is returned. If the attribute table lookup falls, then the

type UNTYPEDID is returned.

If an identifier reference occurs outside (preceding) a CAP, it must be an AC name.

The type ACID is returned.

4.2.4. Post-parsing Operations
The following sequence occurs after a successful parse of a CS:

(1) Interactive I/O session.
(2) ACIG construction.
{(3) ACIG display.

Part (1) consists of accepting menu selections from the modeler, retrieving the
requested components from the CS data structure, and displaying these components at

the modeler’s terminal. The logic of the associated routines is straightforward.
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Part {2) produces an adjacency matrix representation of the ACIG. The construc-
ti0n routine employs the algorithm described in [OVECS82, pp. 7.13, 7.17]. This algo-
rithm is based on taking intersections between sets of control and output attributes.
The emptiness or nonemptiness of these intersections determines the values of the
corresponding entries in the adjacency matrix.

Finally, part (3) uses the color graphics capabilities of the Ramtek 6221 terminal to

display a graphical representation of the ACIG.

5. Conclusions

The experience of designing and implementing a Model Analyzer prototype has con-
firmed the utility of the Condition Specification as & model representation which permits
the extraction of Worid-vieﬁr independent diagnostic information. This research has also
illustrated the ease with which diagnostic tools may be created within the UNIX environ-

ment.

A number of issues are yet to be addressed and a number of diagnostics have not
yet been implemented. Issues remaining to be addressed include the form and utility of
diagnostics, such as attribute and action cluster cohesion, that are based on adjacency
matrix representations of component interactions, and the application of artificial intelli-
gence techniques to various difficult problems of model analysis. For exampie,. the abil-
ity to establish the semantic equivalence of textually different conditions can eliminate
the need for constructing both a CAP list and an AC table. The AC table can be
derived automatically.

The diagnostics remaining to be implemented consist primarily of graph based
information such as AC reachability and ACIG connectedness. Future developers of

Analyzer prototypes may include these diagnostics in.a straightforward, incremental




fashion by following the design strategy outlined in this report.
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Appendix A. Condition Specification Syntax

A.l. Regular expressions for tokens

The following regular expressions (REs) are equivalent to the set of tokens recog-
nized by the lexical analysis part of the Analyzer. The usual notation for regular expres-

sions is employed here. That is, if a and b are tokens or REs, then

a
€ {the null symbol),

alb (alternation),

ab (concatenation),

a* (Kleene star - zero or more), and

are REs. For the reader’s benefit, a number of these expressions are preceded by a

parenthesized term that describes the set of tokens represented by the expression.

The rule governing the use of upper and lower case characters is this: Case is not
significant in keywords, but is significant in identifiers. For example,
WHEN, When, and when
are all acceptable forms of the keyword WHEN, but
attribl, Attribl, and ATTRIBI,

while acceptable, are treated as distinct identifiers.

(keyword) COND._SPEC | OBJECT | WHEN | AFTER | CANCEL | CREATE |
IDESTROY | SET_ALARM [INPUT | OUTPUT ISTART ISTOP iFORALL
|FORSOME | INTEGER |REAL { BOOLEAN | SIGNAL [ POSITIVE
| NONNEGATIVE | NONPOSITIVE | NEGATIVE

(arithmetic operators) -+ - 1% [/ |**1
(Boolean operator keywords) AND |OR INOT
(relational operators) < [ > | <={>=l==1<>

(special symbols) { ) I[1]H{ I} 1=1,1:1;

+ The asterisks in this line are not interpreied as Kleene star operators.




(stars) (¥**) (*)*§
(integer constant) (+1-1¢) (011 loo.lgy(ol1l.. .19y
(realconstant)(+f-ie)(Olll...lQ}(Olli...IQ)*.(OllE...lQ)(O!II...]Q)*

(Boolean constant keywords) TRUE | FALSE

(identifier) (2 1b ... 1z 1AIB 1. 1Z)(albl.. 1z lAIBI. .. 1Z 10111 .. l9)
(local identifier) %(a Ib ... 12 1A IB1...1Z)
(a1bl.. 1z IAIBI...1Z)0111...90)

(comment) {anything except a close brace 3

A.2 BNF grammar

The grammar of this section describes the language recognized by the parser com-
ponent of the analyzer. Terminals are denoted by names in bold type and nonterminals

are denoted by names in double angle symbols. Operator precedence is:

*%  (highest precedence)
- (unary minus)

*’ /

+, -

relop

not

and

or (lowest precedence)

<< cond_spec >> = cond_spec untypedid << object_list >> << cond_section >>
<< func_section >>

<< objectlist >> = << object.spec >>
| << object_list >> << object_spec >>

<< object_spec >> 1= object untypedid << attr_decllist >>

§ Only the last asterisk in this line is interpreted as the Kleene star operator.

i The text of a comment is a string of length zero or more which includes any printable character
except “}". An exception-to this lexical construct arises when a second open brace follows the
first. A siring of the form {{identifier, identifier, ..., identifier)} is parsed as a list of possible
values for a Pascal-like “enumerated type” attribute.



<< func_section >> = << nul]l >>
| stars << function_list >>

<< function.list >> = << null >>
<< cond.section >> = stars << cond_act_list >>

<< attr_decldist >> = << null >>
| << attr_decl_list >> << attr_decl >>

<< attr_deel >> = << attr_list >> : <<attr_type >> ;

<< attr_list >> = untypedid
| << attr_list >> : untypedid

<< atir-type >> = << numeric_type >>
| boolean
| signal
| << enumeration >>

<< numeric-type >> = << type_qual >> integer
| << type—qual >> real

<< type—qual >> n= << null >>
| positive
| nonnegative
| nonpositive
I negative

<< enumeration >> = {{ << enum_list >> }}

<< enum_list >> = untypeid
| << enum-ist >> , untypeid

<< cond_act_list >> 1= << cond_act_pair >>
| << cond.act_list >> << cond_act_pair >>

<< cond-act_pair >> u= << owner_prefix >>( << cond_exp >> , << action.exp >> ) ;

<< owner—prefix >> = << null >>
| acid :

<< cond_exp >> n=start
| << simple_cond >>
| << compound_cond >>

<< compound_cond >> = forall ( localvar ) << simple—cond >>
| forsome (localvar') << simple_cond >>

<< simple_cond >> = << when_exp >>
- 90 .




| << after_exp >>
| << attribute—exp >>

<< when_exp >> u= when ( << signal_exp>> )
<< after_exp >> 1= after ( << signalexp >> ) and << attribute_exp >>

<< signalexp >> = << signal_spec >>
| << signal_exp >> or << signal _exp >>
| << signal_exp >> and << signal_exp >>
| not << signal_exp >>
| { << signal-exp >> )

<< signal_spec >> 1= objid ( << indexed_sig>> )
| << indexed._sig >>

<< indexed_sig >> ::=signalid
| signalid << index_list >>

<< index_list >> = [ << exp_list >> ]

<< expist >> n= <& attribute_exp >>
| << expdist >> , <<attribute_exp >>

<< attribute_exp S e << arith_exp >>
| << boolean_exp >>
| << other_exp >>

<< arith_exp >> = << atiribute_exp >> + << attribute—exp >>
| << attribute_exp >> - << atiribute.exp >>
| << attribute_exp >> * << attribute_exp >>
| << attribute_exp >> / << attribute_exp >>
| << attribute_exp >> ** << attribute.exp >>
| - << attribute_exp >>

<< boolean—_exp >> = << atiribute_exp >> relop << atiribute_exp >>
| << attribute—exp >> or << attribute_exp >> '
| << atiribute_exp >> and << attribute_exp >>
| not << attribute_exp >>

<< other.exp >> ::———( << atiribute_exp>> )
| << value_spec >>
| << function..call >>

<< value.spec >> :1=realconst
! intconst
| boolconst
| enumeconst
| << variable_spec >>
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<< variable_spec >> = objid ( <<indexed_var >> )
| << indexed-var >>
| localvar

<< indexed_var >> u= << id_name >>
I << id_name >> << index_list >>

<< id_name >> = realid

| intid

I boolid

| enumid
<< action_exp >> ;= stop

| << simple_act >>

| << compound_act >>
<< compound-_act >> = forall (localvar ) << simple_act >>
<< simple_act >> 1= << assignment >>

| << input >>

| << output >>

| << set_alarm >>

| << cancel.alarm >>

[ << create_obj >>

| << destroy.obj >>

| << function_call >>
<< assignment >> = << variable_spec >> = << attribute_exp >>
<< input >> = input ( << variable_list>> )

<< variable.dist >> u= << variable_spec >>
| << variable_list >> , << variable_spec >>

<< output >> = output (<< explist >> )

<< set_alarm >> = set-alarm { << signal_spec>> , << exp_list >> )
<< cancel;alarm >> n=cancel ( <<signal_spec >> }

<< create~.ob] >> = create (<< object_ref >> )

<L destroy_obj.>> = destroy (<< object_ref >> )

<< object_ref >> 1= objid
[ objid << index_list >>

<< function_call >> = untypedid ( <<exp...’1ist >> )

<< null >> n=
| - 31-




Appendix B. Condition Specification Examples.

B.1 First Failed First Fixed Machine Repairman Model

COND_SPEC fourf
OBJECT environment
systemtime: real;
n: integer;
meanuptime: real;
meanrepairtime: real;
maxrepairs: integer;
OBJECT facilities
fac: integer;
failure: signal;
failed: boolean;
endrepair: signal;
arrfac: signal;
numrepairs: integer;
failg: integer;
OBJECT repairman
status: {{available, busy, travel}};
location: {{faci, idle, travel}};
OBJECT idleposn

arridle: signal;
L3 4

Initialization:
(Start, Input(n,maxrepairs,meanuptime, meanrepairtime)};
(Start, Create(repairman));
(Start, Forall(%i) Create{facilities|%i]));
(Start, Forall(%:i) facilities(failed[%i]) = false});
(Start, Forall(%i) Set—Alarm(facilities(failure[%i]), nexexp(meanuptime)));
(Start, facilities(numrepairs) = 0);
(Start, repairman(location) = idle};
(Start, repairman(status) = available};

Termination:
(facilities(numrepairs) >= maxrepmrs Stop);

Failure { (i1 .. 0} }:
(When (famhtles(

f

\

re{%%1 ])), facilities(failed[%i]) = true);
(When (facilities{fa 11

o r
fatiure
fa lu'-e{%l 1, Qinsert Uacﬂmes(fanq) %))
3 . I b1
Beginrepair { {:1 .. n} }s
(When {facilities(arrfac)), Set_Alarm (facilities(endrepalr),
negexp(mesanrepairtime)));

When (facilities(arrfac)), repairman(status) = busy);
L \ L

-2
<
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(When (facilities(arrfac)), repairman(location) = faci);

Endrepair { (i:1 .. n) }:
(When (facilities(endrepair)), Set_Alarm (facilities(failure|%i]),
negexp(meanuptime)));
(When (facilities(endrepair)), faciities(failed[%i]) = false);
(When (facilities(endrepair)), repairman(status) = available)
(When (facilities(endrepair)), facilities(numrepairs) =
facilities(numrepairs) + 1};

b

Traveltoidle:
({ Forall(%i) } facilities(failed[%i]) and
(repairman(status) == available) and (repairman(location) == idle),

Set_Alarm (idleposn(arridle), traveltime(repairman(location), idle)));
({ Forall(%i) } facilities(failed|%i]) and

(repairman(status) == available) and (repairman(location) == idle),

repairman(status) = travel);

Arriveidle:
(When (idleposn(arridle)), repairman(status) = available);
(When (idleposn(arridle)), repairman(location) = idle);
Traveltofacility: -
((repairman(status) == available) and
{ Forsome(%i) } facilities(failed[%i)),
P61 = Qfirst (facilities(failq)));
((repairman(status) == available) and
{ Forsome(%i) } facilities(failed[%:i]),
- Qdelete (facilities(failg)));
((repairman(status) == available) and
{ Forsome(%i) } facilities(failed[%i]),
Set_Alarm (facilities(arrfac), traveltime(repairman(location),

faci)));

((repairman(status) == available) and
{ Forsome(%i) } facilities(failed[%i]),

repairman(status) = travel);

B.2 Manufacturing System Model

COND_SPEC manufacturing
OBJECT environment
systemtime: real;
quota: integer;
nuinassembled: integer;

OBJECT machinel
worktime: real;
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status: {{busy, idle}};
end: signal;

OBJECT machine2
worktime: real;
status: {{busy, idle}};
end: signal;

OBJECT machine3
worktime: real;
status: {{busy, idle}};
end: signal;

OBJECT bin2
max: integer;
number: integer;

OBJECT bin3
max: integer;
number: integer;

¥k

Initialization:

(Start, Input{quota,bin2(max),bin3(max),machinel (worktime),

machine2(worktime),machine3(worktime))};

(Start, Create(machinel));

(Start, Create(machine2));

(Start, Create{machine3)};
(Start, machinel(status) = idle};
(Start, machine2(status) = idle);
(Start, machine3(status) = idie);
(Start, bin2(number) = 0);
(Start, bin3(number) = 0);
(Start, numassembled = 0);

EnterMachl:
(machinel(status) == idle, machinel(status) = busy);
(machinel{status) == idle, Set_Alarm {machinel{end},
‘negexp (machinel{worktime)}));

- ExitMachi:

(After(machinel{end)} and (bin2(number) < bm.,(max))
bin2(number) = bin2(number) + 1);

(Afterfmachmel(endﬂ and (bin2(number) < bin2(max)),
machinei{status) = idle);

EnterMach2:
({machine2(status) == idle) and (bin2(zumber) > 0),
machine2(status) = busy};
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((machine2(status) == idle) and (bin2(number) > 0),
bin2{number) = bin2(number) - 1);

((machine2(status) == idle) and (bin2(number) > 0),
Set—Alarm (machine2(end), negexp (machine2(worktime))));

ExitMach2:
(After(machine2(end})) and (bin3(number) < bin3{max)),
bin3(number) = bin3(number} + 1);
(After(machine2(end)) and (bin3(number)} < bin3(max)),
machine2(status) = idie);

EnterMach3:
((machine3(status) == idle) and (bin3(number) > 0),
machine3(status) = busy);
((machine3(status) == idie) and (bin3(number) > 0),
bin3(number) = bin3(number) - 1);
((machine3(status) == idle) and (bin3(number) > 0),
Set—Alarm (machine3(end), negexp (machine3(worktime))));

ExitMach3:
(When(machine3(end)), numassembled = numassembled -+ 1);
(When(machine3(end)), machine3(status) = idle);

Termination:
(numassembled > quota, Stop);
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