Coverage Analysis Methods
for Formal Software Testing

J.A.N, Lee
Xudong He

TR 87-4

COVERAGE ANALYSIS METHODS
FOR FORMAL SOFTWARE TESTING

January 7, 1987

J.A.N. Lee
Xudong He

Department of Computer Science
Virginia Tech

Blacksburg VA 24061

(703) 961-5780

Abstract

Software creation requires not only testing during the development cycle by the development staff,
but also independent validation following the completion of the implementation. However in the

Keywords: Testing, Regression Testing, System Requirements, Coverage.

! The research described herein was partially developed under contract for the Naval Surface Weapons
Center, Dahlgren VA, Division N44 under the supervision of Mrs, Penny Selph. Contract No.
N60921-84-D-A127, Southeastern Center for Elecirical Engineering Education (SCEEE), St. Cloud, FL.,

Abstract i

Table of .Contents

Introduction T e it et e, ettt e e, oo 1
TheProblem ..o 2
The Coverage Algorithm I S Cerean Ceevaaaa, Pt e it 5
Somory Cutting Plane Method ... /1[I ITTI T 5
Branch and Bound ., Rt 7
anphedt Bnumeration LT 7
A Comparison Based on Computational Results 0 0. [/ /1T 7
Requirements Coverage ..., 0 I 8
Post Coverage Analysis Considerations,..... e et e e i e, 9
pogession Testing ... LTI 9
Recommendations for Less than 100% Coverage i i0
Fest Matrix Partitions ... T e 1
Conelusions .+ 13
References oo 15

Table of Contents iii

Introduction

Testing is a fundamental part of the development and maintenance life cycles of any software sys-
tem from the very small to the enormous, though the intensity of testing probably increases expo-
nentially with the size of the intended product and its required reliability level. Unfortunately
although the degree of testing needs to increase exponentially, the time provided for formal, or ac-
ceptance, testing is often limited to linear increases, Many of the projects with which we have been
involved in the Acceptance Testing phase had the time period available for testing set up to 5-8
years previously. The cumulative slips in the timing of the delivery of components or integrated
systems were taken from the final testing period so as to maintain the promised delivery point.

Complete requirements coverage is not required when testing a system during the maintenance
period and following the modification of certain functionalities. Two conditions can exist in this
situation:

1. The modification corrects an error and the original system specifications have not been altered,
or

2. New features have been added to the system together with new requirements which require
validation.

In either situation it is not necessary that the complete test suite be applied to the system; instead,
only those requirements which are affected by the modification need to be tested. A methodology
is proposed by which the appropriate tests can be selected.

In some instances we have also been faced with the possibility of not being able to conduct a
complete set of acceptance tests in the time available and thus were required to provide a recom-
mendation as to which subset of tests would provide the greatest coverage of the requirements in
the time allotted. A methodology for this test selection is accomplished is presented.

Introduction 1

The Problem

The formal testing of a software system proceeds in three steps:

L. The development of a test suite of activities composed of programs and/or procedures (which
may be manual or administrative), with the objective that every requirement in the system is
to be examined,

2. The verification of the adequacy? of that collection of activities with respect to the “coverage”
of the requirements, and the reduction of the test suite to remove any redundancies, and

3. The application of these activities to the targeted system and the formal documentation of the
comparison of the expected versus the actual results.

This paper deals with the second of these activities, the third being assumed to be a normal outcome
of the previous two and not to be considered here. However before turning to the consideration
of the second problem, let us review the common methods for developing an initial test suite.

There are a number of different methods for acquiring an adequate test suite. Clearly the suite
should contain tests which, for each requirement, (1} are typical of the applications of the system,
and (2) test the limits of the domain of application.? These tests may be developed as a part of the
implementation process itself by the system development group or, more appropriately, are created
independently by the testing organization. Where a system 1s to be placed in an already existing
environment with an existing library of applications {data sets or procedures) that library is a can-
didate to be used as the basis for the test suite. In the case of the introduction of a new compiler
into an environment which already contains a library of programs written in that language, or a li-
brary that can be readily converted to that language by mechanical means, there is a ready-made
test suite of typical programs. :

Whatever the source of the test suite, the individual tests need 1o be placed under a configuration
Management system in the same manner as the modules of the system under test is being controlled.
In fact, links between the modules and their tests are highly appropriate. As the system is main-
tained, any modifications to the modules can be validated by the linked tests, or if the requirements
are changed the tests must be updated to accommodate the new module functionalitics. From the

reference requirements and fulfilling modules. Let us propose that the test matrix is row indexed
by the system requirements, and column indexed by the test identifiers. Idealistically, such a test
matrix will be square, there being exactly one test for each requirement. If there are more tests than
requirements then it is likely that some requirements need subdivision. For example, it is likely that

2 We will assume that adequacy has different meanings depending on the context -- 100% (but minimal)
coverage during acceptance testing, less than 100% in the maintenance phase or in special cases of "ran-
dom” independent testing,

3 Goodenough and Gerhart [9] suggest that there are five conditions which must be met by a test suite; in
this study we consider that these conditions are part of the requirements specifications to be met.

The Problem _ 2

each requirement is matched with tests using typical data and tests which probe the boundaries of
the data domain 4 Truly these represent two different requirements.

Prather [17] provides an example of a program which classifies triangles, which is required to con-
form to the following specifications:

Input: Three positive integers,a < b < ¢,
Output: An indication as to whether:

1. The integers do not represent the sides of a triangle,

The integers represent the sides of an equilateral triangle,
The integers represent the sides of an isosceles triangle,
The integers represent the sides of a scalene right triangle,

The integers represent the sides of a scalene obtuse triangle,

A

The integers represent the sides of a scalene acute triangle.

From these initial specifications Prather distinguishes eight functionalities to be tested by dividing
the first into two cases representing the invalid and valid cases {which we shall designate as 1; and
lv respectively), and by noting that there are two distinct conditions for identifying isosceles trian-
gles (3a and 3b). Prather then provides eight data triples t1 ... t8 each of which tests an individual
requirement, resulting in the following test matrix:

Test Identifier

tl t2 t3 t4 t5 t6 t7 t8

1i 1

iv 1 1 i 1 1 1 1
2 1

3a 1

3b 1

From this matrix it is obvious that a special test for requirement v (that is, test 2) is unnecessary
since that same requirement is incidentally validated in other tests. That is, 100% of the require-
ments could be covered with a less than square test matrix,

A second (and third) level of test development can be envisaged in which pairs (and triples) of re-
quirements are tested in combination Pairings would result in squaring the size of the matrix, and
sequences of pairs (A before B, A after B) would result in a further doubling of the matrix dimen-
sions. Many combinations and sequences are likely to be impossible or highly unlikely, and thus
may be eliminated from consideration, However any test suite which considers pairings of re-

quirements, also provides for tests of individual requirements. Consequently, one may suggest that

4 We consider a set of tests each of which have the same objective but which differ only by the data used
to be a (large) single test.

The Problem 3

tests on only individual requirements may be eliminated from the test suite, provided that those
same requirements are “covered” by the pairings related tests,

An alternative approach to acquiring tests is to use existing scenarios (programs or procedures).
Similarly, performance requirements may involve benchmark tests which not only provide for re-
source quantifications but also exercise certain other requirements.

During the construction of the test suite, each test should be analyzed to determine the require-
ments which it covers. That is, while a test may be designed to cover a specific requirernent, other
requirements may be covered incidentally, For example, most tests will involve input or output,
even though the test does not have the specific objective of testing those facilities. The results of
this analysis should be incorporated into the test matrix. Following such an analysis new tests
should be acquired (or planned) to remove any deficiencies in the coverage of the requirements.
At this stage it is not necessary to eliminate any tests from the test suite as the result of recognizable
redundancy of coverage. At the unit (or module) level, it is better to utilize a test specifically de-

At the stage of formal testing, the test matrix for the complete suite of tests should be created and
analyzed for redundancy. The coverage method described in the next section performs such an
analysis and produces a reduced test suite which still provides 100% coverage of the requirements.
The choice of tests is determined on the basis of the cumulative priorities of the requirements as
defined by the user. That is, the priority or importance of a test is the sum of the priorities of the
requirements it covers. In terms of the algorithms for requirements coverage, the inverse of this
cumulative priority is used as the “cost” of the test. Thus the coverage algorithm selects that set
of tests which has the minimum cost.

In many cases, the time available for formal testing is not sufficient to provide for 100% coverage
of all the requirements. On the assurnption that unit and pre-formal testing has provided 100%
“coverage of the first-level gequirements, a formal or acceptance test may cover only a sample of the
requirements. One of the ‘methodologies described in the succeeding section provides an ordering

test matrix may be further reduced using the coverage algorithm, and thus may be generated initially
either from the original {(unreduced) test matrix, or that generated from the coverage analysis pro-
cedure.

The Problem 4

The Coverage Algorithm

The covering problem is not uncommon, having been applied previously to such problems as
scheduling (air-line crew, truck), political redistricting, switching theory, fine balancing, information
retrieval, and capital investment. Mathematically the coverage problem can be expressed as:

—

mintmize cx
subjectto EX = &

and x=10o0rl (j=1,.n)

where B = (ey) is an m by n matrix whose entries e; are 0 or 1, ¢ is a cost row (or vector), X is a
binary vector which identifies the tests to be conducted, and e is a unit vector.s The solution to this
problem is well known, but, to our knowledge has not been applied to the problem of choosing the
sct of tests to be conducted in the software development process.

There are three methods in solving 0-1 integer programming problems, especially the covering
problem. They are Gomory Cutting Plane, Branch and Bound, and Implicit Enumeration. In the
tollowing sections, these methods are briefly introduced and compared.

Gomory Cutting Plane Method

The cutting plane method was first used by Dantzig in solving integer linear programming prob-
lems, but the first convergent algorithm was developed by Gomory [8]. In this method, the original
integer programming problem is initially solved as a contiguous linear programming problem by the
primal or dual simplex method, then a systematic cutting process starts in order to find the optimal
integer solution.

In every step (cut), a new constraint is added 1o the previous set of constraints so that a portion
of the original solution space is cut away and all feasible integer solutions are preserved. During
the cutting process, the optimality is maintained. Theoretically, the algorithm wil] find 4 feasible
optimal solution in finite steps if such a solution exists. The key point of the method is the gen-
eration of “Gomory cuts” or “Gomory constraints”,

Let the original problem be:
Minimize: Z= ¢ ¥

Subject to:

3 In the test matrix, the cost vector represents the cost of conducting each test, which is to be minimized.
The cost vector is computed in this program as the inverse of the sum of the priorities of the requirements
covered by each test,

The Coverage Algorithm _ 5

4t apxy, -t ax, 2 b

Xyt @y, - T DXy 2 By

amlxl+am2x2+ ok amnxn 2 bm

where x, = 0 or]

By introducing m surplus variables Yirn (1fle1 < m), the original problem can be transformed into
an equality problem:

Minimize: Z= ¢’
Subject to:
atapy,, -t ay . Jrin=b

Gt Gyt Ay -y, =b,

amlyl+am?yz+ - F am n 'ym-i-n:bm
where y, 20 (1 < < m+n)

Letv, (i = 1,..,m) designate a basic variable which is in the initial linear solution set, and
w; (j = 1,..,n) designate a nonbasic variable. Then we have the following equation:

V= d - .g%’,— (1 <i<n) M

4

Assuming that d, is non-integer, then d, can be cxpressed as an integer part [d] plus a fraction part
{d} so that:

4= ld] + {4}, O < (d) < 1) @
Similarly,

€ = [gy] + {eij}! (0= {e} <1 3
Thus

%= A1+ {d)) - E e + (e, @

By simple arithmetical manipulation, we have
Ml Zlelw = {4} — 3 (e, (5)

Since we need optimal integer solution, v and w, must be integer. That is, if the left hand side of
formula (5) is integer then so is the right hand side. By formulae (2) and (3) and the non-negativity
of solution (w; = 0), we have the following inequality: .

(@) - E(epw, < 0 ©)
That is
% (edw, = () ™

The formula (7) is called Gomory Cut or Gomory Constraint. By adding a new surplus variable
5, the formula (7) can be transformed into a new constraint equation:

The Coverage Algorithm 6

Ziew =5 = (4) ®)

By adding new constraints to the original problem and repeating the dual simplex method, we ef-
fectively reduce the solution space and finally reach an integer solution while maintaining optimal-
ity.

Branch and Bound

The branch and bound method was originally developed by Land and Doig [12];, since then many
variations of the method appeared in the literature. The principle of branch and bound is an sys-
tematic search for the feasible optimal solution of a given problem. The success of the method is
based on the fact that only a small portion of the solution space need actually be enumerated ex-
plicitly, the remaining part being tmplicitly enumerated or eltminated since it contains no optimai
solutions. The feasibility criteria is maintained throughout the search process.

The method usually consists of three steps: branching, bounding and fathoming. In a branching
step, the feasible solution space is divided into smaller subsets, each corresponding to a subprob-
lem of the original problem. In a bounding step, a upper bound value is determined for the ob-
jective function (the minimization problem). The upper bound value should be the best integer
solution encountered so far. In a fathoming step, a particular subset of the solution space is ex-
cluded from further consideration for one of the following reasons: no feasible integer solution in
it, the upper bound value for the subset exceeding the known upper bound value of a feasible in-
teger solution, or its best feasible integer solution has already been reached.

The search process is a repetition of the above three steps. A replacement for the best upper bound
value is used once a new feasible integer solution with lower upper bound value is found. The
systematic search terminates when the whole solution space is enumerated either explicitly or im-
plicitly and the upper bound vahue which remains uncontested is the optimal integer solution of the

Implicit Enumeration

Implicit enumeration method was injtiated by Balas [1] in solving 0-1 integer programming prob-
lem. Later, many improvements were made by Glover [7], Geoffrion [6] and many others [1§]. In
implicit enumeration method, only a small subset of all possible combinations of search space is
explicitly enumerated. Though the method can be considered as a special case of branch and bound
method, a different approach is taken to obtain efficient solutions to 0-1 integer problems.

The heart of implicit enumeration algorithm is a Point Algorithm which keeps track of the vartables
already fixed at 0 or 1 and the remaining free variables. The remaining free variables and the asso-
ciated constraints constitute subproblems which are of the same type as the original (-1 integer

A Comparison Based on Computational Results

The implicit enumeration method is the best in solving 0-1 integer programming problems due to
its strople principles and machine round-off errors free. So far, it is most widely used. [11], [16] and
{18]. The problem with branch and bound method is that it is too general so that large problems
can not be solved. _

The Gomory cutting plane method is not very reliable in solving 0-1 integer programming problems
due to machine round-off errors, a random change of the constraints may increase the number of
iterations significantly. Oaly first few cuts progress towards the optimal solution greatly, then the

The Coverage Algorithm 7

solution process remains constant for many iterations. The implementation, detailed in the next
section overcomes these limitations.

Requirvements Coverage

The requirements coverage analysis algorithm is based on the work of Lemke, Salkin and Spielberg
[13] which uses implicit enumeration with linear programming method. The heart of the algorithm
is a Point Algorithm which keeps track of the variables already fixed at 1, those cancelled (fixed

+ .

at 0), and the remaining free variables which form the subproblem at next level.
Several techniques are used in the algorithm to speed up the searching process.
1. Linear programming;

Dual simplex method is repeatedly used in solving the subproblems at different level, starting
with the original problem, so that several vatiables may be fixed at the same time instead of
one at a time. Hence searching time is considerably reduced.

2. Ceiling Test:

The ceiling test is used in several places in the algorithm. Two ceilings are kept throughout the
whole searching process. One is the optimal (minimal) cost for the corresponding linear pro-
gramming problem of the original coverage problem. It is fixed once it is obtained from
solving the linear programming problem and is a lower bound of the original integer pro-
gramming problem. This ceiling is used to judge whether the current integer solution is opti-
mal or not. Another ceiling is the cost associated with the best integer solution found so far;
it may be replaced once a better integer solution is found and is used to fathom those branches
of the searching tree which yield costs worse than it. Thus, the search space is greatly reduced.

3. Extreme point checking:

When a feasible integer solution ¥ is not an extreme point (i.e. the columns of B corresponding
to y;= 1 and the extended columns corresponding to positive slack variables form a linear de-
pendent set), the solution can be reduced to an extreme point of the corresponding linear
problem with a better cost so that a tighter ceiling can be obtained and thus speed up the
fathoming process.

4. Extracting and solving the sub-subproblem:

tive fractional variables and the tows corresponding to the constraints they satisfy. By round-
ing an extreme point to an integer solution, some variables may violate the constraints. A
better integer solution can be obtained by deleting those variables violating constraints,

The results of this analysis are simply a listing of the tests which should be applied to the system
under test in order to assure that 100% of the requirements specified in the system documentation
are covered. Where there is a choice between subsets of tests which would satisfy the requirements

The Coverage Algorithm : 3

Post Coverage Analysis Considerations

The reduced test matrix is most useful in acceptance stage of testing since it relies to a great extent
on the authenticity of the tests which are applied incidently during a test with some other primary
objective. H is possible to alter the weighting of an element of a test vector in the original matrix
by using other values than zero (0) and one (1). Provided that the implementation of the coverage
algorithm uses only the existance of a non-zero value {as contrasted with the use of the actual
value), emphasis can be given to the objective of the test by increasing its associated value in the
test vector, while maintaining the values associated with the incidental tests at a lower value.

Regression Testing

The sclection of a submatrix for regression testing is accomplished in two stages:

1. Given the set of requirements to be tested that is, the requirements which are affected by the
the changes which have been mmplemented), select the set of tests from the (original or reduced)
test matrix which cover these requirements. This process reduces the columns in the matrix
to those applicable.

2. From this column-reduced matrix, the incidently tested requirements can be deduced, and if
necessary the matrix can be further reduced to include only those rows which apply to the re-
quirements covered,

Consider the following example and sequence of reductions from an original test matrix:

Test Identifier

tl t2 t3 t4 t5 t6 t7 t8

1 1 1 1
2 1 1 1

3 1 1 1

4 1 1

5 1 1

6 1 1

7 1 1

8 1 1 1

Assuming that the priorities of the requirements are uniform, the coverage algorithm reduces the
test suite to three tests ~- test numbers 2, 4 and 5. The resultant test matrix is:

Post Coverage Analysis Considerations 9

Test Identifier

t2 t4 t5

1 1

2 1 i

3 1
4 1

5 1
6 1

7 1

8 1

This reduced test matrix, containing only three tests obviously has the same coverage as the original
matrix. The cumulative priority of the tests (the sum of the priorities of the requirements covered

(3, Sand 8). Thus the preferred order of omission should place test 15 as the Jeast likely to be
omitted; the other two having equal priority, cost, and number of omissions could be omitted in
‘any order.

If regression testiﬁg were 1o be conducted from this test suite with the need to test (say) require-
ments 2 and 6 then tests 12 and t4 would be used:

Test Identifier

t2 t4
1 1
2 1 1
4 1
6 1
7 1

This regression test matrix provides minimal coverage and does not need to be further analyzed for
coverage. The same regression test matrix would have been achieved by selecting the regression test
matrix from the original test suite before coverage analysis and reduction, that is reversing the order
of the coverage analysis and the regression analysis phases.

Recommendations for Less than | 00%% Coverage

In order to provide guidance on the set of tests which should be applied when less than 100%
coverage of the requirements is permissible, a listing of the tests in ascending priority (or descending
cost) order can be created. The tests in the latter part of this list are then those with the highest

Post Coverage Analysis Considerations 10

priotity and which should be included in a less than complete coverage test suite. The portion of
the list to be used should be the subvector of tests in priority order which includes the test with the
highest priority. Ifit is necessary to ascertain which requirements are not covered in this subvector,
then the regression analysis method can be used to create a reduced test matrix and consequently
a reduced requirements coverage list,

Test Matrix Partitions

In a very large system, the test matrix may be too large to be processed in a single pass. In other
situations, it would be preferable to partition the test suite into segments and to concentrate the
tests for specific purposes. For example, while it 1o be expected that most system tests will involve
input and output as incidental activities, it may be preferable to partition the test suite so that tests
with the specific objectives of testing the input/output requirements are individualized and are not
pre-empted by tests which cover the same requirements incidently.

Where such partitioning is preferred, or where the test tnatrix must be partitioned for the purposes
of processing, the matrix should be partitioned by columns (tests) which are interrelated. It is likely
that these partitions will not have 100% coverage of the requirements in the system, and thus to
analyze the partition for coverage will require the elimination of the non-applicable requirements.

Once the partitions have been reduced, each partition may then be treated as a single test, the test
vector being the sum of the individual coverages. The partitions may then be reassembled into a
new test matrix in which each column represents a partition. This matrix may then be further re-
duced if necessary.

Consider the following matrix, which has been divided into three partitions (columns 1-4, 5-10, and
11-15):

Partition Number
1 2 3

1010 000000 00000
0011 000110 01000
0000 100100 00111
1601 000001 00000
0000 100101 10011
1100 010101 01010
1010 101101 00000

which collapses to the matrix below in which each column represents the coverage of the partition
of the original test suite:

Partition Number
123

P bt €3 =)
o e e e O
O O O

Post Coverage Analysis Considerations 11

which can be reduced to include only partitions 1 and 3 while still providing the necessary coverage,
Thus independent of the possible reduced form of partition 2, all of its coverage can be provided
in the other two partitions.

Post Coverage Analysis Considerations 2

Conclusions

Alternatively a test plan may be developed which matches tests to system requirements independ-
ently of the top level development design specifications. In either case there is a need of ensure
100% coverage of some chosen set of facilities. In the former case this may be based on coverage
of system features (culled from the design specification) while.in the latter the system characteristios
are best exemplified by the original system requirements docoment. A test plan should then require
the management of a test matrix which records the incidence of tests and facilities tested,

However as a part of the development of individual tests it is often necessary to utilize elementary
features (and thus test certain requirements) in order to initialize the system in preparation for
testing a specific feature or requirement. In fact, most tests are designed with specific objectives in
mind, though other facilities are utilized. It is most likely that given a set of tests and their primary
objective features or requirements that close to 100% coverage (that is, not involving a high degree
of redundancy) is achieved. However, if the incidental uses of features or requirements is taken into
account considerable overlap and redundancy is present in the test set.

Returﬁing to the triangle classification cxample, one might expect that a valid program should
identify an equilateral triangle as also being isosceles and thus that a single test in which

Output: An indication as to whether:
1.
They are the sides of an equilateral triangle,

2
3. They arc the sides of a (non-equilateral) isosceles triangle,
4

This cover analysis package will be most useful in the latter case, enabling the test manager to re-
duce the test set to only that set of tests which are essential to provide the desirable coverage, Ini-
tially the system can be used to confirm 100% coverage, secondly to reduce the number of tests to
a minimum and thirdly to provide direction on providing a test set which provides less than 100%
coverage.

It must be expected that pre-formal testing of any System provides 100% coverage, but that formal
testing may be limited (both by time and resources) to some smaller percentage. By providing re-
alistic priorities to requirements (for example giving higher priorities to requirements which are
close to the highest level of the system) the most important requirements can be tested in a formal
test. The same strategy can be applied to regression testing and maintenance activities. In either
of the latter cases the adjustment of the priorities of the requirements to emphasize those which are

Conclusions i3

under suspicion (such as by the installation of new versions of specific modules) a test order can
be chosen to provide less than 100% coverage while still concentrating on the locale of the changes,

This set of procedures may be considered to be the initial entries mto a test environment which
eventually would include other tools, Candidates for inclusion in such an environment might in-
clude a test configuration managernent system and requirements tracking tables.

Conclusicns i4

References

[1] Balas, BE.: “An Additive Algorithm for Solving Linear Programs with: Zero-One Variables”, Op-
erations Research, Vol. 13, pp.517-546, 1965.

[2] Balinski, M.L.. and K. Spielberg: “Methods for Integer Programming; Algebraic, Combinatorial
and Enumerative”, in “Publications in Operations Research Number 16”, pp.195-292, John Wilay
& Sons, 1969, .

[3] Bazaraa, M.S. and 1.J. Jarvis: “Linear Programming and Network Flows”, John Wiley & Sons,
1977.

{4} Cooper, L. and D. Steinberg: “Methods and Applications of Linear Programming”, W.B.
Saunders Company, 1974, :

[5] Garfinkel, R.S. and G.L.. Nemhauser: “Integer Programming”, John Wiley & Sons, 1975.

16] Geoffrion, A.M.: “Integer Programming by Implicit Enumeration and Balay’ Method”, Journal
of the Society of Industrial and Applied Mathematics Rev., Vol.7, pp.178-190, 1967.

[7] Glover, F.: "A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem”,
Operations Research, Vol.13, pp.879-913, 1965,

[8] Gomory, R.E.: “Outline of An Algorithm for Integer Solution to Linear Programs”, Bulletin of
the American Mathematical Society, Vol.64, pp.275-278, 1958,

191 J.B. Goodenough and S.L. Gerhart- “Toward a Theory of Test Set Selection”, IEEE Trans. on
Soft. Eng., SE-1, No.2, June 1975, pp.157-173.

{10] Graves, R.L. and P. Wolfe: “Recent Advances in Mathematical Programming”, McGraw-Hill,
1963,

[11] Holzman, A.G.: “Mathematical Programming - for Operations Researchers and Computer
Scientists”, Marcel Dekker, 198].

[12] Land, A H., and A. Doig: “An Automatic Method of Solving Discrete Programming Prob-
lems”, Econometrica, Vol.28, Pp.497-520, 1960,

[13] Lernké, C.E., H.M. Salkin and K. Spielberg: “Set Covering by Single Branch Enumeration with
Linear-Programming Subproblems”, Operations Research 19(4}, pp 998-1022, 1971.

[14] McMillan,Jr., C.: “Mathematical Programming “, 2nd edition, John Wiley & Sons, 1975,

[15] Orchard-Hays, W.: “Advanced Linear - Programming Computing Techniques”, McGraw-Hill,
1968.

[16] Ozan, T.M.: ~ pplied Mathematical Programming for Production and Engineering Manage-
ment”, Prentice-Hall, 1986,

[17] Prather, R.E., T heory of Program Testing -- An Overview”, The Bell System Tech. Jour.,
Vol.62, No.10, Part 2, December 1983, pp. 3073-3105.

118] Salkin, H.M.: “Integer Programming”, Addison-Wesley Publishing, 1975.
. [19] Zionts, S.: “Linear and Integer Programming’, Prentice-Hall, 1974,

References 15

