CP-Rays in Simplicial Cones
Leroy M. Kelly
Katta G. Murty
Lavne T. Watson

TR 87-25

b







CP-RAYS IN SIMPLICIAL CONES

Leroy M. Kelly
Department of Mathematics
Michigan State University
East Lansing, Michigan 48824-1027, USA

Katta G. Murty *
Department of industrial and Operations Engineering
University of Michigan
Ann Arbor, Michigan 48109-2117, USA

Layne 7. Watson * *
Departiment of Computer Science
. Virginia Polytechnic institute and State University
Blacksburg, Virginia 24061, USA

Technical Report No. 87-17

Partially supported by NSF grants ECSQSSZT 183 and ECS-E704052

Supported. in part by Zontrol Data Corporation grant 84V101 and AFOSR

grant 85-0250.

&




ABSTRACT:

In classical mathematics, interest in the concept of regularity of a triangie, is mainly
centered on the property that for every interior point of the triange, its orthogonal
projection on the line containing each side must lie in the relative jnterior o that
side. We generalize the concept of regularity using this property, and extend this
work to simplicial cones in R, and derive very efficient necessary and sufficient
conditions for this property to hold in them. We show that these concepts nave
important ramifications in algorithmic studies of the linear complementarity
problem. We relate our results to other well known properties of square matnces.

KEY WORDS: Simplicial cones, faces, orthogonal projections, CP-points and rays,
linear complementarity problem, Positive definite matrices, Z-matrices, P-matrices.
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1. INTRODUCTION

Figure 1: An equilateral triangle
and a CP-point b init.

Consider the equilatera! triangie in R? shown in F:gure 1. The point b in Figure 1
satisfies the foliowing properties.

i) itisintheinterior of the triangle

ii)  for each side of the'triangie, the orthogonal projection of b on the

straight line containing that side, is in the relative interior of that
side.

We will call a point satisfying these two properties, 2 CP-point {abbreviation for
“centrally (or interiorly) projecting point”, since it projectsinto the interior of each

side) for the triangle. See Figure 2 for a triangleinRZand a point ¢ in it which is
not a CP-point, since it vioiates (ii).
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Figure 2: A triangle in P2 and a point cin it which is
nota CP-point.

Every triangle in R2 has & CP-point. By a well-known result

the bisector lines of the three angles of a triangle have a com
clearly that point b

in classical geometry,

mon point, b, and
is @ CP-point for the triangie. See Figure 3.

Figure 3. The point b wheré_
- angiesin a triangle mee

all the bisectors lines of the
1, is a3 CP-point for it



Also, it can be verified that every interior point of the equilateral triangle in Figure
1is a CP-point for it, but this property does not hoid for the trianglesin Figures 2

and 3.

In this paper we generalize the concept of CP-points for trianglesin R2 to
simplicial cones in R". We show that CP-pointsin simplicial cones piay an important
role in studies aimed towards developing efficient algorithms for iinear
complementarity problems associateg with positive definite symmetric matrices and
P-matrices. We investigate several geometric properties associated with CP-points
in simplicial cones, and relate them to classical results in matrix theory.

2. NOTATION
We will use the following notation.

LCP Linear Complementarity problem, defined in Section 4.

LCP(q, M) an LCP for which the input data is the column vector g and
square matrix M.

Ei.. £ T, E isany matrix, E;, denotes its ith row vector, E j denotesits
Jjth column vector.

ELq I E= (eij) Is any matrix of order m Xn, given
Le{1, -, m}, oc{s,-.. n}, E_, denotes the submatrix
(ejj:i€L,jed) of E determined by these subsets,

D,. submatrixof D with row vectors D, fori€g.

L, Submatrixof D with Column vectors D.j forjeg

X3 It x= (x)€RM, JC{1,...n}, X; denotes the column vector (x: jea)

Pos(D) given the matrix D, thisis the cone {x; x = Dy forsome y= 0}




LH (D)

| 7]

KA

P-matrix
Z-matrix
M-matrix

P.Z

nl

M

n’ n

[Fx 1]
T

ray of a point
in R"

PD

3. CP-POINTS AND CP-RAYS IN SIMPLICIAL CONES

the linear hull of the column vectors of the matrix D, itisthe
subspace {x: x = Dy, for some vectory }.

Unit matrix of ordern.
Cardinality of the set J.

When K and A aretwosets, K\A isthesetof elementsof K
which arenotin A.

a square matrix, all of whose principal subdeterminants are > 0.
asquare matrix, all of whose off-diagonal elements are £0.
a Z-matrix which is als¢ a P-matrix

these are respectweiy the classesof P-,Z-.and M- matrices of
order n.

s

The Euclidean norm of thie vector x = (xj-), itis + /X x

Yo} /

theset{1,...,n}

for beR", b=0, therayof & isPos(b)= {x:x=ab forsome
a=0}.

pi, the length of the circumference of a circle in RZ with diameter 1.

positive definite

Let D be a real nonsingular square matrix of crder n. Pos(D)is a simplicial cone
INR"™. Foreach j= 1ton,theray Pos(D_ ) = {x:x=aD j,QZO} isa generatorora
generatcr ray for Pos(D). In this section we define CP-points and CP-rays for Pos(D,,
and various other geometric entities related to Pos(D), which are used iater in

studving CP-points.”




Since Pos(D) is a simplicial cone, a face of Pos{D) is Pos(D_,) for some JCT and
vice versa. Forany JCT', we will say that Pos(D_;) is the face of Pos(D)
corresponding to the subset J. When {J] =n-~1,Pos {D_,)is calied a facet of
Pos(D), itis a face of Pos(D) whose dimension is one less than the dimension of
Pos(D}.

The point b ¢Pos{D) is said to be a CP-point for Pos(D) if it satisfies the
folowing properties 1,2.

1. b isintheinterior of Pos(D)

2. foreveryface F of Pos(D}, the orthogonal projectionof £t on the
finear hullof F, isin the relative interior of F.

Since there are 2" -2 nonempty proper faces of Pos(D), property 2 consists of
2" - 2 conditions. Here again, “CP-point” is an abbreviation for “centrally (or
interiorly) projecting point”, since this point projects into the interior of every face
ot Pos(D).

As an exampile, consider the simplicial cone, Pos(D) in R, given in Figure 4.
Pos(D) is an angle and its interior in the two dimensional Cartesian piane,in this
case an obtuse angie. The point (1, 172)7 violates property 2, since its orthogonal
projection on the linear hull of Pos(D }is- d, whichisnoteven in Pos(D ,}. The
point {0, 1)7 also violates property 2, since its orthogonal projection on the linear
huli of Pos(D ,} is 0, which is.not in the relative interior of Pos(D ). However, the
pointb=(-1+ 2, 1)T on the bisector fine of the angle Pos(D) does satisfy both

_properties 1,2, and is therefore a CP-point for Pos(D) in this example.

- =




|
Figure4: D=("" ' . Pos (D) is the cone marked by the angle
§ &

sign bounded by thick lines. The point b on the bisector line
of this angle, is a CP-point for Pos (D).

if b is a'CP-point for Pos (D), the ray Pos (b) = {x: x =a b, for a=0}issaid to be a
CP-ray for Pos (D).

LEMMA 1: Every nonzero pointon a CP-ray for Pos (D) is a CP-point for it.

PROOF: Let b beaCP-point for Pos (D). Since .b satisfies property 1,so doesab
for a>0. |

Let F beaface of Pos(D) and %, the orthogonal projectionof b onthe
linear huli of F. Then, clearly, the orthogonal projection of a b on the linear hull
of Fis aX forany a>0.Since b satisfies property 2, thisimpliesthat «b
also satisfies property 2 for any a>0. 50, ab isaCP-pointforPos(D) for every
a>0. :



PROJECTION AND NON-PROJECTION FACES OF POS (D)
RELATIVE TO A GIVEN POINT b.

Given beR", the face Pos (D_J) of Pos (D) corresponding to JCT, is said to be a
projection face relativeto b if the orthogonal projection of b in LH(D ;) isin
the relative interior of Pos {(D_;); non-projection face relative to b otherwise.

The face of Pos (D) corresponding to I is Pos (D) itself. By the above definition,
Pos (D) is a projection face refativeto b iff b 1S in the interior of Pos (D).

Thus b isa CP-point iff every face of Pos (D) is a projection face relative to b,
thatis, iff there are no non-projection faces relative to b. '

The concept of a projection face is algorithmically very important in the study of
the linear complementarity problem. in K. G. Murty and Y. Fathi [13]) and P. Wolfe
[18] it has been used to develop efficient algorithms for nearest point probiems in
simplicial cories, and special types of linear compiementarity probiems. These
algorithms, and consequently projection faces, play an important role in a new
algorithm for linear programming developed by S. Y. Chang and K. G. Murty [1].

THE SET OF.CP-POINTS OF POS (D) WHEN n = 2.

Hn =2, and Pos (D} is an acute or right angle, every point in the interior of
Pos (D} is a CP-point for it. If Pos (D) is an obtuse angle, any point b intheinterior
of Pos ({D) -1} (these are points b satiSfying DTb>0)isa CP-point for Pos (D).
See Figures 5, 6.

In this case (n = 2), the besector ray of the angle Ros (D), is always a CP-ray for
Pos{D}. A nonzero point on this bisector ray is

'I)l B

b:-]—( : + = },
2\[Io,1 7 o

3 3

the bisectorray is the ray of this point b,
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Figure 5: When D is of order 2, and Pos (D) is
an acute or right angle, every
interior point of Pos (D) is a CP-point
for Pos (D).
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Figure 6: Wher Dis of order 2, and Pos (D) is an obtuse angle,
{b: D'b>0}, the open cone bounded by the dashed
iines, is the set of ali CP-points for Pos (D).
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INCENTER AND CIRCUMCENTER OF POS (D).

Facets of Pos (D) are its faces of dimensionn~ 1. Forj= 110 n, let
Kj-=Pos(D et Dy DyyyueonDglandletH bethelmearhu!lofK
Ky...., K,are the facetsand H,, - . H, arethe facetal hyperplanes for Pos (D).

The concept of the bisector ray of the angle Pos (D) when n = 2, does not directly
generalize for n=3. However, when n =2, the important property of a nonzero
point on the bisector ray of Pos (D) is that it is equidistant from each facet of
Pos (D), and this property can be generalized for n= 3. There is a point in the
interior of Pos (D) which is equidistant (say, at a distance of 1) from each of the
facetal hyperplanes for Pos (D), this point is called the incenter for Pos (D} and its ray
is called the incenter ray for Pos (D). Each point on the incenter ray 15 equidistant
from each of the facetal hyperplanes. See Figure 7.

Figure 7: A simplicial-cone in R3 and its incenter a.

let = {SU} =D~ Then, forj=11ton, the facetal hype-rplane Hj for Pos (D) is

E=i{xrf x=0}) - (13
J EL




The incenter of Pos (D) which is at a distance of 1 from each facetal hyperplane of
Pos{D)is a, where

a=DG,,...,8 ) (2)

where §, = || Bi- |l This point a is cleariy in the interior of Pos (D), and the ray of a
is the incenter ray for Pos (D).

When n =2, the incenter ray for Pos (D} is exactly its bisector ray,anditisa
CP-ray. One may be tempted to conjecture that the incenter ray is always a CP-ray
for Pos (D). Unfortunately, this conjecture may be false when n2 3. Let

-1 1 20
D= 0 3 1 (3)
c ©° 1

‘When D is the matrix in (3), the incenter ray is not a CP-ray for Pos (D). Surprisingly,

we found that when D is the matrix given in (3}, Pos (D} has no CP-point at all. See
Section 10 for a geometric argument to estabush this fact.

Attnis stage we were quite tempted to conjecture that if Dis a square
nonsingular matrix such that the incenter ray isnot a CP-ray for Pos (D), then Pos (D)
has no CP-points at all. Unfortunately, this conjecture also turned out to be faise.
Let

1 =1 1)
D = 0 11 ' ‘ (4)
0 § 1 '
/

Whnen D is the matrix given in (4), the incenteris s = (~-1,1 +\/_2, 1)7, and it is not
& CP-point for Pos (D). Butb = (2, 8,1)Tis a CP-point for Pos (D).

Given the nonsingular square matrix D, the-point which is equidistant (say, ata
distance o7 1) from each of the generator rays of Pos (D) is known as the




circumcenter for Pos (D), and the ray of the circumcenter is known as the
circumcenter ray for Pos (D). Se Figures 8, 3. Whiie the incenter is aiways contained
in the interior of Pos (D), the circumcenter may not even be in Pos (D).

Figure 8: A simplicial cone in R3 with its circumcenter b which is in the cone in this
case.

Figure 8: A simglicial cone in R3 for which the circumcenter b is outside the cone.

i3




The circumcenter ray makes equal angles with all the generator rays of Pos (D) (this
provides another equivalent definition of the circumcenter ray for a simplicial
cone). From this it can be verified that the circumcenter ray for Pos (D) is the ray of
(D)~ 't wheret= (ty. o -.1,), 1= [D_J- [{.i=1ton. Sothe circumcenter ray is
in the cone Pos (D) iff (DTD) - 1 120

POLAR CONE
Let D be a real nonsingular square matrix of order 1. The cone
{y: y'x20for every x¢Pos (D) }

is known as the Polar Cone of the cone Pos (D). Clearly, yis contained in the polar
cone of Pos (C) iff

yTD_J,%O, forallj=1ton
i.e, DTy=op.
This implies that the polar cone of Pos (D) is Pos ((DHYy= 1.

The Gale-Nikaido theorem ([4]) states thatifAjsa Pématrix, then the system
AxZ0, x20, has the unique solfution x =0, Using this and the Gordan's theorem of
the alternatives ({7, 11]), since (D'D)" is a PD matrix and hence a P-matrix, we
conclude that the system

.D-1 (DT')'?X>O
x>0 N
has a solution X. Thisimplies that the point (DT)'X is both in the interior of
Pos (D} and the interior of its polar cone. Thus, t-he interior of Pos (D) and its polar
cone always have a nonempty intersection. We will prove later (Coroiiary 1) that
every CP-point far Pos (D) must be an interior point ofits Polar Cone Pos ((DT)1).




Here are some important properties of the polar cone of Pos (D). The
circumcenter ray for Pos (D) can be verified to lie always in the poiar cone of Pos (D).

LetB=D""and let Hy = {x:B, x =0} be the facetal hyperplane containing
Pos(D,, - -.D ). Hf y€H,, the orthogonal projection of y onH,is

FOPLNT Y

T N —

B, i

Since B, Dj=0forallj=2ton,itcan be verified that if yID=0, then (S?)TD_J;%O
also, forallj=2to n. This implies that the orthogonal projection of the polar cone
of Pos (D) on H, = LH{D_;._, -+, D, }isthe polar cone of the face Pos(D ,, - -, D)
In the same way it can be verified that the orthogonal projection of the poiar cone
of Pos (D) on the linear hull of any face of Pos (D) is the polar cone of that face.

DIHEDRAL ANGLES AND INWARD NORMALS TO FACETAL HYPERPLANES

As before, let D be a sauare nonsingular matrix of order r and B=D"1 The.
hyperpiane H, de_ﬁned in (1) are the faceta! hyperplanes for Pos (D). Fori,
j€L', i=], the solid angie between the facetal hyperplanes H, and Hisknown asa
dihedral angle.

LetG = (Bj_-)T/] | B;.[]. Theray of G . is normal to the facetal hyperplane H ,
and is on the same side of HJ; as Pos (D), hence it is known as an inward normal to the
facetal hyperplane H;.

Fori,jeI', i=}, a measure of the dihedral angle between H_, H, ir radians is
O=n- (angle between inward normais to H., H, in radians).

=11 - COS-1 | ( (G.I ')T G-] )

where Cos™! (- )isthe inverse cosine function in radians.

o n
Thus there are{z}dihedrai angles associated with any simplicial conein RN,




The polar cone of Pos (D), Pos ( (D7) 1), is a subset of Pos (D) iff, for every y=0,
(D) !y =Dx for some xZ0, that s, iff D' (D7)"" y=20 for all y20. This holids iff

DI (D)1= [3;37-.?—. 0, that is, iff all the dihedral angles associated with Pos (D) are non-

acute (i.e., obtuse or right). Similarly, it can be verified that the polar cone of

Pos (D) is in the interior of Pos (D) iff all the dihedral angles associated with Pos {D}

are strictly obtuse, and in this case the circumcenter ray of Pos (D) isin its interior.
CP-OWNING, OR CP-LAZKING SIMPLICIAL CONES

Given the nonsingular square matrix D oforder n, we will say that the

simplicial cone Pos (D} is a CF-owning (or CP-owner) simplicial cone, if it has at least

one CP-point, or a CP-lacking {or CP-lacker) simpiicial cone otherwise.

We have already shown that every two dimensional simplicial coneis a
CP-owner. But for n2 3, simplicial cones may or may not be CP-owners.

CP-POINTS FOR LOWER DIMENSIONAL CONES

Llet A bean nxr matrixwhere r<n, whose set oi column vectorsis
linearly independent. Then Pos (A)isan r-dimensional conein R" which has
empty interior. A CP-point for Pos (A} is defined exactly as before, with the
exception that property 1.now requires the point to be in the relative interior of
Pos (A). '

4. APPLICATIONTO LCP

Let M =(m; } be a given real square matrixof order n and g= (qj) agiven
column vectorin R". The LCPwithdata q, M, denoted by (q, M), is the problem

of finding vectors w= (w} L.Z= (zj J€R", satisfying

w-Mz=¢g
w, z=0 (5)

.
w'z=0.




The LCPis a fundamental problem in mathematical Programming, it has been the
focus of extensive research over the last 25 years, CP-points came up in a study
dealing with the construction of efficient pivotal algorithms for solving certain
ctasses of LCPs. In this section we review this application of CP-pointsin LCP.

In {5), the pair of variables {wj P X }isknown as the fth complementary pair of
variables, for j=1,. .. , N In (5), the column vector associated with w is I_j ,
and the column vector associated with z is - M_J- . The pair { I_}- , - M.J- }isthe
jth complementary pair of column vectorsin (5). A complementary vector of
variablesin (5) is a vector y={y, ..., yn)T where yj € {wj- /2 } for each
=1 .. .0 A, isthe column in (5) associated with ¥j. the matrix
A=(A,... A} isknown as the complementary matrix associated with y. The
complementary vector Y issaidtobea compiementary basic vector in (5) ifthe
corresponding complementary matrix is nonsingular. If y isa complementary
basic vector associated with the compiementary matrix A, the complementary

basic solution of {5) correspondingto y s given by

all variabies in (5) notin yare =0

y=ATlg.

Clearly, the solution in (6) satisfies the complementarity condition wiz=g,
because y isa complementary vector. If Alq20, the solution in (6} is a solution
of the LCP (. M) (it satisfies all the conditions in (5) ). tisthen said tobea
complementary basic feasible solution, and y issaid to be 8 complementary
feasible basic vector for (5). The complementary basic feasible solution in (6), and
comp’lementary feasible basic vector Y arenondegenerate if A lg>0.

For any JCT, the LCP of order 3],

Wy-Myz;=q;

(7)
wy, 2,20, (WJ)TZJ=0

which is the LCP {q . M), isknown as the principle subproblem of (5)
corresponding to the subset 7.




One method for solving the LCP (g, M) when M is a P-matrix is the following.
Select a column vector p>0inR". Consider the following parametric LCP, where

a is a nonnegative parameter

1 -M g+ap (8)

When a>0is sufficiently large, w isa complementary feasible basic vector for (8),
and the method is inititated with this. The method moves through complementary
basic vectors for (8), exchanging one basic variable by its complement in each pivot
step, in an etfort to find a complementary feasible basic vector for (8) for smaller
and smaller valuesof a until it reaches the value 0. In some general stage, let
(w3, 2,) be the complementary basic vector for (4) at this stage, forsome JCT,
J=T\J. The corresponding basic solution for (8) is

(wy,23)=0
z, q, +ap, £9)
w3 G5 +aPy

where
(-q,} :-ﬁJ)= _(MJJ)-] (QJ ‘ DJ).
(53.53)’- (q:]', p:j') +M3J (aJ ,EJ).

The smallest value of a for which the right hand side of (9) remains 20 is 6 given by

N

Maximum {~q./P.:jsuch thatF. >0}
0= i ! (1o
—, ifﬁg(]

Ife£0, {wy, z-)is a complementary feasible basic vector for {8Ywhen a =0, thatis, a
complementary feasible basic vector for (5), terminate. Otherwise, let r be the
maximizing index in (10) {or the maximum among these indices, if thereis a tie).
Perform a pivot step replacing the basic variable from the pair{w,, z.} in the




current complementary basic vector by its complement, and continye the method
with the new complementary basic vector.

This method is known to solve the LCP (q, M), when M isa P-matrix, ina
finite number of pivot steps [8]. Even though this method is finite, in the worst case,
it may take up to 2N pivot steps before termination [9, 11]. However, in {14} ). 5.
Pang and R. Chandrasekaran observed that if the column vector p is selected so that
it sétisfies the following properties 3, 4, then the method wil| terminate after at
Most n pivot steps, for any qeRn.

3. p>0
4. (My;)"p;>0, for all nonempty JCI.

if the column vector P satisfies properties 3 and 4, in the above method, when
(ws, z;)isthe complementary basic vector, in the basic solution (9), . <0 for all
j€J; and the maximizing index r giving the value of g in (10) will not bein 7.
That s, once a z-variable becomes basic in the above method, it will stay basic unti
termination. This guarantees that the method terminates afteratmost n pivot

steps.

PC-VECTORS FOR A P-MATRIX

Givena P-matrix M of order n, the column vector PE¢R™ issaid to be a
PC-vectorfor M ifit satisfies properties 3 and 4 given above. Such a column vector
was first definec in the Pang and Chandrasekaran paper [14], and hence the name
“PC-vector”.

itshould be noted that property 4 stated above, actually involves 2N « 1 sets of
conditions, one for each nonempty subset JCT.

The following Lemmas 2,3 and Theorem 1 relating PC-vectors to CP-points
follow from the results established in K. G. Murty [10].

.LEMMA 2: Let MeP, , péR”, b>0. The coiumn vector p 1saPl-vector for M
iff the vector composed of the z-variables only, isa nondegenerate complementary
feasible basic vector in every principal subproblem of the Lcp (11).

b
[t



(11}

b=(DT)1p (12)
LEMMA 3: For JCT, Pos (D ,)isa Projection face of Pos (D) relative to b it
(MJJ)" R; >0, or €Quivalently, jff Z; isthe nondegener
feasible ba

ate complementary
sic vector for the princip

@i subproblem of(11) corresponding to J.

PROOF: If 5. ¢
The orthogona| pr
solution of the pro

the resylt holds b
ojection of
biem

Y conventign. 50, assu

me J= g and fet| =5
in LH(D , ) is DA

3 IS the optimum

minimize (p - DA )T

(b - D.J A.J)
over A, ¢Rs
which g

3 -1 T )

A; = (MJJ)_ (D )T (13)
S0, the orthogonal proj_ectron of b in LH(D | ), isin the relative Interior of the face
Pos(D , ), if 1, given by (13) is >0, that Is, iff (M, )1 (B, )T b= (M;5)p .50
or equivalentiy, iff 2; isthe Nondegenerate complementary feasible basic vector
for the Principal subprobiem of (11) correspondmg oo 03

2’0;. -




THEOREM 1: Let D be a real nonsingular square matrix of order n and peRR,
p>0. LetM=D'D, b=(D")"p. Thevector p isa PC-vectorfor M iff b isa
CP-point for Pos (D).

PROOF: Follows directly from Lemmas 2, 3. 0

COROLLARY 1: Let D be areal nonsingular square matrix of order n. Every
CP-point for Pos (D) must be an interior point of the Polar Cone of Pos (D),
Pos ((DT) 7).

PROOF: Let b be a CP-point for Pos (D). Then by Theorem 1,p=D"b isa
PC-vector from M =D'D, and hence p=DTb>0. Since b = (D7) 1 p, this implies that
b isan interior point of Pos ( (D7) ). n

Corollary 1 can aiso be proved very directly. If b isa CP-point for Pos (D), each
of the generator rays Pos (D_j),j =11ton, must be a projection face relative to b, by
definition. This implies that (D)7 b>0 forall j=1ton, thatis, D'5>0,0r b
must be in the interior of the polar cone of Pos (D), Pos ((DT)! )

Geometrically, Corollary 1 says that every CP-ray for Pos (D) must make a strict
acute angle with each of the generator rays of Pos (D).

COLLARY 2: Let D be areal nonsingular square matrix of order n. The set of
CP-points for Pos (D) is a subset of the intersection of the interiors of Pos (D} and
Pos ((DT)").

PROOF: Follows from the definition and Coroliary 1. O

Let D be areal nonsingular square matrix of order n. Whenn =2,
in Section 3 we have seen that the set of CP--pb‘ints of Pos (D) is actually
(interior of Pos (D)) N (interior of Pos ((DTY1}). In Sections-?, 8 we establish that
this result also-hoids for some special classes of matrices D when n>2. Also,
when n =2, the set of CP-points of Pos {D) is.either the interior of Pos (D) {when
Pos (D) is an acute or right angle), or the interior of Pos ( (DTy Y {when Pos (D)
is an abtuse angle). in Sections 7, 8 we derive some necessary and sufficient
conditionson. D, forthese propertiesto hold, when n>2.

24..
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THEOREM 2: Let M bea PD symmetric matrix of order n, andiet D bea
SQuare matrix satisfying D™D =M. There exists a PC-vector for M ifPos(D)isa
CP-owner.

PROOF: Follows directly from Thearem 1. -

THEOREM 3: Let M be a P-matrix of order n. The set of all PC-vectors for M Is
either @ oris an open polyhedral cone.

PROOF: A vector peR" isaPC-vector for M iffitis a feasible solution of the
system

p >0
(14)
(l\./IJJ)‘H::J >0, forali@=gcr

(14} is a finite system of strict linear inequalities, and its set of feasible solutions is
the set of PC-vectors for M. Hence, if this set is noNnempty, itis an open polyhedral
cone. .

THEOREM 4: Let D bha s nonsingular square matrix of order n. The set of
CP-points for Pos (D) is either empty, oris an open polyhedral cone.

PROOF: LetM=DTD, and let K be the setof PC-vectorsfor M. By Theorem 1,
the set of all CP-points for Pos (D) is {x: x = (DT)"! P. p¢K} and thisis an open
polyhedral cone when j+ is nonempty, since the same property holds for K. 7
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5. PC-VECTORS FOR P-MATRICES OF ORDER 2.~

_ .. Suppose M, =-(M'ij) isa ' P-matrix of order 2. Then from the definitions,
P=(p, p,)7isa PC-vector for M iffitis feasible to (15).




~M2iPy+my; p, >0
P >0 {15)
Py >0

Using Gordan’s theorem of the alternatives [7,11], it can be verified that (15) s
always feasible. Hence, every P-matrix M of order 2 has g PC-vector P. which

6. THE HEREDITARY FEATURE OF THESE PROPERTIES.
Llet D bes nonsinguiar square matrix of order p.
THEOREM &5 |f Pos (D} is a CP-owner, so jc every face of Pos (D).

PROOF: Consider the facet Pos {0_2 v D)= K, of'Pos (D) and the facetal
hyperplane H, containing it. Suppose b jsga CP-point for pogs (D). Let pT be the
orthogonal Projection of b mn H,. Since b s a CP-point for Pos (D), b! isin
the relative interior of K,. By Pythogoras theorem,

Ix-bjj2= [x-bt2 +Hb-b"}12 for gy X€H,. So,if Fjs any face of K, the
orthogonal Projections of b, p! in the linear hy) of F, are the same. Sg, by the
hypothesis, b isa CP-point for K,. Asimiiar Proof holds for al facets of pes (D),

THEOREM 6: |f €very interior point of Pos (D) is a CP-point for it, then for every face
of Pos (D), €very relative interior pointis a CP-point. '

PROOF: Consider.the facet K, = pos D,,.. *Do)otfPos(D). Let b1 be any
pointin the relative interigr of K. Erectthe ihward normaiat b' tg the facetal
hyperplane containing K, andlet b be a point on this normal in the interior of
Pos (D). By the hypothesis of the theorem, b jsa CP-point for Pos (D), so by the
argumentsin the proof of Theorems, p! 5, CP-point for Ky- So, every point in
the relative interior of K, isa CP-point for K. &Similar proof hoias for | facets
of Pos (D): S0, every facet inherits the Property thatall pointsin its relative interipr - -
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are its CP-points. Repeating this argument, we conclude that every relative interior
point of any face of Pos (D} is a CP-point of that face, if every interior point of
Pos (D) is its CP-point. O

THEOREM 7: Let M be a P-matrix of order n. If M has a PC-vector, so does
every principal submatrix of M.

PROOF: Let p be aPC-vector for M. Then, for every JCI, it follows directly from
the definition; that Py isaPC-vector for the principal submatrix M;; of M
corresponding to the subset J. O

7. CP-POINTS FOR POS (D) WHEN EVERY PAIR OF GENERATORS MAKE AN OBTUSE
ANGLE.

THEOREM 8: Let D be areal nonsingular square submatrix of order n. If every
pair of generators of Pos (D) make a non-acute (i.e., either obtuse or right) angie,
then Pos (D) is a CP-owner, and the set of CP-points of Pos (D) is the interior of the
potar cone of Pos (D), Pos { (D7) 1) .

PROOF: Suppose every pair of generators of Pos (D) makes z non-acute angle. Sc
(D_i)T D_}-éo foraili=|. Therefore, M=DD isa P-matrix which is also a Z-matrix,
and hence an M-matrix. By the results in [3] this implies that M 120, and by the
same argument (M,,)"'20 forall @=JCT. Let peR™, p>0. LetM 'p =y={y;).
Since M 120, p>0, we have y=0. We will show that y>0. Suppose not. Assume

y;=0forsome i. We have My=p>0. So, P;=M; y>0. ButM, y=X mj; y; (since
E) :

yj= 0 by assumption) £0 (since yj?_—'O foralljand mijéo forallj=1i), a contradiction.
S0,wemusthave y=M"" p>0 for all p>0. Asimilar argument shows that
(M;5)7'p; >0 for all @+ JCT, p>0. Hence every PeR", p>0, is a PC-vector for

M =DTD. Consequently by Theorem 1,all b in the interior of Pos ({D7)"! ) are

CP-points for Pos (D). By Corollary-1.-thisimplies that the set of all CP-points for

Pos (D) in this case is the interior of Pos ( (DT)"1), 0

~ An alternate proof of this Theorem based onspherical geometric arguments is
given in Section 10.
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SETS OF CP-POINTS FOR POS (D) AND ITS POLAR CONE ARE THE SAME WHEN EVERY
PAIR OF GENERATORS OF POS (D) MAKE AN OBTUSE ANGLE.

Let D be areal nonsingular square matrix of order n. D™D is a Z-matrix iff
every pair of generators of Pos (D) make an obtuse angle. Suppose these properties
hold. By the results in [3] this implies that (DTD)"'20. Hence, as discussed in Section
3. in this case the polar cone of Pos (D), Pos ((DT)"1) CPes (D). Aliso, applying the
definitions, it can be verified that all the dihedral angles associated with the polar
cone Pos ((D7)"1) are acute, and hence by the resuits of the foliowing Section
(Section 8}, the set of CP-points for the Polar Cone Pos (DY V) isitsinterior. Hence,
in this case, the sets of CP-points for béth Pos (D) and its polar cone are the same,
they are the set of interior points of the Polar cone, Pos { (DT)"1). Conversely, we
show in Section 9 (Theorem 17) that if every interior point of the polar cone is a
CP-point for it, then each of those points is also a CP- point for Pos (D) and DTD must
bea Z-matrix

8. CP-POINTS FOR POS (D) WHEN EVERY PAIR OF GENERATORS MAKE AN 4ACUTE
ANGLE.

In this section, D is a real nonsinular square matrix of order n.

In Section 3, we have seen thatif n=2, and pos (D) is an acute or nght angle
(i.e., (D ,)T D ,20), every interior point of Pos (D) is a CP- -point for ii. An intuitive
generahzatlon of this result to higher dimensions states that if the rays of D, and
D, make an acute or right angle (i.e., {7 D =0) foralli=], then Pos (D) is a
CP -owner. Thisresultistrue for n=2, and estabhshec for n=3inSection 10 using
spherical geometry. However, this result may be false for n 24, Using the
arguments in Section 10, or using the result in Theorem 1, it can be verified that for
the following matrix D

h)
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-1 1 200 0

D= 0 3 1 0 (16)
0 0 1 0
5 5 5 5

even though (D )7 D,;>0foralli=|, Pos (D) is a CP-lacker.

In order to guarantee that Pos (D) is a CP-owner in this case, we need to impose
more conditions on the matrix D. Our work on this class of matrices D was
motivated by the following conjecture made by Seo Y. Chang.

CONJECTURE: tet K;=Pos (D ,, . Dy Dj,q.-++,D )and H, the facetal
hyperplane of Pos (D) containing K. Ifforeach j=1ton, the orthogonal
projection of the generator Pos (D Jin H; liesin the relative interior of Kj. ther.

Pos (D} is 2 CP-owner.,

While it may not be immediately apparent, we will show that the hypothesis in
the conjecture implies that évery pairof generatorsof D make an acute'angle, so
this conjecture legitimately belongs in this section. We will provide a proof of a
stronger form of this conjecture and derive several related results.

For ease of reading, we will summarize the notation for this section. K, and H;
are as stated in the above conjecture. B= ([3”- }=D1. Then,

Hj""—'{x: ﬁj_x=0} (173
Pos (D) = {x; Bj-. x=0, I=1ten} | (18)
K={x: £ xZ0, i=1ton, i=]: and Bix=0} (19)

Gi= (BB 11.

anonzero point on the inward normal to Hj bt (20)

R i e U

Consider the hyperplane {x: a, X9+ srot 8 x,=ax=d} andlet X¢R". The

orthogonal projection of X i thic hyperplaneis T+ a7 (d-aX ).
o | - Tal?
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We will now investigate the simplicial cones Pos (D) satistying one of these
- properties,

5. Foreach j=1ton,the orthogonal projection of the ray Pos (D_J- yin H; is
In the relative interior of Kj

6. Foreach j=1ton,the orthogonal projection of the ray Pos(D ;) in H} Is
in KJ-.

7. Alithe dihedral angles associated with Pos(D) are acute.

8. Allthe dihedral angles assbciated with Pos (D) are non-obtuse {acute or
right).

9. Everyinterior point of Pos (D) is a CP-point for it.

n

THEOREM 9: |f property 5 holds, ail the (2) dihedral angles associated with Pos (D)
are acute, and conversely.

PROOF: The orthogonal projection of Dyon H, is

D1-(B;.)7 (By, D, )/l]ﬁLHZ,=D_1-—G_1(sinceB;.DJ:LasB:D"). Under
property 5 the orthogonal projection of D.; on H, isinthe relative interior of
Ky, and hence from (19), B;. (D, -G ) >0 foralli=1. But B D, =0foralli=1,
since B=D"'. So B, G, <0 forall i=1, thatis, (G;)7G,<0,forall i=1 n the
same way, under property 5, we have | :

(G;)T G,; <0 foralli=]

that s, alf the dihedral angles associated with Pos (D) are acute.

The convérse is established by essentially reversing the steps of the p_ro'of. O
THEOREM 10: If property 6 holds, ali the(2) dihedral angles associated with

Pos (D) are non-obtuse (i.e., acute or right), and conversely.

PROOF:  Similar to the proof of Theorem 9. 0.
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Thus, properties 5 and 7 are equivalent. Likewise, properties 6 and 8 are
equivalent.

LEMMA 4: Let X beanyinterior point of Pos (D). If the orthogonal projection of

D, inH, isin the relative interior of K,, the orthogonal projection of
X in H, isalso in the relative interior of K.

PROOF: Suppose the orthogonal projection of D, in H, isin the relative
interior of K,. Then, from the proof of Theorem 9, we have, B (B, <0
foralli= 1.

Now, the orthogonal projection of X in K, isR=%- (p, )T (B1.%) /1By |
We have, for i=1,

A - -
Bix= B X+ (=B (B))T) (B %) /]| B, |2
>0
because B: x>0 (from (18), since ¥ isin the interior of Pos (D)) forall i,and
(“ﬁi. (B, )1y >0 (established above). So, Qis in the relative interior of K,

compieting the proof of this lemma. .

THEOREM 11: If property 6 holds, then every interior point of Pos (D} is a CP-point
forit, and conversely.

PROOF: The proofis essentially similar to the proof of Lemma 4. Suppose property
6 holds. Let X be aninterior pointof Pos (D). Let F be a proper face of Pos (D).

50, from (18), there must exista @= J ¢ 1 such that

F=q{x: .ﬁJ_X=0, _
Bi. x20,ier\a}. o : (21)

Let|J| =r. So By is of orderr xn and of full row rank. Hence the matrix
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A=D; (B;)Tis PD symmetric. By Theorem 10, we have B;. (B,;) Y10, for alli=j. This
implies that A is a Z-matrix, and hence an M-matrix. By the results in [3], this implies

that A™120.

The orthogonal projection of X in the linear hull of F isthe optimum
solution of the probiem

minimize (x =X)T (x - %)
subjectto f; x=0.

whichis X =X-(8;)TA"p, %
Let €I\ J. We have
Bi%= BX- By (B;)T A p, X
>0

because Bi. x>0 (since x is in the interior of Pos(D)), B; (B, ) S0

(since B (B; )T=0forallj=i), A"'Z0 /(established above),and B, x>0 (since x
lsmthemtenorofPos(D)) So, R is in the reiative interiorof F, thatis, F isa
projection face reiativeto x. Since this holds for all faces F of Pos (D), X is a CP-
point for Pos {D}. Hence every interior point of Pos (D) is a CP-point for pos (D) in
this case.

To prove the converse, suppose every lntenor point of Pos (D) is a CP-point for it.
Suppose thereisa | such that the orthogonal nro;ect:on of D in H; isnotin. K -
say for j=1. Since orthogonal projection is a continuous operat:on we can find an
open ball B cont t2ining D, such that the orthogona: projection of every point
inside B in H; is outside of Ki. Since B is.an open ball containing - D,, it
~ contains some points from the interior of Pos (D), and the orthogonal pro;ec’tion of
- these points are outside K.  contradicting the hypothesis. So, if every interior
point of Pos (D} is 2 CP-point, property 6 must hold. |

: Hem:e, properties 6 and 9 are equivaient. _



We can think of each face of Pos (D) as being a full dimensional simplicial cone in

r
itslinear hull. If F isan r-dimensional face of Pos (D), we can define the (2)

dihedral anglesof F relative to it linear hull, just as we defined the dihedral

angles for Pos (D).

We will now show that properties 6 and 8 are facially hereditary, in the sense
that if Pos (D) has the property, then every face of Pos (D) also has the correspond-
ing property.

THEOREM 12: Ifthe simplicial cone Pos (D) has Property 6, then every face of Pos (D)
has the corresponding property.

PROOF: This foliows from Theorems 11 and 6. O

THEOREM 13: ifall the dihedra! angles defined by pairs of facets of the simplicial
cone Pos (D) are non-obtuse, every face of Pos (D) aiso has the same property.

PROOF: Foliows directly from Thearems 11, 10and 12. 0

THEOREM 14: For any simplicial cone Pos (D), properties 6, 8 and S are equivalent,
and these properties are inherited by ali faces of Pos (D).

PROOF: Foliows from Theorems 10, 11, 12 and 13. O

We wili now explain the relationship of these properties to the condition
mentioned in the heading of this section, and the role that Z-matrices play in these
properties. From the results in this section, we see that the basic condition for
Properties 6 or 8 or 9 to hold is that o

o B.(B)Soforalli=j. (22)
thatis, that BpT isa 2-matrix. Since f§ isnonsingular, this is equivalent to
requiring that BBT be an M-matrix. But B8T= (D) (D) = (DTD) ! = -1
where M= DTD. Sc, if (22) hoids, (DTD)™ is an-M-matrix, and by the results in [3] |

D=0, in other words; every pair of generators for Pos (D} make an acute (ornon- -
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obtuse, to be precise) angle. Hence all the results in this section relate to a subclass
of simplicial cones in which every pair of generators make an acute angle.

One noteworthy feature. Let D'D =M. In Section 7 we dealt with the case
where M isa Z-matrix. in this Section 8, we are dealing with the case where M™!
is a Z-matrix. We now provide a theorem which summarizes this section.

THEOREM 15: Every interior point of Pos (D) is a CP-point forit, iff (D'D) Tisa
Z-matrix. Also, properties 6, 8, and 9, and the condition that (DTDY! is a Z-matrix,

are all equivalent.

PROOE: Requiring (DTD)"! to be a Z-matrix is equivalent o requiring property 8
as explained above. So, these results follow from Theorem 14. O

The simplicial cone Pos (D) is called a regular simplicial cone if the convex hull of

{ 4 j=1ton } isareqularsimplex. Property 9 of course holds for regular

simplicial cones, and this is of principal interest when referring to regulanty in
simplicial cones. So, the conditions given in Theorem 15 (namely that (DTDY"!
should be a Z-matrix) provide a proper generalization of the traditional concept of
reguilarity in simplicial cones. Itidentifies the class of simplicial cones satisfying

property 9.
9. SIMPLICIAL CONES POS (D) WITH ALL DIHEDRAL ANGLES OBTUSE.
Let D be a real nonsingular square matrix of order n.

THEOREM 16: If n = 3, and all the dihedral angles associated with Pos (D) are
obtuse, then the circumcenter ray of Pos (D) is a CP-ray for it.

PROOF: From the definition of the dihedral éngies associated with -Poé (D) (Séction
3), we know that they are all obtuse iff

(DTD)Y'2 0 | 23 .




Lett=(t,,- - - .T,)Twhere T = D;ll.i=1ton, and
b=(DTy11 (24) .

biis the circumcenter for Pos (D). Since p- b=(D'D)"" 1>0 (because ¢ >0,
(23}, andsince (D'D)"'isa PD symmetric matrix, its main diagonal is >0), b is in the
interior of Pos (D).

Let M:(m”-):DTD. We will now show that
(My; )Tt >0forall g C{1.2,3}. (25)

Since M '1=D"b>0, we Know that (25) holds for J ={1,2,3}. When J=< {1, 2},
it can be verified that (M) L= 1) /(1 1, + (D )T (D 3)>0 because 1,

and 1, are >0 anc Ty Ty + (DJ)T D, >0 by Cauchy-Schwartz Inequality, so (25)
holds. By symmetry, (25) holds whenever |3l=2. When J= {i3}. (M,)" Ty=

(1 /'cj)>0, forall j=1,2,3, so (25) holds. Hence T isa PC-vector for M, and by
Theorem 1, the circumcenter b = (D)1 isa CP-point for Pos (D). So, the -
circumcenter ray is a CP-ray for Pos (D) in this case. 0

Forany n, ifallthe dihedral angles associated with Pos (D) are obtuse, (23}
holds. Under (23), the circumcenter ray for pos (D) is an interior ray for Pos (D).
Unfortunately, under these conditions, the circumcenter ray Is not guaranteed to be
a CP-ray, ifn24. See Section 10.

Thus, when n24, to guarantee thata CP-point exists for Pos (D), conditions (23) .
are not adequate, we need to impose mare conditions. We have the following
theorem.

THEOREM 17: If every face of Pos (D) satisfies thé ‘property that all the dihedral
angles associated with itare obtuse, then the set of CP-points for Pos (D) is the
interior of Pos ((DT)1). and conversely.. - ' '

PROOF: Let M=DTD. Suppose, for every face of Pos {D) the dihedra! angles
associated with it are obtuse. This impliesthat (MJJ)" 20 forall Jcr. Also, since
(M1 s a PD-symmetric matrix, its main diagonal is >0. Hence every. p¢RN,
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p>0 isaPC-vectorfor M. By Theorem 1, every interior point of Pos ( (D7) " }is a
CP-point for Pos (D). By Corollary 1, we conclude that the set of CP-points for Pos (D)
in this case is the interior of Pos ((D7)1).

To prove the converse, suppose every interior point of Pos { (D7) M is a CP-point
for Pos (D). By Theorem 1, every vector p¢R™, p>0 isaPC-vectorfor M=D'D.
Hence forevery Jcr, (M ;)" p;>0 forall p;>0. Thisimpliesthat (M,;)"'>0
forall Jcr, thatis, that the dihedral angles associated with the face of Pos (D)
corresponding to JCI' are all obtuse. Since this holds for all Jcr, the dihedral
angles associated with every face of Pos (D) are obtuse in this case. 0

It can be verified that the result in Theorem 8 is a special case of the general result in
Theorem 17.

We now have the following theorem relating to the results obtained in Section
7. ,

THEOREM 18: Let D be a real nonsingular square matrix of order n. Every interior
point of the polar cone of Pos (D) is a CP-point for the polar cone iff every pair of
generators of Pos (D) make an obtuse angle, thatis, iff DTD isa Z-matrix.

PROOF: If D'D isaZ-matrix, the results in Section 7 imply that every interior
point of the polar cone is a CP-point for it. Conversely, if every interior point of the
polar cone, Pos ((D7)1),isa CP-point for it, by applying Theorem 15 to the polar
cone, we conclude that { {(DT)Y)T (D7) 1) = DTD must be 2 Z-matrix. O

10. THE SPHERICAL VIEW

The conical interpretation of the LCP has been eminently successful in producing
significant advances in the theory. Recently the work of L. M. Kelly and L. T. Watson
[5, 6] has demonstrated the advantages, both heuristic and substantive, of a further
refinement of this conical analysis to what might be called the spherical view. A
number of investigators [2] su bsequenﬂy employed this technique with profit. -
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The spherical view is easily described once the conical is understood. Many
questions concerning simplicial cones can be resolved by considering corresponding
questions concerning the “traces” of these cones on the unit sphere centered at the
common vertex {(origin) of the cones. The trace (or spherical section) of a simpticial
cone is, of course, a spherical simplex. Thus in the analysis of 3 x 3 matrices we are
often led to an analysis of triangular cones in R3 and this in turn might be
conveniently viewed as a probiem concerning spherical triangles in $2. The 2-sphere
in R3, the boundary of the unit ball, endowed with the geodesic (shorter arc) metric
is denoted S2, and in general the k-sphere in RK * ! with this metric is K.

There has been an elaborate study of spherical geometry in its own right, that s,
without regarding Sk as embedded in RK* T and we will take advantage of some of
this elementary lore without apology.

The saherical view has the advantage in some instances of reducing the
heuristics from 3 dimensions to 2 or as in [5,6] from4to 3. It has the further
advantage of making more directly available the classical poig-polar lore much of
which is framed in the spherical setting.

We now illustrate some of these claims in the context ot the previous sections.
This section will be strictly geometric allowing for a simplification of some notation.

- The rays of a simplicial cone in R” with vertex at the origir: will be denoted r;. if rays

1. 73,7 " " . r inR™ are affinely independent then the convex hull of the raysis a
simplicial cone of dimension k. The intersection of such a cone with the unit sphere
SinR"isaspherical simplex of dimension k - 1. As noted above § endowed with the
shorter arc metric wili be denoted $"1 Simplicial cones will generaily be denoted ¢
and the associated spherical simplex is V. |f r;is a generator ray of C, v, =r,NSisa

vertex of V. C* denotes the polar cone of C and V* is the spherical simplex

associated with C*. V* is known as the polarsimplex of V.

While we could define a CP-point of V as the intersection with S of 2 CP-rayofC

we prefer to descirbe.it as a pointinterior to V which projects (spherically)

“internally” on all-the faces o V. We hasten to remark that in the case of zero faces
(i.e., vertices) “P projects internally onv;" is taken to mean that the spherical
distance 3\7, <w/2. The spherica! distance between points P and Q of S” will be
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denoted F’a

In the familiar setting of §2, V can have at most 3 vertices in which case itis a
spherical triangle and the associated CinR3is a triangular cone. The edges of V
have the same radian measures as the corresponding generator angles of C while
the interior angles of the triangie have the same measures as the dihecral angies of
C. More generally the dihedral angles of C have the same measure as the
corresponding dihedral angles of the simplex V.

EXAMPLE 1. For a spherical triangle V on $2 with acute edges the center of the
inscribed circie (the incenter) is a CF-point. Certainly every triangle has an incenter

b and the spherical distance Eq<11/z ifthe edges are acute. See Figure 1C.

V3

Figure 10

EXAMPLE 2. Fig. 11 shows a triangie V on $2 with no CP-point.

Consider V with v, v, =n-¢, ViV3=u~2¢,v, vy = 3¢ for very small £ >0, Any CP-
point for V must be interior to A v, vy Dwhere < \.f2 v3Disarightangle and similarly
it must be in the right triangle v, v3 E, where < vy v Eisright. Thus any CP-point of
V must be interior to the triangie_v3 DE. But for very small £ >0 poihts in .this _
triangl'e are clearly much farther than /2 from vy. This example easily leads to 2

3 x 3 matrix similar to the one in (3) in Section 3. |




n—2¢

n-=¢

Figure 11

EXAMPLE 3. Does Example 1 generalize? That s, is it true that for a simplex V
with acute edges, the incenter is always a CP-point? The matrix in (16) ir Section 8
shows that this is not true for simplices in §3 , 1.e., forspherical tetrahedra. We show
here how to discover and construct such examples.

A "very small” spherical simplex is “very nearly” euclidean so it should be clear
that the production of a euclidean simplex with no CP-point will lead to the

production of a spherical simplex with no CP-point. To produce such s euclidean

simplex in R3 we start with a degenerate tetrahedron in R?, specifically a planar
parallelogram ABCU in a horizontal plane L with angles BAC and ACU both, say,
100°. Now elevate U siightly above L, rotating AACU about line AC. We claim the
resulting tetrahedron has no CP-point.

Fof any such point would have to b in the right triangular prism with base
AABE where < EAB =1/2. 1t must also be very close to L.

Similar reasoning shows that it must be in the right triangular prism with base
AFCU. The intersection of these two prisms is far above L if U is sufficiently close to
L. This shows that there must be an anaiagous small spherical tetrahedron in $3 and
thus a simplicial cone in R4 with smaIE generator angles and no CP ray.

~Onthe other hand we have already shown {Section'7) that if all generator angles
of a sumpllcnal cone are “large” i.e., obtuse then the cone has a CP ray. We will
sketch a simpie spherical argument showing this i in Theorem 21 later on.




Figure 12

Meanwhile we turn our attention to triangular cones with large (obtuse)
dihedral angles in R3 which means that we will examine sphertical triangles V, on §2,
with obtuse angles. We claim that such triangles must have a CP point and in fact
the center of the circumscribed circle is one such point. LetV =av, v, v; in Figure
13 be one such triangle.

Consider the triangle with vertices Vi Vs, v3* where < V3* Vivy = < .v3' Vo vy =
/2, asin Figure 13. v;" isclearly interior to V.

Now the circumradius of Vis less than n/2 in length and the locus of points P with
E} =E; <1/2 is the segment V3'm. Hence the circumtenter, T, of Visinteriorto V.
Now T is easily seen to project into the midpoints of the edges, so Tis a CP point of

We might be tempted to hope that obtuse dihedrals wouid a.[w-éys produce a

© nonempty set of CP points but we now show that this projected theorem is faise
“even in R%. Recall that the projection of a CP point of V onto a facet F of Vis a CP-
point of F and that the triangie in Example 2 has no CP point. If we can show that
thistriangie can be made a.facet of a'spherical tetrahedron with ali 6 of its dihedrais’




Figure 13

obtuse, then we will have an example of 2 simplex Vin $3 with ali obtuse dihedrais
and no CP point.

Such a tetrahedron is easy to construct as follows. We start with a degenerate
tetrahedron. on the equator of S3 one of whose facets is the triangle, A, of Example
2 - and the fourth vertex is & point E on the equator diametrically opposite to an
interior point of A. The four facets of this degenerate tetrahedron cover the
equator and have disjoint relative interiors. Their (degenerate) dihedrals are 3l
180". Now elevate £ slightly to E in the northern hemisphere of $3. The resulting
nondegenerate tetrahedron has obtuse dihedrals and no CP point. Using this
technique, we get the tetrahedron which is the trace of the simplicial cone Pos (D},

where D is
1 20
3 1
e D= : -
' 0 1
0 0
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and it can be verified that all dihedral angies associated with Pos (D) are obtuse, and
yet Pos (D) has no CP-point.

ALTERNATE SPHERICAL PROOFS OF A FEW THEOREMS

A necessary and, in some interesting cases, sufficient condition that & pointbea
CP point for Vis that it be interior to V*. Thus we should have a good grasp of the
geometry of the polar cone. We list a number of properties well known in the
literature or easily verified, which will be useful. For each i, exactiy one vertex of V¥

is closer to v, than /2. We label this vertex v.* v vi=n/Z for i=] Thissetsup a
natural 1 -1 correspondence between the vertices of Vand V*.

Each edge of a simplex intersects the interior of exactly one dihedral angle of the
simplex. The edge is said to be oppasite the dihedral angle.

Classical result 1. If a is the measure of-vi_v;- and B is the measure of the dihedral

angle of V* opposite v, v thena+f=nu.

Classical result 2. (V)¥ =

Classical result 3. The orthogonal projection of V* on any face Fof Vis F*, the

polarsimplex of F.

Classical result 4. x¢V, yeV* implies x-y'Sufz.

Notation. k affinely independent pointsin 5" determine an Sk-1 which we call
the spherical span of the k points. If A is such a set we denote its spherical span by
A More generally any set in " determmes a sphencal span which we denote
similariy.

THEOREM 19: VNV =g

PROOF‘ Considerthe function f(x) = > V x,- xeV*. This function assumes its
m:mmum overV’ atsome pointP of V*. We clalm P mustbein V. If not, P must be
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Figure 14

-~
Let P be the reflection of P in F viP <
~

f(P) < #(P), a contradlctjor 3

Thisis probably a classical result as well, but we couid notiocateitin the
literature. Note this argument does not show that \v and V* have interior pointsin
common but this was shown in Section 3.

THEOREM 20: If all edges of v are obtuse, V* cintv.

are. obtuse and x is any pointin F,then Vix ViX Is obtuse. For, if we enwsron v, asthe
north pole, then al| Vi. I=iareinthe southern hemisphere and. henceso is F. Thus

S g



“F(. > /2.

A simiiar argument shows that if 5| edges with end point v, are acute then
V;'x < 11/2, for XGFI

A
Now 1o the theorem. Induce on the dimension. Let PeV™. If Pe F, then by
induction it must be interior to Fi. Butthisisimpossible by our opening abservation.
* . ~ : .
Hence no element of V* is in any F,. Suppose now that P s or the opposite side of F.
o~ : : :
fromv,. Let P be the reflection of Pin i- See Figure 15. Asin Theorem 19, we see

. , o v L oA
thatge\/ - But by convexity, the midpoint Q of PP isin V* . Byt tisalso in F, which
is impossible. Thus P must be interiorto V.

Figure 15

THEOREM 21: If all edges of V are obtuse, the ih.t_eri.or of V*isitsset of CP points.

PROOF: By classic result 3 jf F is any face of V, the projection of v* on Fis F* which
by Theorem 20 s interior to F. Thus all points of V* are CP points.. .
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THEOREM 22: If all dihedral angles of V are acute then all points interior to V are its
CP points.

PROOF: Itis obvious that each v, Projects internally on its opposite facet F, and from
this it follows at once that any point of V projects internally on all facets. Now ifHis
the projection of vionF,,and Tis the projection of H on F. . we claim the great circle

—— i
VT is orthogonal to Fii- the facet of F, opposite v, .

Figure 16

This may be seen by first noting that bothﬁ and TH are orthogonal to Fi;and
thus their spherical span is aiso. ButTff is in this spherical span and so it too must be
orthogonal to Fii

We have thus shownthat each vertex of.any facet of V projects internally on an
opposite facet. By induction then every face of V has the same property.

- 42



11. OPEN QUESTIONS

Given a rational nonsingutar square matrix D and a rational point b in the
interior of Pos (D), b hasto satisfy property 2 of Section 3, to be 3 CP-point for
Pos (D). Property 2 consists of 27-2 conditions. 1t js notknown whether thereis a
polynomially bounded algorithm for thecking property 2.

Identifying classes of matrices D for which Pos (D) can be shown to have a CP-
point, which can be computed efﬂciently', hasimportant applications in solving the
corresponding LCP § efficiently {Section 4).

We have shown that the set of CP-points for ¢t e simplicial cone Pos (D)is an open
polyhedral cone when it i nonempty (Theorem 4). This cone is defined by & system
ofinguality constraints consisting of a large number of constraints (2" sets of
constraints). However for n=23 we have proved that the set of CP-pointsis an




10.  The pair (D,q), where D ¢ R"XN and q € R", is said to have this property if for
each nonempty J cT, the orthogonal projection of g onto the subspace
LH(D ;) lies in the relative interior of the cone Pos (D_J).

1. The pair (M, q), where M ¢ R"X N 3nd q ¢ R", issaid to have this property if
for each nonempty J cT, the linear complementarity problem
(—qJ ,MJJ)hasz—zsolution(ﬁ‘:r ;J )with'z"3>0.

Note that the definition of property 10 is minimal in the sense that every subset
JCI'must be checked, as the following examples show. The listed D and g have the
projection property for every subset of {1, 2, 3 } except the ones listed:

3 2 40 10
D=1{ 2 4) . q= {10 | , J=1{1,2,3],
00 1/ -1

01 4 '13
D=1 5 4 , q= i18 , J={1,2}

o
s
N,
o
w

/1 a0y 1
-D={’ 0 110 |, g= |100] , J={1}
V001 1
" \

Notice that in Property 10, D is not required to be nonsingular. Likewise in
Property 11, M may not be nonsingular. We define

P10, ={DeRNxn . fher_e exists at least one q¢R™ such that (D, q) satisfies
property 10}.

P11,={MeR"X": there exists at least one g € R" such that (M, q) satisfies
property 11}, |

44




By our earlier results, if DeRN* N jg nonsingular, (D q) has property 10 iff
(D™D, D7q) has property 11.

CONVEXITY RESULTS

PROPOSITION 1: For DeRM XN the setof qeR"such that (D, g ) has property 10 is
convex and open.

PROOF: Let(D, q) have property 10and @ = Uc . Let Jc Ube a maximal subset
such that D, hasindependent columns. Then LH(D .} = LH(D ;) and the projection
ofgonto LH(D ) is D ;a’ where,

a :I)Jq,

where D [T = (¢ D,)TD ) (D ;)T is the pseudo-inverse of D ; . The projection
D ; a?isin the relative interior of Pos (D) iffed>0. Foricy \J, there exist
constants f,-J- such that

from the definition of 7. Choose €>0,i€ U\J, such that -

J :
Gr 2 i,
Tl )
forall jeJ which s possible since aI >0 . Let aY be a vector with components g; for
i€ U\J, and

al+ N e f.
| — BT
PELAS

ferjeg.

ThenaU>0and

- 4 U
I),J a® = D'UQ .

" Therefore.the projection of G onto LH(D. ;) is given bv D.jaY, a¥>0.

I
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By continuity, there is a neighborhood BY of q suchthat §7-= D.JTE:T>O and
aU  constructed as above satsifies D, =DTY and QU >0forall §eBY.
Then forany pen BY, the projectionof p onto LH(D.;;} is given by D. aY
for aY>0, foreach nonempty U cI'. Therefore the set of gsuchthat (D, q) has
property 10 i1s open.

If (D, q!) and (D, g2) have broperty 10, then for fixed U c T, U# 2, the projections
of g' onto LH(D.;j) and g2 onto LH(D.,)), are given by D.;a’, a' >0 and D. a2, a2>0
respectively. Since projection is a linear operation, the projection of (1 - .\)q1 +1g?
onto LH(D.)}is(1-1) D.ja' +1D.ya? = D.y ((1-1)a' +1a?), where (1-1)a' + rxa2>0
for 0S4 1. Since Uwas arbitrary, (D, (1-1)q" +1g2) has property 10 for 0=y =1,
which proves the convexity. 0

Consider the following matrix:

/.9 3 20

“-"_‘—n.“ -

D=1 0 3 1
0 0 1
Note that
-3 1 59
D'=(1/3){ 0O 1 -1
0 0 3

it can be verified thatboth D ancd D' ¢P10n. Aiso, this matrix D is
nonsingular. Since D¢P10n, thisimpliesthat M=D'D given belowis ¢P11n.

-1 -20 -
10 23
23 402

PROPOSITION2: Forfixed q¢R™, nZ2, the set of matrices MeP NP1
such that (M, q). has property 11is notconvex. '
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PROOF: Take

M= 1_&_‘2_;*; i -15._?::.4.-‘!: g= If T
0 : I/ k 0 11 o
k 1/
M and N are P-matrices, (M, q) and (N, g) have property 11 but ( (172) (M + N), q)
does not have property 11. O

CONJECTURE: For fixed q¢RM, the set of PD symmetric McRP"XN guch that
(M, g) has property 11 is convex.

DEFINITION: A seta cR"is starlike if there exists a point ¢ ¢a such that for any
point pca the iine segment cp alsoliesin A. The set of points ¢ €A with this
property is called the kerne| of A.

PROPOSITION 3: The set Pnisstarlike with the identity matrix 7 in its kernel.

PROOF: Let MeP, and 0=aX 1. A characterization of Pnisthat MeP_ if and
only if the real eigenvalues of every principal submatrix of M are positive [3, 15]. if
A;>0 isan eigenvalue ofa principal submatrix M,; .then (1-a)+ a.\J>O isan
eigenvalue of [(1-a)I +aM ]J'&.' Therefore the real eigenvalues of every principal
submatrixof (1-a)I+aM, for 0=a=1, arepositive, and (1-a)I+aMeP, for
0=ax1. O

T -15 /11
Observe,thatthésetPr;‘ is not convex fornZ2: ( 2 Jand (—?5- .2) are
[[1 -15% [1 1 [ 7Y -
*\1- - ) . U K | isnot.
W2 \-15 2 \7 2,

PROPOSITON 4: For fixed q ¢R", q>0, the set of matrices M ¢ P suchthat (M, q)
has property 11 is starlike with I in its kernel. BRI :

P-matrices but (1/2)




PROOF: Let (M, q) have property 11, where MeP,, q €R", q>0. Itsufficesto
prove that ((1-1)M+AI ,q) also has property 11, for0=\<1. The proof of this
is by induction on n. Since (M, q) and (I,q) have property 11, consider only
0<i<1. Theresultistrivial for n = 1. Assume it holds for P-matrices of order <n.
~Property 11 for (M, q) meansthatM,;"' q; >0 forevery subset

J, @7 JcT. Since property 11 is hereditary with respect 1o principal submatrices, the
induction hypothesis yields that [ (1-1) M_; +),]"" q,>0 for every subset J ,
©=Jcl', of cardinality |]<n. Thus all that remains is to prove
[(1-OM+r1)g>0.

The kth componentofz={(1-3)M+11] ' qis, by Cramer's rule,
q

) .
det (‘HI-.-\JM+;\H_“ ..... k-1 q l(l-—.\)M+,\H_ nl )

. = 26)
4 det {(1 =AM+l

Note that the denominator is positive since (1= 1) M + 4T is aiso a P-matrix. The
determinant is a multilinear form, and the numerator expands into a sum of
determinants of the form det A, where Ai=(1~M. or A=Al ;fori=k, and
Ax=q. Letd={j,, ...,k ..., }betheindices such that A;=1\I;foried. Then

det A=)"~M g _\Hi=1 gy

1
2 (‘J)k det MJ'J >0

since 0= A= 1, (M, q) has property 11, and M is a P-matrix. (The subscriptk here

refers to the elementk in the index setJ ={j;.--..k,....j,}.) Therefore the
numerator in (26} is positive; and so [ {1 -1} M +11]7! q >0, which completes the
- induction step. 3 -

| [ 3 -16) / 3 .-2)
Note that Z_isconvex, but M, is not:!\-Z '*.*‘f/'and \—16 H/[ are M-matrices

- /13 18y 3 -2 \ 39
but (1/_2)‘ ‘ I _# - isnot.

21 16 '11/-- 9 N

_ _The-foi-f-'cw'ing.theor'em from M. Fiedier and V. Ptak [3) wil! be useful.
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THEOREM 23: LetA, B¢ Z,, all the real eigenvalues of A be positive, and AZB.

Then 1} AT2ZB 20
2} all the rea! eigenvalues of B are positive;
3) detB2det A>0.

PROPOSITION 5: The set M,, is starlike with the identity matrix I in its kernel.

PROOF: Let M« M, = ZnﬂPn. Itis straightforward to verify that (1~ 11 + 1M for
O=4i=1 isin both Z andP,. O

PROPOSITION 6: For any MeM,, and g>C, g¢RM, the pair (M, q) has property 11.

PROOF: LetM ¢ M., qeR,, >0, and ©2JcT. Then M is also an

M-matrix, hence a Z-matrix with positve real eigenvalues. By Theorem 23 above,
MJJ'1.,2_ (diag (MJJ) yt20is nonnegative with positive diagonal elements, and
therefore MJJ'1 G;>0. This proves property 11isfor the pair (M, q). 0

Generalization of the class M, .

M-matrices have many nice-properties with respectto the linear
complementarity problem. However, they have more structure than is really
needed for linear complementarity proofs. We argue that P1 1n MNP, isthe natural
generalization of M, and that P1 12NP, contains the essence of the class M, as far
as linear complementarity is concerned. |

Both M_ and P1 Th NP, are nonconvey, both are starlike from I. When
MeM,, forevery g >0, {M, g) has property 11, whereas for M ¢ P11, NP, there
existsa q>0, such that {M, q) has property 11.-When M ¢ M. forall @ =Jcrand
every g>0(, {MJJ)“ g, >0; whereas, for M ¢ P1 1h ﬂ_Pr", there exists a.q>0such fhat
for ali QIJCI‘, (Mj5)T q;>0. Similarly, when M ¢ M., thestatement "fo'r'ahy
g€R", the LCP {g, M) can be sdlvéd'with atmost - n compiémentary pivot steps via
the parametric LCP (g+ap, M), istrue forevery B>0" whereas, for Mc.

P11, NP thereexistsa p>0 such that the above statement within quotes is

" true.
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