Specification Languages: Understanding Their
Role in Simulation Model Development

C. Michael Oversireet
Richard E. Nance
Osman Balci
Lynne F. Barger

TR 87-7




Technical Report TR-87-71

Specification Languages: Understanding Thelr
Role in Simulation Model Development

. Michael Overstrect:
Richard E. Nance+
Osman Balci§
Lynne F. Barger§

December 1986

#* ThlS research was sponsored in part by the Naval Sea Systerms Command and the Office of Naval Research
under Contract N60921-83-G-A165 through the Systems Research Center at Virginia Tech.

i Department of Computer Science, Old Dominion University.
+ Départmént of Computer Science, and Systems Research Center, Virginia Tech.
§ Départment of Computer Science, Virginia Tech.

t Cross-referenced as SRC-87-001, Systems Research Center, Virginia Tech



Technical Report SRC-87-001%

Specification Languages: Understanding Their
Role in Simulation Model Development™

C. Michael Overstreett

Richard E. Nancex
Osman Balci§
Lynne F. Bargerg

- December 1956

* This research was sponsored in part by the Naval Sea Systems Command and the Office of Naval Research
under Contract N60921-83-G-A165 through the Systems Researck Center at Virginia Tech.

t Department of Computer Science, Old Dominion University.
+ Systems Research Center and Department of Clomputer Science, Virginia Tech.
§ Department of Computer Science, Virginia Tech,

1 Cross-referenced as TR—ST—T, Department of Computer Science, Virginia Tech.




ABSTRACT

Current software specification techniques and specification languages are reviewed, emphasizing
research activities in software specification languages. Alternate software life cycle models are
described and compared to a simulation life cycle model. The importance of constructing a model
specification before creating a programmed model is emphasized. Disadvantages in using simulation
programming languages as model specification languages are discussed. The multiple uses which are
made of a model specification are presented; these uses correspond to the alternate uses made of a
requirements specification for general software. To evaluate where specification tools for general
software will be effective for simulation modeling, both areas where the simulation life cycle
corresponds o a general software life cycle and areas in which they differ are characterized. Impor-
tant conclusions are that: (1) specification methodologies are highly dependent on the phase of the
software life cycle and the use to be made of the specification, (2) both general software and simula-
tion communities lack a clear perception of the proper {orm for specifications, and (3) evaluation of
proposed methodologies and tools is inadequate.

CR Categories and Subject Descriptors: D.2.1 [Software Engineering]:
Requirements/Specifications — Languages; 1.6.m [Simulation and Modeling]: Miscellaneous

‘General Terms: Languages

Additional Keywords and Phrases: Model life cycle, simulation model specification, software
life-cycle models
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1. INTRODUCTION

Current simulation programming languages (SPLs) are rooted in the early 1960s, the very
active period in which the most popular languages emerged: GPSS, SIMSCRIPT, CSL, and
SIMULA. Even a language appearing later, such as SLAM, has clear ancestral links to a predecessor
developed during this time period (GASP). Despite the evolutionary changes in all of the SPLs, cer-
tain genetic traits remain dominant and unfortunately limiting in the development of more exten-
sive, complex models. One such trait is the continuing emphasis on model execution to the detriment

of model specification.
- This criticism must be interpreted in the proper context. No doubt, a decision to acquire an
SPL is likely to be dominated by execution-related factors, such as:

(1)  comparative model execution times,

(2) programmer knowledge of an underlying host language, such as Fortran for SLAM or
Algol for SIMULA,

{8) report generatibn formatting flexibility, or

(4) “neat” output animation conveniently employed.
Even more influential is the tradeoff in investment versus return for adding “bells” and “whistles,”
- such as color graphics and iconic output displays, rather than addressing the fundamental issues
embodied in how a modeler translates undefined conceptual views into defined communicative forms.
This paper addresses that issue by drawing from the experiences dnd findings of the software
engineering community with regard to program specification to better understand the challenge of

model specification.

1.1. The Meaning of Specification

The importance of specification, i.e. describing what behavior is to be produced without the
details of how that behavior is produced, is clearly recognized in the software engineering commun-
ity. Significant concepts, such as data abstraction, pertain to specification rather than to implemen-

tation, for as Liskov notes (Liskov 1984, p. 56);
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A data abstraction is an idea of a kind of behavior, and the description of that behavior
is not given in a programming language. It should be given in a specification language.
A programming language is just a tool for implementing that behavior once you know
what it is.

The desirable characteristics of a good specification tool {language) are not the same as those of
a good implementation tool (language). Although this realization has been affirmed in selected large
simulation modeling projects (see (Pohoski 1981) for example), the principle of separation of model

execution from model specification has yet to be widely accepted.

1.2. An Approach to Sirnulation Model Specification

The function of specification in software development is explained in the software life cycle
model. Consequently, we introduce the software and model life cycle views in Section 2 to understand
the similarities and differences. Section 2 concludes with a comparison of the specification roles in
the life cycle models. The understanding of specification is sharpened and focused by a review of
software specification languages in Section 3, which concludes with a taxonomy. Against the general
software backdrop, the prior work in simulation model specification is reviewed in Section 4. Section
5 draws the software and model specification ideas together in an evaluative characterization of the

needs for simulation modeling. A summary with conclusions in Section 6 completes the paper.

2. LIFE-CYCLE MODELS

In this section the software life-cycle models and the simulation model life cycle are described

and the roles of specification in software and simulation model life cycles are compared.

2.1. The Software Life Cyecles

The seven major software life-cycle models proposed in the literature are briefly described
below in chronological order.

2.1.1. The Stagewise Model

Ore of the earliest software life-cycle models is the stagewise model given in (Bennington 1956).

This model proposes nine successive stages for software development: (1) operational plan, (2)
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machine and operational specifications, (3) program specifications, (4) coding specifications, (5) cod-
ing, (6) parameter testing (specifications), (7) assembly testing (specifications), (8) shakedown, and

(9) system evaluation.

2.1.2. The Waterfall Mode]

This model recommends that software be developed as a sequence of tasks “waterfalling” into

one another as characterized by Boehm in Figure 1 (Boehm 1976).

SYSTEM
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SOFTWARE
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VALIDATION
PRELIMINARY
DESIGN
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DETAILED
DESIGN

VALIDATION
CODE AND

T L oeela

DEVELOPMENT
PRECPERATIONS

VALIDATION
TEST

REVALIDATION

Figure 1. Boehm’s Waterfall Model

The original treatment of the waterfall model is given in (Royce 1970). Boehm expands each step to
include a valida’cioﬁ and verification activity to cover high-risk elements, reuse considerations, and
' prototyping (Boehm 1976). Distaso further elaborates on the waterfall model by including such prac-
-~ tices as incremental development and top-down int-egration (Distaso 1980).

2.1.3. The Automation-Based Paradigm

Balzer et al. (1983) propose a life-cycle model, shown in Figure 2, for incorporating the capabili-

ties of automatic programming, program transformation, and “knowledge-based software assistant.”
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Figure 2. The Automation-Based Paradigm.

The technology needed to support this paradigm does not yet exist. However, the benefits to be
gained are so significant that, if achieved, it could profoundly change the way the software is
developed.

2.1.4. Mixed Models

Recognizing that séftwaré is not homogeneous, Lehman {1980) categorizes programs into three
classes, 8, P, and E. S-programs constitute the class of software whose function is formally defined
by and derivable from a spectfication. Examples of this class include numerical algorithms, function
evaluation in a specified domain, lowest common multiple of two integers. P-programs are models
constructed for real-world problem solution. Both the problem statement and its solution model
{approximate) the real-world situation; for example, a program to play chess, a model for Weathef
prediction, a model of the U.S. economy. An E-program ié the one that mechanizes a human or socie-
tal activity by being embedded in the real-world it models. The existence of the program alters the
application environment, significantly changing the original problem. Examples of E-programs

abound: transaction-related business systems, office automation systems, air-traffic control systems.

Similar to Lehman’s categorization, Giddings (1984) classifies software as domain independent

(corresponding to S-programs), domain dependent—experimental (corresponding to P-programs),



and domain dependent—embedded {corresponding to E-programs).

For domain dependent software (P and E), Giddings (1984) proposes a life cycle, shown in Fig-

ure 3, that accommodates evolutionary development through prototyping.

Abstraction

validation
Specifications

verification

R

verification
Experimentation

validation

Figure 3. Giddings’ Domain Dependent Software Life Cycle.

The process of building successive protot'ypes through iterative refinement and experimentation con-
tinues until an acceptable prototype is achieved.

2.1.5. The Two-Leg Model

This model, shown in Figure 4, i1s depicted as two legs in the form of an inverted V (Lehman

- 1984).

The left leg is called abstraction, and it represents a transformation from an application concept to a
formal specification. The right leg is called reification, and it represents a transformation from the
formal specification to an operational system. Lehman et al. (1984) developed a model for the reifica-
tlon process in terms of decomposition, backtrra,ck, and recursion.

2.1.6. The Operational Approach

The operational approach, shown in Figure 5, is based on separation of problem-oriented from
implementaticn-oriented concerns, and all its features can be derived from that philosophy (Zave
1984a). The opera,tiona.l specification, which is only problem-oriented, is a complete and executable
representation of the proposed system. During the transformation phase, the specification is
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Figure 4. The Two-Leg Model.
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Figure 5. The Operational Approach Life-Cycle Model.

subjected to a series of automated transformations that preserve external behavior but change the
mechanisms producing the behavior so as to create an implementation-oriented {transformed) specifi-

catlon.

2.1.7. The Spiral Model

Based on experience with various refinements of the Waterfall Model as applied to large govern-

ment projects, Bochm (1986) proposes the Spiral Model illustrated in Figure 6. This model provides
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Figure 6. The Spiral Model.

a risk-driven approach and accommodates any appropriate mixture of specification-oriented,

prototype-oriented, simulation-oriented, automatic transformation-oriented approaches to software

development. In Figure 6, the radial dimension represents the cumulative cost incurred in accom-

plishing the steps to date; the angular dimension represents the progress made in completing each

cycle of the spiral.

2.2,

The Simulation Model Life Cycle

The simulation model life cycle is defined by Nance and Balci (Nance 1981; Balci 1986) and is

Ulustrated in Figure 7. The oval symbols in Figure 7 represent the phases; the dashed arrows

describe the processes which relate the phases to each other. The solid arrows refer to the credibility

assessment stages.
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The life cycle should not be interpreted as strictly sequential. The sequential representation of
the dashed arrows is intended to show the direction of development throughout the life cycle. The

life cycle is iterative in nature and reverse transitions are expected.

Since the advent of computers, specification has played a vital role in the development of
software. Five of the nine stages of the Stagewise Model proposed by Bennington (1956) address
specification.

Perhaps the most commonly used software life-cycle model is the Waterfall Model which incor-
porates four specification stages: system and software requirements specifications and preliminary
and detailed design specifications, The importance of specification in the early stages of the software
lifg cycle has stimulated the recognition of “software requirements engineering.” Boehm (1976)
defines this as “the discipline for developing a complete, consistent, unambiguous Specification
describing what the software product will do (but not how it will do it; this is to be done in the design
specification).”

The formal specification that can be fully translated into an efficient implementation is the cen-
tral notion of the automation-based paradigm which, if achieved, could profoundly change the way
the software is developed. In this new paradigm, the specification serves as a prototype and the
méintenance is performed on the specification rather than the implementation (source program).
Thus, the maintenance problem is drastically simplified by directly modifying the specification

closest to the user’s conceptual model, which should be the least complex and most localized.

The Two-Leg Model describes the software life cycle as
Application Concept (A) — Formal Specification (8) — Operational System (P)
with iteration (i.e., P — A) where — represents a transformation process. The A — S transforma-
fion involves many iterations of “non-formal representation — partial specification — formal
representation” until an acceptable S 1s achieved. The S — P reification process employs successive
transformations of specifications using decomposition, recursion, and backtracking until P is

obtained {i.e., S0 — S1 — 82 — ... = P). The formal specification at the apex of the Two-Leg
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Model plays the crucial “middle-man” role between A and P.

- Two types of specification constitute the underpinnings of the Operational Approach: (1) opera-
tional specification — a problem-oriented, complete, and executable representation of the proposed
system, (2) transformed specification — an implementation-oriented representation of the same sys-

tem obtained through automated transformations from the operational specification.

The specifications within the domain dependent software life cycle are evolved through iterative
refinement. Specification-oriented software development is one of the several approaches accommo-

dated under the Spiral Model.

Specification plays an important role in the simulation model life cycle for the development of
the communicative models. It is critical to detect errors as early as possible in the life cycle. Errors
induced within the specification of the communicative model are either caught in much later phases
resulting in a higher cost of correction or never detected resulting in the type II error — the error of

accepting invalid results (Balei 1986).

3. THE SPECIFICATION TASK

‘The several software life-cycle models, although exhibiting numerous differences, demonstrate
consensus regarding the need for specifying behavior prior to describing how that behavior is
achieved. Both expressions — description of what behavior or how to realize that behavior — admit
many forms. A specification language offers guidance in perceiving a system by the provision of con-
cepts describing behavior, but more importantly, a specification language is the medium of commun-

ication for expressing this behavior.

In the atterﬁpt to understand “model specification,” we review the many software specification
languages found in software engineering. Typically, such a review can be organized around the phase
of the life-cycle model supported by the language, for few support more than one. The categories of
such an organization are illustrated in Table 1 for a generic life-cycle model (probably resembling
revisions of Boehm’s Waterfall Model (Boehm 1976) most closely). With understanding simulation

model specification as the driving motivator, we find an augmented scheme to be preferable — one
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that includes the basic descriptive unit of a language: function, object, or process. Explanation of

the “basic descriptive unit” and its use in classification follows.

Table 1. The Phases of 2 Generic Software Life-Cycle Model

REQUIREMENTS DEFINITION

. Description of problem to be solved

FUNCTIONAL SPECIFICATION

Description of behavior of a system that solves problem
Emphasis on “What” system does — system is a black box
Expression of specifier’s conceptual model of system

No algorithms or data structures given

Important communication link among designers,
implementers, and customers

ARCHITECTURAL DESIGN

Identify modules to perform desired system behavior
Describe module effects and interfaces — module is a black
box

Definition of internal system structure

Design emphasis shifts to “How”

DETAILED DESIGN

® Describe algorithms and data structures needed to achieve
desired behavior of each module

. Specific instructions on how to code the system

IMPLEMENTATION

. Translation of detailed design into an executable program

. Testing program to see if it meets requirements

REFERENCES

. (Berzins 1985, Freeman 1983, Stoegerer 1984, Wasserman
1983, Yeh 1984, Zave 1984D)

3.1. A Classification of Software Specification Languages

The language classification, incorporating both the life-cyele phase and basic descriptive unit, is
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Table 2. A Taxonomy of Specification Languages -

BASIC
DESCRIPTION
UNIT

LANGUAGE

LIFE
CYCLE
PHASE

UNDERLYING
MODEL

REFERENCES

FUNCTION

Algebraic Spec

Mathematical

(Gehani 1982)
{Liskov 1875)

AXES

F,AD

Mathematical

{(Hamilton 1976)
(Hamilton 1983)
(Martin 1985a)
(Martin 1983h)

Special

Mathematical

(Silverberg 1981)
(Stoegerer 1984)

OBJECT

DDN

Message passing

(Riddle 1978a)
(Riddle 1978b)
{Riddle 1979)
(Riddle 1980)

MSG.84

FA

Message passing

{Berzins 1985)

PSL/PSA

ERA

{Stoegerer 1984)
(Teichrow 1977)
(Teichrow 1980)
(Winters 1976)

EDL

AD

FRA

{(Heacox 1979)
(Stoegerer 1984)

RML

ERA

(Borgida 1985}
{O'Brien 1983)

TAXIS

AD

ERA

(Borgida 1985)
{O'Brien 1983)

PROCESS

GIST

Stimulus response
ERA

(Balzer 1980)
(Balzer 1982)
(Feather 1983)
{Goldman 1980}
(London 1982)

PAISLey

Stimulus respense

{Yeh 19R4)
{Zave 1979)
(Zave 198%)
{Zave 1984a)
(Zave 1984b)

RSL

F.0

Stimulus response

(Alford 1977)
{Alford 1985)
(Bell 1977)
{Davis 1977}
(Scheffer 1985)
(Stoegerer 1984)
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shown in Table 2. Each category is described briefly below.

3.1.1. Funection Orientation

Function-criented specification languages require that a system be defined as a series of func-
tions which map inputs onto outputs. These languages enforce certain mathematical axioms thereby
producing a provably correct specification {Martin 1985b). However, the mathematical basis of these
languages creates several problems:

. The resulting specification is often unreadable and difficult to understand (Davis 1982).

] The languages are hard to learn and to use for people without strong mathematical back-
grounds (Gehani 1982),

° The languages are applicable only for specifying small systems (Wasserman 1983). {AXES
of Higher Order Software is an exception.)

3.1.2. Object Orientation

Ther objegt-oriented specification languages yield a model representation composed of object
descriptions with each description containing the behavioral rules and characteristics for that object
(Faught 1980). Some examples of object-oriented specification languages are listed in Table 2. Fach
of these i;nguages assists in the production of object descriptions, but the exact form of the object
description varies with the underlying model of the languége. Two models commoﬁly employed are
the Entity-Relation-Attribute (ERA) model (Chen 1976) and the message-passing model (Goldberg

1984).

The ERA model (Stoegerer 1984) views a system as being composed of entities (objects), entity
| attribufes, and relationships among entities. ERA-based Iénguages are widely used for applications
where static descriptions are necessary (such as databases), but they have limited applicability in
cases where dynamic descriptions are required. They emphasize the flow of data through system

objects rather than the interactions among these objects.

Languages using a message-passing mode] (Robson 1981a, Robson 1981b, McArthur 1984, Gold-
berg 1984a, Goldberg 1984b), unlike the ERA-based languages, are uble to express system dynamics

through a series of messége communications. In this model, each object is defined by its attributes
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and the operations it can perform. Thus, for object A to interact with object B, object A SENDS
object B a message reqﬁesting that object B perform an operation. Object B RECEIVES the mes-
sage and performs the requested operation, which may include sending a message to another object
or back to object A. This SEND and RECEIVE format of object interaction has potential for allow-
ing description of some of the concepts needed in simulation models such as timing constraints, con-

currency, synchronization, and environmental interaction.

The choice between an ERA-based or a message-based language is very dependent on the type
of system fo be specified. Both models encapsulate system behavior according to objects thereby
easily localizing specification information. But the major advantage of using the object-oriented
approach is that the resulting specification corresponds directly and naturally to the real system
(Borgida 1985, p. 85).

3.1.3. Process Orientation

In a process-oriented specification language, a system is decomposed into processes, where a
process may represent an object or an activity. Both static and dynamic deseriptions of the system
are possible. The static properties of each process are defined by enumerating its possible states,
inputs, and outputs (Yeh 1984, Alford 1985 ). The dynamics of each process are described as a series
.of state transitions with each state tfansition producing certain responses and yielding a new process
state. The resulting specification shows both data flow and control flow (Zave 1972) as well as the
relationship of each process to its enviro_nment. Each process is assumed to operate in parallel with

and asynchronous to the other processes (Zewe 1984b).

The origins of many process—oriented specification languages can be traced back to the need to
specify operating systems. Thus, these languages are well suited for applications involving complex
controls and embedded systems {Zave 1982). Also the underlying stimulus-response model is actually
a modified finite state machine thergby making 1% possible to use results from finite automata theory

in analyzing the specification {Alford 1985 ).

The process-oriented languages listed in Table 2 have several weaknesses:



. They excessively employ formal notation that is difficult to understand and learn.

. They may be difficult to apply to systems other than the types mentioned in the previous
paragraphs.

. The resulting specification may not be naturally hierarchical nor modular (Alford 1985,
Zave 1982).

. The languages, with the exception of RSL, are still in the development stages.

3.1.4. The Review Summary

A review of the literature on software specification languages reveals a variety of approaches to
specification and numerous formalisms. Examining the basic descriptive unit and the phase of the
life-cycle to be supported enables an effective classification of software specification languages. Most
of the languages reviewed are developed for certain application domains; thus, they are easier to use

and produce a “better” specification when applied to problems in these domain areas (Zave 1984b).

3.2. Simulation Model Specification Languages

The need for model specification and model documentation has not escaped notice in the simu-
lation research ‘community (see (Nance 1977)). However, a consensus as to the precise nature of this
need and to the proper means for meeting it is clearly lacking. The main challenge in the design of
any Simulation Model Specification and Documentation Language (SMSDL) is how to express model
dynamics (Nance 1977) because the dynamic dependencies in a simulation model are inherently com-
| plex (Nance 1984). Examples of SMSDLs .a,re DELTA, GEST, ROSS, a SIMULA derived SMSDL
proposed by Frankowski and Franta, and the Condition Specifications. Each is briefly described.

3.2.1. DELTA

The DELTA language (Holback-Hanssen 1977, Handlykken 1980) represents one of the most
extensive SMSDL efforts. An object-oriented specificatio.n language, DELTA uses a mixture of for-
mal and informal constructs to describe a system as a serie.s of objects, with attributes, states, and
the actions each object performs. The language encourages the production of s specification which is
appropriate for communicating details of system behavior to an audience with diverse backgrounds.

Its SIMULA-like constructs enable the expression of simulation model dynamics. Specifically, one
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can describe time, events, time-consuming actions, instantaneous actions, parallel actions, state

changes, and activity interruptions.
Initially, the developers of DELTA had planned to design three languages:

(1)  a general systems description language, DELTA

(2)  ahigh level programming language, BETA

(3) and a systems programming language, GAMMA.
As of 1980, only DELTA exists, and no mention is made of GAMMA. The developers plan to use
DELTA as the overall system development language and to translate the DELTA system specifica-

tion into the executable programming language BETA.

3.2.2. GEST

Based on the principles of system theory, GEST (eren 1979, Oren 1984) provides a conceptual
framework for specifyihg discrete, continuous, and memoryless models. The static model structure
consists of the definition of input, output, and state variables. The dynamic model structure is
described via a series o.f Stafe transition functions. A GEST specification also incorporates Zeigler’s
(Zeigler 1984) experimental frame concept. An experimental fraine is the specification of the input
and output data necessary for execution of the simulation model to answer the questions posed in the
study objectives (Zeigler 1984, p. 22). Information specified in a GEST experimental frame includes
such items as the basic unit of time, simulation termination conditibns, state variable initializations,
and data collection details (Oren 1984, p. 316). Future plans are for GEST to be integrated into a
computer-assisted modeling system (Oren 1984},

3.2.3. ROSS

Developed by the RAND Corporation, ROSS (Klahr 1980, Faught 1980, McArthur 1981,
McArthur 1984), represents onme of thé first attempts to combine artificial intelligence and simula-
tion. It is designed for developing interactive knowledge-based event-driven simulators for particular
applications. Cﬁrrently, two combat-oriented simulators (SWIRL (Klahr 1982) and TWIRL (Klahr

1984}) have been developed. ROSS is not a specification language, but rather it is a LISP-based sys-



tem which supports the development of the above mentioned simulators. An example of an object-
oriented message-passing language, ROSS demonstrates how Al and simulation can be combined.

3.2.4. SMSDL — Frankowski and Franta,

The proposal for a process-oriented simulation model specification and documentation lajnguage
for specifying discrete-event simulations comes from Frankowski and Franta (Frankowski 1980). Tn
this SMSDL, the model element (or object) is the primary unit of specification. Each element is
described by attributes, axioms, and a scenario. Of these three, the scenario is of most interest

because it contains the details of an element’s behavior thronghout the life of the model.

The scenario describes the changes of state in the model which trigger the behavior of each ele-
ment. These changes of state may be invoked by the element itself or other model elements. The
SMSDL does not differentiate between behavior dependent on a change in state or a change in time.
Time is simply viewed as an attribute which may produce a state change. The behaviors that are
specified in a scenario are referred to as actions, Constructs are available in the SMSDL for expreé-
sion of interruptible and noninterruptible actions, actions that have duration, concurrent actions,

and actions that occur in a predefined order.

Strongly reflecting the SIMULA influence, the SMSDL nevertheless represents an attempt to
produce a readable, English-like specification which is suitable for communicating with a diverse
audience. Bu$ more importantly, the SMSDL addresses some of the difficulties in expressing model
dynamics and offers some possible solutions.

3.2.5. Condition Specification

The Condition Specification (CS) is suggested by Overstreet (Overstreet 1982, Overstreet 1985).
The CS clearly achieves the stated goal of a world-view-independent specification. In addition to the

property of world view independence, a CS has the following properties: (Overstreet 1982, p. 5}

(1)  Achieves independence from implementation languages.
(2)  Creates an analyzable specification.
(3)  Assists in detecting errors in the specification.

(4)  Permits translation to a specification in any of the three traditional world views.
Poce 1%




(5) Enables any discrete-event simulation model to be completely described.
(6) Encourages successive refinement and elaboration of the specification.

(7)  Produces a specification in which the model elements have direct correspondence to the
elements of the modeled system.

A Condition Specification consists of three components (Overstreet 1985, p. 196). The ¢nterface
specification identifies the input and output attributes of the model, and it is through these attri-
butes that the model communicates with its environment. The report specification describes the
data to be produced as a result of an execution of the simulation. The specification of model dynam-
ics is the most important CS component, achieved through expanding the object specifications (static
model structure) into a set of transition specifications. The transition specifications describe the
changes that occur in the model as a series of Condition Action Pairs (CAPs), a rule composed of a
boolean condition and an action to be performed whenever the condition is true. A boolean condition
may be based upon time, state, or both. An action represents the model’s response to the boolean
condition and may include such responses as changing the value of an object attribute, scheduling

another action to occur in the future, or terminating the simulation.

4. The Role of Simulation Model Specification

The simulation model life cycle of Figure 7 indicates the scope of items which may require
specilication in a large simulation project. While many are similar to those of any large software
project, several are either unigue to simulation projects or oceur frequently in simulation but rarely

in more general software projects.

4.1, Differences in Simulation Specification and Software Specification

Several aspects of a simulation project for which specifications may be useful but which are not
usually part of a general software project are listed below; the list emphasizes the differences in the

problems of general software projects and simulation projects.

¢ An explicit reliance on modeling is necessary. Conceptual, communicative, programmed,
and experimental models must be created and tested. Preference must be given to simple
models whick still satisfy the study objectives, but often it is not clear how much detail is
necessary. Abstraction requires insight.
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. Real data collection requirements for establishment of model parameters, both static and
dynamic, model input data, and output data for model validation,

° For many models, the data collected during a simulation run are observations in a statisti-
cal experiment. As such, the experimenter may be concerned with ezperimental destign and
making appropriate inferences from the data collected.

° Validation procedures can be significantly more difficult than for general software. If a
model includes stochastic components, validation of output data may involve siatistical
testing. The problem is particularly difficult if no real system data are available for vali-
dating mode! output data.

° Sensitivily analysis may be required to determine how sensitive model output data are to
simplifying assumptions and parameter estimates.

. Issues of model credibility must be addressed. While this is similar to assessment of
software reliability in the general software domain, it is a persistent issue in the simula-
tion domain,

. Often the modeler, a specialist in an application field, is also the programmer. While this
occurs in general software development, it is significantly more prevalent in the simulation
area.

® A reliance on statistical analysis is necessary for model definition, model validation, and
proper interpretation of model results.

4.2. Similarities With General Software Requirements Specifications

Stmulation projects have many problems which are identical to those of any large software pro-
jects. The hope is that many of these can be addressed with the use of more effective general

software specification tools.

° The management problems for large models are similar to those of any large software pro-
ject. The lack of good costing tools is particularly acute here. Reliable costing and
scheduling will not be achieved without betber product specifications.

¢ A model should only be as detailed as recessary to produce needed reliable results. Since,
for some models and study objectives, the degree of required detail cannot be known when
the project is started, some projects are hard to plan, schedule, and budget since accurate,
complete specifications cannot be formulated without experimenting with some version of
the completed product. This occurs in some general software projects.

) Technology transfer is slow in both areas. Costs of reeducation limits utilization even
when significant improvements are possible. Utilization of new technologies in large pro-
Jects is appropriately perceived as risky since new approaches are not proven effective.

*  Reusability is not well supported in either ares.

. The complezity problems will not be eliminated with the creation of more effective techno-
logies. As more effective means are found to deal with existing complex systemns, construe-
tion of new systems with additional complexity will be perceived as cost effective.
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o  Current technologies induce significant overheads which are not cost effective for small,
limited-use projects. If is often difficult to anticipate project size or length of use.

For large software projects, individuals with different responsibilities will make different uses of
the requirements specification (Berg 1982, p. 3). Some typical roles and responsibilities are given in

Table 3.

Table 3. Roles and Responsibilities of Users of Specifications

Role " Respounsibility

Manager Prepare (and justify) cost estimates, time
schedules, and work assignments.

Validator Confirm that the specification addresses the
“real problem.”

Verifier Confirm that the implementation satisfies
the specification.

Implementof Produce an efficient, well-designed
implementation.

Since the communicative model serves many of the same functions as a requirements specification,

similar uses are made of it. Thus, it is a crucial component of the specification process,

4.3. SPLs as Specification Languages

One objective of the preceding discussions is to indicate the variety of uses which may be made
of a communicative model specification. SPLS, because they are designed for the creation of pro-
grammed models, are appropriate for specifying only limited number of the items requiring specifica-
tion in a large simulation project. Considering the roles listed in Table 3, the communicative model
specification is of key importance to the individuals in the roles of manager, validator, verifier, and
implémentor. Use of an SPL for specification of 2 communicative model may well assist the imple-
mentor and the verifier; however, its effectiveness in meeting fhe manager’s needs for planning apd
costing is questionable. Also questionable is its ability to assist the validator in confirming that the

specification addresses the “real problem.” A central thrust in the software engineering community is
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to find effective support for early stages of the software life cycle. By supporting later rather than

early stages, use of SPLs as specification languages runs counter to these efforts.

In addition many widely used SPLs provide too few levels of abstraction for large models. For
exémple, if a large model is deseribed in GPSS, the language provides very limited features for allow-
ing a reader to understand the model first in broad terms, and ther to proceed to understand the
model in progressively more detailed layers. SPLs which work effectively for deécribing small sys-
tems usually do not scale up to handle large communicative models effectively. This is an unfor-

tunate feature of the iconic simulation modeling tools.

The world view of a particular SPL may be a hindrance rather than assistance in specifying a

particular model. (Henriksen 1981)

Use of an SPL for specification of communicative models encourages premature concern with
implementation techniques. Creation of a programmed model requires addressing three distinct
aspects of the resulting executable program:

{1) The behavior of the model must be specified.

(2) Techniques for data collection during execution must be determined and perhaps the ana-
lyses to be performed on model! termination.

(3) An efficient implementation must be created.
Effective solutions are confounded when problems of model behavior, data collection and analysis,
and efficient implementation are addressed simultaneously. Most SPL provides mechanisms for deal-

ing with all three, but they are distinct, even if related, problems.

5. Conclusions

The summaries of ‘sections 2 and 3 on software life cycles and specification languages give
several observations about the state of software engineering.

(1) A consensus exists in the importance of specification iz a large software project.

(2) A lack of consensus exists on how one should specify the requirements of a large software
product.

(3} A lack of consensus exists on the proper steps to be used, that is, the methodologies, in the
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creation of a large software product.

A variety of specification languages and methodologies have been proposed and several are com-
mercially available. A serious short-coming has been the lack of effective evaluation of competing
specification languages, methodologies, and now workstation-based environments which claim to
address these problems. Most “evaluations” are by product developers whose objectivity is suspect.
Celko at al. {Celko 1983) describe one large independent, and inconclusive, evaluation which speci-
fied the same system with three different languages. Stoegerer provides an informal summary, by
way of a matrix, of the features of a variety of specification languages (Stoegerer 1984}, Recent
suggestions on how these evaluations might be performed have been made by {Arthur 1986} and
(Welderman 1987) but it is clear that the proposed evaluation methodologies must evolve with

experience.

Thus the simulation community cannot yet look to the software engineering community for a
proven reliable solution; specification languages and development methodologies are areas of much
active research. In addition, how effectively to utilize the powerful networked work stations now

available at modest costs have added to this uncertainty.

Several other related problems in the simulation area are common to general software specifica-

tion. Effective solutions to these problems have not been found for general software.

¢  Management needs for costing, budgeting, scheduling, and tracking large projects are
poorly addressed.

e  Size and anticipated use effect the overhead which should be acceptable, but are these are
difficult to anticipate.

We more often err by underestimating the long-term bemnefits of creating items such as a com-
municative specification, but as stated in The Soul of a New Machine, “Not everything worth doing

is worth doing well.” We do a poor job of distinguishing.

Several items which should be specified in a large simulation project are either unique to simu-
lation or exist here to a significantly greater degree then for general software systems. These are

summarized in Section 4. Tools and methodologies to assist in these areas will not come from the
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general software community.

Experience from software engineering contributes more in suggesting the directions which
should be taken in the simulation area than in providing solutions. We recognize the important and
multiple role of specifications. We recognize the advantage in identifying the steps which should
occur in the simulation model life cycle and the cyclical nature of the process. We recognize the
importance of providing more effective tools, methodologies and environments to assist in this pro-

cess.
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