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Abstract

In the last decade, the field of Computer Science has undergone a revolution, It has started
the move from a mysterious art form to a detailed science. The vehicle for this progress has been
the rising popularity of the field of Software Engineering. This innovative areg of computer

science has brought about a number of changes in the way we think of, and work with, the

not only possible, but is also valid.

The advent of Software Engineering has demanded that most universities offer a Sofrware
Engineering course which entails a “Real-World” group project. Students participating in the
class design a system using a program design language (PDL). Oher students then write code .
from the design and finally the design team integrates the modules into a working system. Fora

complete description of the class see [HENS83] and [TOMIS7].







L Introduction

there was no structured form for pseudo code, each individual used his own style and
self-imposed Syntax. It quickly became apparent that there must be some sort of a

standardization in order to most efficiently use this technique.



Other features desirable in a well constructed PDL should include: the ability to use the
language at all levels of design from rough descriptions to detailed pseudo code, adaptability to
the environment, familiarity to both designers and programmesrs, and susceptibility to the use of
automated tools such as parsers, automatic document generators, and metric generators. A PDL
with these features is indispensable as a design tool.

The concept of a program design language as a tool for specifications and requirements has
become widely accepted, but it is not enough by itself. The need for design metrics is being
acknowledged by some software organizations since PDLs do not provide any concrete,
quantitative basis for making important design decisions. Metrical analysis of software is
informative, but many times, “bad” code (according to the metrics) is caused by faulty decisions
during design. It will be costly both in time and money to correct the design flaw. Ideally, the
error should have been found much earlier in the program life-cycle. Design metrics appear to be
the answer to some problems of this type.

Unfortunately, design metrics have not been extensively tested. Most papers, in fact, state
that a specific metric could be used on their design methodology, but do not explain or validate
the idea. In some cases where testing has been done, it is unclear if the metrics were
automatically generated or hand generated. Finally, with the exception of the analyzer used in

this study, all other proposed tools generate only code metrics [TRODS81][SZUPS81].
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Figure 1. Standard Lifecycle

In general, the software life cycle starts at the requirements phase, then the design of the
program, implementation, testing, and finally maintenance. The portion of the cycle [OVECS6]
that is of interest to this research is that of design and implementation with the inclusion of
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software quality metrics. Figure 1 contains a diagram of this part of the software life cycle using
complexity metrics. First, a design is created and implemented in software. At that point,
software quality metrics are generated for the source code. If necessary, as indicated by the
metrics, the cycle returns to the design phase. Ideally, the software life cycle can be “reduced” to
that in Figure 2, where the metrics are generated during the design phase, before code
implementation. This modified cycle will eliminate the generation of undesirable source code,
since it is possible to use the metrics, exactly as before, only earlier. The goal of this study is to
indicate the plausibility of using the “reduced” cycle to increase the efficiency of the software

development process by implementing metric analysis as early as possible.

Eesign ——» Measure —p Code
Redesign 4—‘

Figure 2. Reduced Lifecycle

‘The goal of shortening the loop in the life cycle is highly dependent on the ability to
perform the metrical measures on the design along with the need for evidence that the metric
values produced from the design reflect the quality of the resultant source code. To facilitate this
ability, a software metric generator, which for purposes of this study may be considered a “black
box,” is provided that takes as input either the design or the source code and produces, as output,
a number of complexity metric values.

This paper presents a tool used by Software Engineering students to quantitatively evaluate
their design. An overview of the PDL used in this study, ADLIF, is given in Section II. Section
IIT presents the tool along with the Software Quality Metric generated by the tool. Our
observations of the students’ use of the tool and the students' designs are provided in Section IV

and finally a summary of our conclusions is given in Section V.




II. The PDL, ADLIF

ADLIF is an acronym for Ada-like Design Language based on Information Flow. Its
primary purpose is to create an intermediate step between the general design and coding phases in
the life cycle of a system. It is NOT intended to be used as a programming language. Using
ADLIF allows complexity measures to be taken before the code phase of a system. In this way,
the quality of the software may be improved at an early stage, reducing time, man-hours, and
cost invested in the system.

Since ADLIF is a design language and not a programming language, many actual
statements in the system may be omitted or included in comment form instead of explicitly
indicated. Therefore, in the most general sense, an ADLIF program may be mostly comments,
specifically showing only variable declarations, subprograms with their parameters, subprogram
calls with parameters, and updates of data structures. In some situations, it is more informative
for a design to consist mostly of English sentences. At other times, in the most detailed use of
ADLIF, pseudo instructions that are close to actual code are more desirable. ADLIF allows the
designer to choose from either of these options, or anywhere in between. It seems reasonable
that a more detailed (or code-like) design will result in more meaningful metric measurements.
However, in most cases, the choice to design somewhere between English and code is most
useful, since a more detailed design will not enhance understandability. This implies that an
innately complex piece of software will require a more code-like design reflecting the fact that the
software is not readily understandable to the programmer. ADLIF contains most of the basic
programming statements and these may be used at the designer's discretion for specific
algorithms or formulas.

This section uses portions of the reference manual for the language ADLIF to discuss the
more interesting or complex portions of the language. Questions regarding specific syntax are

refered to [SELC87].




Comments

ADLIF contains three different types of comments. The first is the general comment typical
of most programming languages to allow user documentation. This is a string of characters
preceded by two hyphens that continues until the end of the line, where an antomatic termination

of the comment occurs. This type of comment is used for general documentation.

-- THIS IS A COMMENT.
C:= -- Comments are ignored when
A+B - occuring any place in a program.

The second type of comment is a required comment, and is enclosed in parentheses and
followed by a semicolon. Comments are required following the program statement and after a
subprogram declaration. The intent is to ensure that each subprogram, as well as the overall
design, is documented.

The final type of comment in ADLIF is one enclosed in braces. This type of comment may
be used in a statement as a replacement of a mathematical expression. For example: ({use
quadratic formula} + 10), where the comment constitutes either some or all of the expression. It
enables the designer to leave the details of expression generation up to the programmer by
allowing “pseudo” expressions to be substituted for an actual expression, when use of the
comment will simplify or clarify some aspect of the design.

Comments are descriptive and may be used anywhere in a program except before the

program declaration and following the “END program-name” statement.

Built-in Functions and Procedures

Some built-in functions have been provided in ADLIF and may be assumed to exist.
Since ADLIF is not a programming language, it is only necessary that the syntactic analyzer
recognizes the existence of these built-in routines. These functions constitute the normal set of
supplied functions in most programming languages. Their inclusion in ADLIF is simply to allow
more design flexibility. They include: ROUND, TRUNC, INTTOREAL, EOLN, EOF, NEW,
ORD, CHR, SUCC, and PRED,



Parameter passage

In a procedure, parameters may have one of three different modes. The modes available
are those defined in Ada. They allow the designer to determine how a parameter may be used
within a procedure: either allowing a value to be passed in only (pass by value), passed out
only, or both. In a procedure declaration, the mode of a parameter occurs between the variable
name and the variable type.

The three parameter modes available for procedures and their meanings are:

IN The parameter acts as a local constant whose value is provided by the
corresponding actual parameter. If a mode is not specified, IN is assumed.

ouT The parameter acts as a local variable whose value is assigned to the
corresponding actual parameter as a result of the execution of the subprogram.

INOUT The parameter acts as a local variable and permits access and assignment to the
corresponding actual parameter. A value must be provided by the
corresponding actual parameter, and a value is assigned to the corresponding
actual parameter as a result of the execution of the subprogram.

When using a function, a mode is not allowed: and the assumed mode is IN. This forces
functions to return a single value using the function name. If the designer feels that it is required
to use a mode other than the default of IN, the function must be transformed into a procedure.

This follows the mathematical definition of a function,

Packages

A facility called “Packages” is supplied in ADLIF in order to have the capability of
modulatizing a program design. Using a package, subprograms may be designed and used that
are completely separate from any specific ADLIF program, thus allowing the use of the
information hiding concept. The overall form of a package is similar to that of an ADLIF

program, and is given formally below:



PACKAGE package-nameIS -  This is the package
--  specification, and is

Visible-entities; -- the only part of the
--  package visible to the
END package-name; -- outside world.
PACKAGE BODY package-name IS
{comment);
[Declarative part;] --  This is the body of the
-- package and contains
BEGIN package-name --  all code related to the package.
statement([s];
END package-name;

In the specification above, package-name is any valid unique ADLIF name. Visible-entities
are similar to a normal Declarative part, with the exception that only those constants, types,
variables, and subprogram declarations that are to be visible to the calling entity should be
specified. Anything that is to be hidden to the calling entity should be omitted from this section.
Note that procedures and functions not shown in the visible-entities section may only be used
internally in the package. The declarative part is identical to that in an ADLIF program or
subprogram, as are statement[s]. Note that subprogram deélarations shown in the visible-entities
section must be complete and identical to the declarations repeated in the declarative section in the
body of the package.

In order to make the package specification visible to a program or another package, the
reserved word USE is needed and is placed as the first statement in the declarative section, with

the following syntax:
USE package-name [,package-name];

Each declaration in the visible-entities section of the package must then be duplicated in the
declarative section of the program using the package, with each entity followed by a package
reference which indicates where the entity may be found. See below for the specific syntax of a

package reference.



Visible-entity; PACKAGE package-name;
Each of the constants, types, variables, and subprograms from the package may be used or called
in the normal manner.

Due to the similarity to Ada and Pascal, ADLIF is both simple to learn and i'elativcly easy
to use. The use of programming constructs allows the designer the flexibility to decide how
much of the design needs to be in pseudo code and how much may be in English sentences. Both
the ease of use and the flexibility, along with the ability to do complexity measures early in the

program life cycle, should make ADLIF a valuable design tool.

III. A Description of the Tool

The tool used in the Software Engineering class i§ called the Software Quality Metric
Analyzer. Input to the analyzer is Pascal, “C”, THLL (a language used by the Navy), or ADLIF
code. ADLIF is the only design language currently available. Software Quality Metrics
corresponding to the design of source code are output. Figure 3 gives a simplistic view of the
analyzer. The analyzer is based on LEX (a lexical analyzer) and YACC (Yet Another Compiler -
Compiler) which are tools available with a UNIX environment. For a complete description of
the analyzer see [HENS88].

The remainder of this section describes the metrics, lines of code, McCabe's Cyclomatic
Complexity and Halstead's Software Science measures, and Henry and Kafura's Information

Flow.



ADLIF Code

v

Software
Quality Metric
Analyzer

v v

Code Structure
Metrics Metrics

Figure 3. A Simple View of the
Software Quality Analyzer

Code Metrics

Many code metrics have been proposed in the recent past. An effort has been made to limit
this discussion to a few of the more popular ones that are typical of this type of measure. They
include lines of code, parts of Halstead's Software Science, and McCabe's Cyclomatic
Complexity. Each of these metrics are widely used and have been extensively validated
[CANJ85] [ELSI78] [REDG84][HENS81b].
Lines Of Code

The most familiar software measure is the count of the lines of code with a unit of LOC or
for large programs KLOC (thousands of lines of code). Unfortunately, there is no consensus on
exactly what constitutes a line of code. Most researchers agree that a blank line should not be
counted, but cannot agree on comments, declarations, null statements such as the Pascal begin,
etc. Another problem arises in free format languages which allow multiple statements on one
textual line or one executable statement spread over more than one line of text.

For this study, the definition used is: A line of code is counted as the line or lines between
semicolons, where intrinsic semicolons are assumed at both the beginning and the end of the
source file. This specifically includes all lines containing program headers, declarations,

executable and non-executable statements.
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Halstead's Software Science
A natural weighting scheme used by Halstead in his family of metrics (commonly called
Software Science [HALM77]) is a count of the number of “tokens,” which are units

distinguishable by a compiler, All of Halstead's metrics are based on the following definitions:

n = the number of unique operands.
ny = the number of unique operators.
N, = the total number of operands.
N, = the total number of Operators.

Three of the software science metrics will be discussed, specifically N, V, and E.

The metric N is simply a count of the total number of tokens expressed as the number of
operands plus the number of operators, i.e., N=N; +N,. An operand is defined as a symbol
used to represent data and an operator is any keyword or symbol used to eXpress an action
[CONS386].

The second Halstead metric considered is volume (V ). V represents the number of bits
required to store the program in memory. Given » as the number of unique operators plus the
number of unique operands, i.e., n = ny + 1y, then log, (n) is the number of bits needed to
encode every token in the program. Therefore, the number of bits necessary to store the entire
program is;

V =N xlog, (n)
The final Halstead metric examined is effort (£ ). The effort metric, which is used to

indicate the effort of understanding, is dependent on the volume (V) and the difficulty (D). The

difficulty is estimated as:
D = n_l.. X ]_V..£
2 n,

Given V and D, the effort is calculated as:
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E=VxD

The unit of measurement of £ is elementary mental discriminations which represents the
difficulty of making the mental comparisons required to implement the algorithm,
McCabe's Cyclomatic Complexity

McCabe's metric [MCCT76] is designed to indicate the testability and maintainability of a
procedure by measuring the number of “linearly independent” paths through the program. To
determine the paths, the procedure is represented as a strongly connected graph with one unique
entry and exit point. The nodes are sequential blocks of code, and the edges are decisions

causing a branch. The complexity is given by:
V(G) = E-N+2 where
E
N = the number of nodes in the graph,

the number of edges in the graph

It

According to McCabe, V (G ) =10 is a reasonable upper limit for the complexity of a single

component of a program.

Structure Metrics

It seems reasonable that a more complete measure will need to do more than simple counts
of lines or tokens in order to fully capture the complexity of a module. This is due to the fact that
within a program, there is a great deal of interaction between modules, Code metrics ignore
these dependencies, implicitly assuming that each individual component of a program is a
separate entity. Conversely, structure metrics attempt to quantify the module interactions using
the assumption that the inter-dependencies involved contribute to the overall complexity of the
program units, and ultimately that of the entire program. In this study, the structure metric
examined is Henry and Kafura's Information Flow Metric.
Henry and Kafura's Information Flow Metric

Henry and Kafura [HENS79] [HENS81a] developed a metric based on the information
flow connections between a procedure and its environment called fan-in and fan-out which are

defined as:
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fan-in the number of local flows into a procedure plus the number of global data
structures from which a procedure retrieves information

fan-out the number of local flows from a procedure plus the number of global data
structures which the procedure updates.

To calculate the fan-in and fan-out for a procedure, a set of relations is generated that reflects the
flow of information through input parameters, global data structures and output parameters. From
these relations, a flow structure is built that shows all possible program paths through which
updates to each global data structure may propagate.

The complexity for a procedure is defined as:

. 2
C, = (fan-in x Jan-out )

where
G = the complexity of procedure P
Jan-in = the number of fan-ins to procedure p
Jan-out = the number of fan-outs from procedure p.

The term (fan-in x Jan-out) is squared to represent the idea that the complexity due to the
inter-relationship between components is non-linear.

In addition to procedural complexity, the metric may be utilized for both a module, which
consists of those procedures which either update or retrieve information from a global data
structure, and a level of the hierarchy of the system. Module complexity is defined as the sum of
the complexities of the procedures in the module, and the leve] complexity is the sum of the
complexities of the modules within the level.

Procedural complexity is used to find those procedures with heavy data traffic and those not
adequately refined. Module complexity reveals overloaded data structures as well as improper
modularization. The level complexity may be used to detect missing levels of abstraction or to

compare alternate system designs.
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IV. Observations

Over the past several years, ADLIF designs and the resultant Pascal source code have been
collected from undergraduate, senior-level Software Engineering courses at both Virginia
Polytechnic Institute and the University of Wisconsin--I.aCrosse.

The completed projects that have been furnished by the classes are varied. They range from
two thousand to eight thousand lines of code. Due to the fact that the experience is the important
goal of the assignment and not final program function,_many groups have developed games such as:
chess, Othello, backgammon, and Monopoly. Not all of the teams, however, chose this route,
Other types of projects have been developed, including a hierarchy chart generator, a Pascal code
formater, a calendar system, and a bulletin board.

In an attempt to ensure that the completed designs and source are usable as data, students are

given minimal design requirements. The requirements are to include in their specifications:
1. Procedure and function calls,
2. Updates to global data structures.
3. Parameters necessary to each procedure,

Some tools have been developed to aid students in the specification portion of the project.
An ADLIF hierarchy chart generator is available which allows the desi £n teams and programmers
to get an overall feel for the structure of the program and to more easily determine problems
inherent with the calling hierarchy. There is also an ADLIF syntactic analyzer is used, which is
useful in eliminating common errors such as typing errors, as well as determining missing
components such as parameters, variable declarations, etc. The syntax analyzer also ensures that
the projects, which are used as data, are in an analyzeable form. Finally, the software metric
analyzer so that, by students to generate design metrics which can be examined to indicate
possible trouble spots in the design such as inadequate refinement, poorly designed data
structures, and missing levels of abstraction.

Unfortunately, due to time constraints in the class, the students are told only that relatively

large metric values indicate a procedure with high complexity. Subsequent lectures in the class
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describe the metrics in greater detail.

To date, only subjective comments from the student designers indicate the accuracy of the
metrics. Students with detailed designs have concluded that the metrics actually indicate the
“most difficult routines” in their systems. We stress the word “detailed” since many design
teams choose to use more English-like specifications. Some of these specifications include only
comments and a BEGIN-END statement. Obviously, most of the metrics can provide little
insight into such an inadequately refined module.

Our observations concluded that the Structure Metric (Information Flow) was able to
indicate complexity even in those routines with inadequate refinement. Since the Information
Flow metric requires only calls, parameter passage and global variable use, its credibility can be
shown at all levels of refinement. The code metrics, as the name implies, requires more refined

routines before the metric values can be valid {SELCS87].

V. Conclusions

ADLIF has been used by students for several years. Although the students protest over
learning “yet another new language,” they like the idea of measuring their designs. The Software
Quality Metric Analyzer has only been used for one course, however, the students found that the
tool successfully predicted which modules would be difficult. |

In subsequent software engineering courses, it is our hope that the students use the metrics
to redesign their system prior to coding and to provide them with direction in testing. As most
educators have experienced, studénts seldom test their software sufficiently. With the additional
insight of the metric information, the students may focus their testing strategies on the more

complex procedures,
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