Simulation Support: Prototyping
The Automation-Based Paradigm

Osman Balci
Richard E. Nance

TR 87-20

Technical Report 87-201

SIMULATION SUPPORT: PROTOTYPING
THE AUTOMATION-BASED PARADIGM}

QOsman Balcl
Richard E. Nance

Department of Computer Science
and
Systems Research Center
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

15 July 1987

+ Also cross referenced as SRC-87-008, Systems Research Center.
1 To appear in Proceedings of the 1987 Winter Simulation Conference {Atlanta, Ga., Dec. 14-16).

ABSTRACT

This paper describes our research efforts in prototyping the automation-based software
paradigm to provide antomated support for discrete-event simulation model develop-
ment. The automation-based paradigm has been suggested as the software technology in
the 1990’s. The technology needed to support this paradigm does not yet exist. However,
the benefits to be gained are so significant that, if achieved, it could profoundly change
the way that simulation models are developed. We have been working to achieve this
paradigm in the form of an environment composed of an integrated and comprehensive
collection of computer-based tools. OQur prototyping efforts have focused on the Model
Generator, Model Analyzer, and Assistance Manager tools. The Model Generator tool is
crucial for the realization of the paradigm and three prototypes have been developed.
Our experimentations with the prototypes indicate that the paradigm can be achieved if
a small problem domain is chosen. The problem becomes quite complex in the domain-
independent case; nevertheless, we believe that the challenge can be met by way of an
evolutionary development of prototypes.

CR Categories and Subject Descriptors: L.6.m [Simulation and Modeling)|: Mis-
cellaneous

Additional Key Words and Phrases: Computer-aided modeling, model development
environments, simulation support systems.

1. INTRODUCTION

This past decade has witnessed the clear reversal of roles in computing economics.
Human time clearly is more expensive than computer time, and the differential is
apparently widening., While the cost of simulation program execution cannot be ignored,
the need to utilize modelers and analysts more effectively is pervasive.

Not only are the simulation modelers the expensive commodity, there is a shortage
of those who are adequately trained. A simulation study requires multifaceted and mul-
tidisciplinary knowledge and experience. In order to gain the basic knowledge for using
stimulation correctly, Shannon predicts that a practitioner is required to have about 720
hours of formal classroom instruction plus another 1440 hours of outside study (more
than 1 man-year of effort) [Shannon 1986].

Progress in software support for simulation applications has unfortunately not
kept up with the incredible pace in computing technology. Despite phenomenal advances
in computer hardware and some impressive gains in software technology, simulation still
remains a labor intensive, error prone, and costly technique especially for large complex
simulation studies. Automated support of a simulation study throughout its entire life
cycle is undeniably needed to confront the problems identified by Balci [1988].

Balzer et al. [1983] have proposed the automation-based paradigm as the software
technology for the 1990’s. The benefits to be gained in simulation model development
are so significant that, if achieved, this new paradigm could profoundly change the way
that simulation models are developed. We have been prototyping the automation-based
paradigm in the form of a simulation model development environment (SMDE).
| The objective of this paper is to describe these prototyping efforts. Section 2 intro-
duces the automation-based paradigm. The architecture of the current SMDE research

prototype is explained in Section 3. Section 4 provides a description of the minimal

SMDE tools and our prototyping efforts. Conclusions are given in Section 5.

2. THE AUTOMATION-BASED PARADIGM

Balzer et al. [1983] propose a software life-cycle model, shown in Figure 1, for
incorporating the capabilities of automatic programming, program transformation, and a

“knowledge-based software assistant.”

DECISIONS
AND
RATIONALE
FORMAL
, —p DEVELOPMENT
FORMAL MECHANICAL
REQUIREMENTS
lNFORMA;Ts 2 SPECIFICATION OPTIMIZATION
REQUIREME { PROTOTYPE) ~)» CONCRETE

SOURCE
PROGRAM

VALIDATION TUNING

MAINTENANCE

Figure 1. The Automation-Based Paradigm.

The technology needed to support this paradigm does not yet exist, but recognition of
the benefits and the consec;uent emergence of component principles, concepts and tools is
clearly apparent.

This radically different approach proposes a shift from the current informal,
person-based software paradigm to a formalized, computer-assisted software paradigm.
Today, maintenance constitutes 80 to 90 percent of software life-cycle cost and it is a
major problem. Under the automation-based paradigm, maintaining the specification as

opposed to the implementation will significantly reduce this problem and the software

will finally assume its intended form: “soft” and modifiable rather than becoming ossi-

fied and brittle with age.
Table 1 [Balzer et al. 1983] compares the automation-based paradigm with the

current paradigm.

Table 1. Comparison of the Automation-Based and Current Paradigms.

Automation-Based Paradigm Current Paradigm
Formal Specification Informal Specification
Prototyping Standard Prototyping Uncommon
Specification is the Prototype Prototype Created Manually
Prototype Validated Against Intent Code Validated Against Intent
Prototype Becomes Implementation Prototype Discarded
Implementation Machine-Aided Implementation Manual
Testing Eliminated Code Tested

| Formal Specification Maintained Concrete Source Code Maintained
Development Automsatically Documented Design Decisions Lost
Maintenance by Replay Maintenance by Patching

Despite the absence of many components of the necessary technology, Balzer [1981]
claims to have demonstrated the feasibility of the automation-based approach to build-

ing software.

2.1 Why the Automation-Based Paradigm?

We answer this question by way of describing the major benefits of the
automation-based paradigm in comparison with the current paradigm under which

software is developed [Balzer et al. 1983].

(1) Reducing the Cost and Duration of Software Development: People are becoming
more expensive than computers as hardware costs continue to plummet amidst a
shortage of adequately trained people. Reliance on software is becoming an

economic reality — emphasizing the importance of high quality and less develop-

(3)

(4)

(5)

ment time. The automation-based paradigm offers the prospect of achieving a

reduction both in cost and development time.

Achieving Maintainability: Maintenance is a major problem attributable to several
flaws in the current paradigm. The automation-based paradigm switches the non-
creative aspects of maintenance and modification from man to machine. Program
specification becomes the prime focus for mainténance rather than the implemen-
tation. By transitioning the focus to a representational form closer to the problem
domain, the complexities of code maintenance are eliminated and the intrinsic dif-

ficulties are simplified.

Developing Reusable Software: Reusability has been a major issue under the
current paradigm due to the development of software which is dependent on a pro-
gramming language and/or an implementation. The automation-based paradigm
enhances reusability since specifications and their recorded development are central
rather than implementations. Thus, when a module is to be reused, the specifica-

tion can be modified {(or maintained) and its development is changed accordingly.

Increased User Involvement: Under the current paradigm systems analysts take the
major responsibility for predicting the behavior of the unimplemented system to
determine if it matches the user’s needs. The ever-growing complexity and speciali-
zation of systems make this awesome responsibility grow unrealistically. Under the
automation-based paradigm, however, the specification is “operational” in the form
of a prototype with which users can experiment to determine the extent to which it
matches their requirements. Such an experimentation leads users to improved per-
ceptions of their needs resulting in the development of systems which are more

progressively responsive to those needs.

Reduced Portabih’ty Problem: Under the automation-based paradigm, the machine

on which software runs is just one of the decisions made during the implementa-
tion process. This decision can be changed like any other decision; therefore, porta-

bility disappears as a problem.

3. SMDE ARCHITECTURE

Since June 1983 the MDE project has addressed a complex research problem: pro-
totyping of a discrete-event Simulation Model Development Environment (SMDE) fol-
lowing the automation-based software paradigm described in Section 2. The major
research goal has been to provide an integrated and comprehensive collection of
computer-based tools to (1) offer cost-effective, integrated, and automated support of
model development throughout the model life cycle, (2) improve the model quality by
effectively assisting in the quality assurance of the model, (3) significantly increase the
efficiency and productivity of the project team, and (4) substantially decrease the model
development time.

Guided by the fundamental requirements identified by Balci [1986], the Conical
Methodology [Nance 1981, 1987] has furnished the architectural underpinnings of the
SMDE research prototype. Prototypes of SMDE tools have been developed using the
rapid prototyping technique. See [Balci and Nance 1987] for a description of concepts
and principles employed, experiences gained, and guidelines derived in the design and
creation of the latest SMDE research prototype.

The prototype SMDE is architectured in four layers as depicted in Figure 2:
hardware and operating system, kernel SMDE, minimal SMDE, and SMDEs. Each layer

is described in some detall below,

Modet
Analyzer

Model
Generator

Model
Transkator

Command
Language
Interpreter

Model
Verifier

Kernel SMDE
Functions

Sotiree
Code
Manager

Assistance
Manager

Hardware and
Operating System

Premodels Etectrtfnic
Manager Mail
Kernel Interface Sysiem

Text
Editor

Projeet
Manager

Minimal
SMDE SMDEs

Figure 2. The architecture of the SMDE research prototype.

3.1 Layer 0: Hardware and Operating System

A SUN-3/160% color computer workstation running under MC68020 CPU with 4
megabytes of main memory, 380 megabytes of disk subsystem, a 1/4-inch cartridge tape
drive, and a 19-inch monitor with 1152900 pixel resolution constitute the hardware of
the prototype SMDE. A laser printer and a line printer accessible via an Ethernet local
area network serve the SMDE for producing high quality documents and hard copies of

SUN screens and files.

The UNIX?} 4.2BSD operating system and utilities, multiwindow display manager

+ SUN-3/160 is a trademark of Sun Microsystems, Inc.
i UNIX is a trademark of AT&T Bell Laboratories.

(SunWindows), device independent graphics library (SunCore), computer graphics inter-
face (SunCGI), visual integrated environment (SunView), Sun programming environ-
ment (SunPro), and INGRES relational database management system (SunINGRES)
constitute the software environment upon which the SMDE is built. Nance et al. {1984]
have evaluated the capabilities of UNIX for hosting an earlier prototype SMDE, noting
major and minor deficiencies.

The current prototype, based on the SUN workstation, eliminates certain deficien-
cies in an earlier version (utilizing a VAX 11/785*%) and reduces the negative effects of

others.

3.2 Layer 1: Kernel Simulation Model Development Environment

Primarily, this layer integrates all SMDE tools into the software environment
deseribed above. It provides SunINGRES databases, communication and run-time sup-
port functions, and a kernel interface. There are three SunINGRES databases at this
layer labeled project, premodels, and assistance, each administered by a corresponding
manager in Layer 2. All SMDE tools are required to communicate through the kernel
interface. Direct communication between two tools is prevented to facilitate maintenance
and expansion. The kernel interface provides a standard communication protocol and a
uniform seb of interface definitions. Security protection is imposed by the kernel inter-

face to prevent any unauthorized use of tools or data.

* VAX 11/785 is a trademark of Digital Equipment Corporation.

-7 -

3.3 Layer 2: Minimal Simulation Model Development Environment

This layer provides a “comprehensive” set of tools which are “minimal” for the
development and execution of a model. “Comprehensive” implies that the toolset is sup-
portive of all model development phases, processes, and credibility assessment stages.
“Minimal” implies that the toolset is basic and general. It is basic in the sense that this
set of tools enables modelers to work within the bounds of the minimal SMDE without
significant inconvenience. [t is general in the sense that the toolset is generically applica-
ble to various simulation modeling tasks.

Minimal SMDE tools are classified into two categories. The first category contains
tools specific to simulation modeling: Project Manager, Premodels Manager, Assistance
Manager, Command Language Interpreter, Model Generator, Model Analyzer, Model
Translator, and Model Verifier. The second category tools (also called assumed tools,
library tools, or host provided tools) are expected to be provided by the software
environment of Layer 0: Source Code Manager, Electronic Mail System, and Text Edi-
tor.

Figure 3 shows the top-level menu of the current SMDE research prototype from

which current prototypes of Minimal SMDE tools can be activated.

3.4 Layer 3: Simulation Model Development Environments

This Is the highest layer of the environment, expanding on a defined minimal
SMDE. In addition to the toolset of the minimal SMDE, this layer incorporates tools
that support specific applications or are needed either within a particular project or by
an individual modeler. If no other tools were added to a minimal SMDE toolset, a
minimal SMDE would be a SMDE.

The SMDE tools at layer 3 are also classified into two categories. The first

2' | 003Mau
|oo3mau
48ppou

ab* azepdnpw

o' a3epdnpw
2 ajepdnpw
ab' Auanbpu
o' Kuanbpuw

R

a' fuanbkpu
b ul BwpW
o' UL BWRH
a9' UL B

R

uasJasapul
ab’ Jeppuw
Q' JBppu
2’ jeppu

SARARRAARA

R
|| #e unsen
safew

oh- yapesy
' uspeay
a|yiaNe

§| %2'Unsap

A
EEEEEQ

246 Jas 308
14004d iLLE4 ipEO]

SysauLgy
. cananee

ILLEd oqe
Jepdog Ll O

s = | | LA dag svaeg emdmeg - Jsep mmbug
— 18PON
JO}E | SUBJ] ((a401s)
EXELTY J WY D_ Lepou m
B O« -
Jazd | euy —
J054n) U003 4 i:
LBPOK
ik) Cenoas) (W) Quens
Jojedauan <= o
L8pol [T]
amie b5 4
f o
JabBeuey) .
gIuRlsS|SSY (==
Jafieuey ougng
S|apowatd 7
€ S8ug syl
duosap st
Jabieuey 0 &
asloJd 8yy Jajul
1oofoud AN Ab8 Joqng
S8Y 0N
iLepow ayy 1o sWed eyj JBIUI @ TIALY ICH 01
0110]

w5 |BA3T 1B S|apoWgng 03Ul | apoy Bulsoduosang

JaSruBl 20URISISSY TN

HWIOGNTIH 3ONYLS

Figure 3. The SMDE Top-Level Menu and Other Tools.

category tools include those specific to 2 particular area of application. These tools
might require further customizing for a specific project, or additional tools may be
needed to meet special requirements. The second category tools {also called assumed
tools or library tools) are those expected to be available due to their availability and use
in several other areas of application. A tocl for statistical analysis of simulation output
data, a tool for designing simulation experiments, a graphies tool, a tool for animation,
and a tool for input data modeling are some example tools of layer 3.

A SMDE tool at layer 3 is integrated with other SMDE tools and with the software
environment of layer O through the kernel interface. The provision for this integration is

indicated in Figure 2 by the opening between Project Manager and Text Editor.

4. MINIMAL SMDE TOOLS

This section describes our research efforts in prototyping the Model Generator,
Model Analyzer, and Assistance Manager. The other minimal SMDE tools are briefly

explained.

4.1 Model Generator

The Model Generator (the simulation Model specification and documentation Gen-
erator) (MG) is a tool which assists the modeler in: (1) creating a formal model specifi-
cation, (2) creating multi-level (stratified) model documentation, and (3) model qualifica-
tiom.

Based on the system definition and study objectives, a modeler coneceptualizes a
model of the system in his or her mind and then converts the conceptual model into a
formal specification by way of using the MG tool. The creation of the specification

takes place under a conceptual framework. Three essential attributes characterize this

specification: (1) it lends itself to formal analysis, (2) it is completely translatable into
executable code, and (3) its conceptual framework is not domain dependent.

Detecting modeling errors as early as possible within the development life cycle is
extremely important for reducing the time and cost of model development and for
decreasing the probability of type II error — the error of accepting an invalid model as
valid. Therefore, the simulation model should be specified in a form which is amenable
to rigorous testing. The Model Analyzer tool is intended to perform such testing
described in Section 4.2.

The second attribute is critical for achieving the automation-based paradigm. The
Model Translator tool is expected to receive the formal model specification as input and
produce an executable model as output. In our experience, the automation-based para-
digm can be easily achieved if a restricted problem domain is chosen. For example, if we
choose computer networks as the problem domain, we can develop a MG based on the
known characteristics of computer networks, extract the required information from the
modeler, and create a model specification which can be translated in total into an exe-
cutable version (experimental model).

The third .attribute is the most demanding. Our objective is to build a MG tool
which is applicable for any discrete-event simulation problem.

The three attributes of the model specification altogether pose a significant techni-
cal challenge. Nevertheless, we are confident that the challenge can be met by way of an
evolutionary development of MG prototypes.

To date, three prototypes of the MG tool under the guidance of the Conical
Methodology [Nance 1981, 1987] have been developed. The Conical Methodology advo-
cates a top-down model definition and a bottom-up model specification. Prototypes I

and 11 adequately address the definition phase but offer little support for the specifica-

tion phase. Prototype III supports both the definition and specification phases of the
Conical Methodology. A description of Prototype I is given by Hansen [1984]. Prototype

I is an improved version of Prototype I and is fully described by Barger [19806].

4.2 Model Analyzer

This tool is intended to diagnose the model specification created by the Model
Generator and to effectively assist the modeler in communicative model verification.

Nance and Overstreet [1986] propose several diagnostics which are based on
analysis of graphs constructed from a particular form of model specification called Con-
dition Specification [Overstreet 1982; Overstreet and Nance 1985]. The diagnostic assis-
tance is partitioned into three categories: (1) analytical—determination of the existence
of a property of a model representation, (2) comparative—measures of differences among
multiple model representations, and (3) informative——characteristics extracted or derived
from model representations. Action cluster attribute graphs, action cluster incidence
graphs, and matrix representations extracted from the original graphical forms consti-
tute the basis for the diagnosis.

The analytical diagnosis is conducted by measuring the following indicators: attri-
bute utilization, attribute initialization, action cluster completeness, attribute con-
sistency, connectedness, accessibility, out-complete, and revision consistency. The com-
parative diagnosis is done by measuring attribute cohesion, action cluster cohesion, and
complexity. The third category represents the most difficult diagnostics to automate.
Examples of informative diagnosis include: attribute classification, precedence structure,
and decomposition.

The current research prototype described by Moose and Nance [1985] provides a

subset of the graph-based diagnostics and implements 2 control and transformation

metric for measuring model complexity [Wallace and Nance 1985].

4.3 Assistance Manager

The Assistance Manager (AM) is the on-line help facility of the SMDE. A proto-
type has been developed and is described by Frankel [1987]. The prototype AM has six
components as shown in Figure 4: (1) introduction to the SMDE, (2) tutorial, (3) glos-
sary, (4) local (tool specific) help, (5) programmer assistance, and {6) comment facility.

The Introduction to the SMDE component provides general information about the
SMDE for beginning users. It allows a user to view an on-line document stored in the
Assistance Database. A user can obtain information about the tools available in the
SMDE and how to invoke a particular tool.

The Tutorial component is intended to teach a user: (1) how to use an SMDE tool,
(2) how to apply a particular methodology or procedure, and (3) some concepts of
modeling and simulation. A user can activate the Tutorial in one window and a specific
tool of interest in another. This way, the user can employ the step-by-step instructions
and witness the results as the instructions are applied to the tool in the other window.

The Glossary component provides the definitions of technical terms. A project
member can query the meaning of a term encountered in a project document. The Glos-
sary is intended to alleviate the communication problem among the people involved in
the simulation project.

The Locaf Help component provides assistance to a user with regard to the current
state of a running tool in the SMDE. The AM provides this capability by giving tool
developers the ability to include a help package directly in their code.

The Prolgmmmer Assistance component allows authorized programmers to embed

help packages within their program through the use of the AM and to update and

A

JUaNU0ALANT ay] jnrogy srusuwo] Bupdew pue sbng Burpaoday

aseqejeq 4134 8yl furjepdn

2JURYELSSY
AL AEDAd

SuUa) |LBOLUYIA) 40 Aaessoly

S IR

[uinyas } [euo1s)

S$L00) IOH 3yl Joj jerdoin) auoz 34 ERaET <

8u0z 14 PRAG (==

{304} juswusLLaul juaude aaag Lepoy 8yl 03 UDLIINPOJIUT BUOZ 34 BRAT <==

BUDZ BIBYINS BES (==

K= ==

Buoz Bas Japun (==

Jodeue o0UBLISISSY AW

- JONYL
(u Jo R) jleas| o5eq oy 1y 1(s)awey |apougns

118Ady @SeQ 8y} 3e sauo ayl
A413uapL pue [|aAa| 1€ 83Ul pasodwoasp s|
|Spow 8y} S| epowqns JO sawsu Al 483ug

Jegrod

'13pow By 4O BWEU AYY JelUJ 1@ TIATT

q;zﬁz IR A L taAsT1e BB ojuL - (2po Bulsoduoaag

TRHEW S o . ugy |apoj 8dA10204d

Figure 4. The Assistance Manager Top-Level Menu
-14 -

maintain the help database. The AM assists the authorized programmers in terms of
updating: (1) documents for the Introduction to the SMDE, (2) tutorials, (3) terms in the
Glossary, (4) diagnostic messages, and (5) help text.

The Comment Facility component is included for recording user observations and
suggestions about the SMDE and its fools. The information gathered by this facility is

used for the improvement of tools.

4.4 Other Tools

Project Manager is a tool which (1) administers the storage and retrieval of items
in the project database, (2) keeps a recorded history of the progress of the project, (3)
triggers messages and reminders (especially about due dates), and (4) responds to queries
in a prescribed form concerning project status.

Premodels Manager is a tool which (1) implements a query language, (2) adminis-
ters the premodels database, (3) provides information on previous modeling projects, and
(4) provides a stratified description and several representational forms of models or
model components developed in the past.

Command Language Interpreter (CLI) is the language through which a user invokes
an SMDE tool. Early in our project, the CLI was prototyped based on the proposal of
Moose [1983] and was fully described by Humphrey [1985]. Later, after the acquisition of
the SUN workstation, the CLI was replaced by SUN’s window management system.

Model Translator translates the model specification into executable version after
the quality of the specification is assured by the Model Analyzer. During this translation,
code optimization is performed to improve the performance of the executable model.

Model Verifier is intended for the programmed model verification. Applied to the

executable representations, it provides: (1) assistance in incorporating diagnostic

measures within the source program, (2) a cross-reference map to identify where a par-
ticular variable is referenced and where its value is changed, (3) a chart of the pro-
grammed model control topology to indicate subprogram invocation relationships, and
(4) dynamic analysis procedures for snapshots, traces, breaks, statement execution moni-
toring, and timing analyses.

Source Code Manager is a tool which configures the run-time system for execution
of the programmed model, providing the requisite input and output devices, files, and
utilities.

Electronic Mail System facilitates the necessary communication among people
involved in the project. Primarily, it performs the task of sending and receiving of mail
through (local or large) computer networks. The SUN workstation’s MailTool (icon
shown in the upper right of Figure 3) is used to communicate with other nodes in the
local area network from which large computer networks (e.g., ARPANET, CSNET, BIT-
NET, ete.) can be accessed.

Text Editing is provided By the VI editor and the SUN workstation’s TextEditor.
Both of these tools are used for preparing technical reports, user manuals, system docu-

mentation, correspondence, and personal documents.

5. CONCLUSIONS

The need for automated support in simulation mode! development is undeniable.
The benefits to be gained from the automation-based paradigm are so significant that, if
the paradigm is achieved, the development of simulation models could be profoundly
changed. Our experience gained by experimenting with the prototype SMDE tools indi-
cate that the automation-based paradigm can be achieved within the context of a very

restrictive problem domain. However, the paradigm becomes extremely difficult to

achieve in the domain-independent case. Nevertheless, we believe that the challenge can

be met by way of an evolutionary development of prototypes.

ACKNOWLEDGMENTS

This research was sponsored in part by the Space and Naval Warfare Systems
Command and Naval Research Laboratory under contract N80921-83-G-A165-B030
through the Systems Research Center at VPI&SU. The contributions of the following
people to the MDE project are greatfully acknowledged: Lynne F. Barger; Charles W.
Box; E. Joseph Derrick; Valerie L. Frankel; Robert H. Hansen; Matthew C. Humphrey:

David P. Maynard; Robert I.. Moose, Jr.; and Jack C. Wallace.

REFERENCES

Balei, O. (1986), “Requirements for Model Development Environments,” Computers &
Operations Research 18, 1 (Jan.-Feb.), 53-67.

Balei, O. and Nance, R.E. (1987), “Simulation Model Development Environments: A
Research Prototype,” To appear in Journal of the Operational Research Society.

Balzer, R. (1981), “Transformational Implementation: An Example,” IEEE Transactions
on Software Engineering SE-7, 1 (Jan.), 3-14.

Balzer, R., Cheatham, T.E. and Green, C. (1983), “Software Technology in the 1990's:
Using a New Paradigm,” Computer 16, 11 (Nov.), 39-45.

Barger, L.F. (1986), “The Model Generator: A Tool for Simulation Model Definition,
Specification, and Documentation,” M.S. Thesis, Department of Computer Science,
Virginia Tech, Blacksburg, Va., Aug.

Frankel, V.L. (1987), “A Prototype Assistance Manager for the Simulation Model
Development Environment,” M.S. Thesis, Department of Computer Science, Vir-
ginia Tech, Blacksburg, Va., July.

Hansen, R.H. (1984), “The Model Generator: A Crucial Element of the Model Develop-
ment Environment,” M.S. Project, Department of Computer Science, Virginia
Tech, Blacksburg, Va., July.

Humphrey, M.C. (1985), “The Command Language Interpreter for the Model Develop-
ment Environment: Design and Implementation,” Technical Report TR-85-17,
Department of Computer Science, Virginia Tech, Blacksburg, Va., Mar.

- 17 -

Moose, R.L. (1983), “Proposal for a Model Development Environment Command
Language Interpreter,” Technical Report CS83032-R, Department of Computer Sci-
ence, Virginia Tech, Blacksburg, Va., Dec.

Moose, R.L. and Nance, R.E. (1985), “Model Analysis in a Model Development Environ-
ment,” Technical Report TR-85-27, Department of Computer Science, Virginia
Tech, Blacksburg, Va.

Nance, R.E. (1981), “Model Representation in Discrete Event Simulation: The Conical
Methodology,” Technical Report CS81003-R, Department of Computer Science,
Virginia Tech, Blacksburg, Va., Mar.

Nance, R.E. (1987), “The Conical Methodology: A Framework for Simulation Model
Development,” In Proceedings of the Conference on Methodology and Validation
(1987 ESC, Orlando, Fla., Apr. 6-9). Published as Simulation Series 19, 1 (Jan.
198R), 38-43. SCS, San Diego, Calif.

Nance, R.E. and Overstreet, C.M. (1986), “Diagnostic Assistance Using Digraph
Representations of Discrete Event Simulation Model Specifications,” Technical

Report TR-86-8, Department of Computer Science, Virginia Tech, Blacksburg, Va.,
Mar.

Nance, R.E., Balci, O. and Moose, R.L. (1984), “Evaluation of the UNIX Host for a
Model Development Environment,” In Proceedings of the 1984 Winter Simulation
Conference (Dallas, Tex., Nov. 28-30). IEEE, Piscataway, N.J., pp. 577-584.

Overstreet, C.M. (1982), “Model Specification and Analysis for Discrete Event Simula-
tion,” Ph.D. Dissertation, Virginia Tech, Blacksburg, Va., Dec.

Overstreet, C.M. and Nance, R.E. (1985), “A Specification Language to Assist in
Analysis of Diserete Event Simulation Models,” Communications of the ACM 28, 2
(Feb.), 190-201.

Shannon, R.E. (1986), “Intelligent Simulation Environments.” In Proceedings of the
Conference on Intelligent Simulation Environments (San Diego, Calif., Jan. 23-25).
Published as Simulation Series 17, 1 (Jan. 1986), 150-156. SCS, San Diego, Calif.

Wallace, J.C. and Nance, R.E. (1985), “The Control and Transformation Metric: A Basis
for Measuring Model Complexity,” Technical Report TR-85-15, Department of
Computer Science, Virginia Tech, Blacksburg, Va., Mar.

LEFS L F Y.y YU PN Nt B B

SECURITY CL A55|-F|C A;{IOH OF TRIS PAGL (Mhen Date Frierad

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. 00OVT

t. RLPORT NUMBER

SRC 87-008 (TR-87-20 Dept. of C.S.)

1. RECIPIEMT'S CATALOG HUMBER

ACCESSION RO

4 TITLE (&nd Sublitle)

Simulation Support: Prototyping the
Automation—Based Paradigm

5. TYPE OF REPORT & PERIOD COVERED

Interim

. PEARFORMING ORG. REPORT NUMBER

SRC 87--008 (TR-87-20 Dept.CS

4

7. AUTHOR(4)

Osman Balci and Richard E. Nance

8. CONTAALT OR GRANT KUMBER{a)

BOA N60921-83-G-A165 BO30

9. FPERFORMING DRGANIZATION NAME AKD ADDRESS
Systems

Virginia Tech
Blacksburg, VA 24061

esearch Center and Dept. of Computer Sciend

10, PROGRAM ELEMENT. PROJECT, TASK
e AREA & WORK UNIT WUMBERS

11. CONTROLLING OFFICE NAME AND ADCDRESS

Research Laboratory
Washington, D.C.

Space and Naval Warfare Systems Command and Naval

12. REPORT DATE
15 July 1987

WUMBER OF PAGES

20

11,

14,

Naval Surface Weapons Center
Dahlgren, VA 22448

MONITORING AGENCY NAME & ADDRESS(!I! dificrent from Caontrolling Qftica)

15, SECURITY CLASS. (af this report)

Unclassified

DECLASSIFICATION/ DOWNGRADING
SCHEDULE

15a.

6. DISTRIBUTION STATEMENT (of this Report)

To Navy research and development centers

review.

laboratories. A limited number of reports are distributed for peer

and other university-based

17.

DISTRIBUTION STATEMENT (of the abetraci eaiered in Bleock 20, il ditiarent trom Raport)

1E. SUPPLEMENTARY HOTES

environments, simulation support systems.

Simulation and modeling, computer-aided modeling, model development

19. KEY wWORDS {Continue on reverss alde |f necessary and identily

by block numbaer)

2Z0.

ABSTRACT (Continue on reveras sfde i necesanry and idesttity by block enbar)
This paper describes our research efforts in prototyping the automation-based

software paradigm to provide automated support for discrete-event simulation model
development. The automation-based paradigm has been suggested as the software
technology in the 1990's. The technology needed to support this paradigm does not
yet exist. However, the benefits to be gained are so significant that, if achieved
it could profoundly change the way that simulation models are developed. We have
been working to achieve this paradigm in the form of an environment composed of an
integrated and comprehensive collection of computer-based tools. Our prototyping

FORM

1 JAN 73 EDITION OF 1 OV 65 15 OBLOLETE

SN O0102- LF-014- 6601

DD 1473

UNCLASSIFIED

EECURITY CLASSIFICATIOR OF THIS PAGE (Whan Data Entersd)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

efforts have focused on the Model Generator, Model Analyzer, and Assistance
Manager tools. The Model Generator tool is crucial for the realization of the
paradigm and three prototypes have been developed. Our experimentations with
the prototypes indicate that the paradigm can be achieved if a small prehliem
domain is chosen., The problem becomes quite complex in the domain-independent
case; nevertheless, we believe that the challenge can be met by way of an
evolutionary development of prototypes.

$/N 0102- LF- 014- 6601
UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dara Entered)

