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Abstract. This paper studies the effects of a circular magnetic field on the fow of a conducting
fluid about a porous rotating disk. Using modern quasi-Newton and globally convergent homotopy
methods, numerical solutions are obtained for a wide range of magnetic field strengths, suction
and injection velocities, and Alfven and disk speeds. Results are presented graphically in terms of
three nondimensional parameters. There is excellent agreement with previous work and asymptotic
formulas. :

. 1. INTRODUCTION.

The flow past a rotating disk in a viscous fluid has received considerable attention in the past
few decades. Von Karmen [1] first obtained a solution for this problem. Later Gochran [2] obtained
a more accurate solution by numerical integration of the governing equations. The effects of suction
and injection at the disk surface were studied later by Stuart (3], Sparrow and Gregg [4), Kuiken |5},
and Ackroyd {6].

The rotating disk problem in the presence of an axial magnetic field was studied by Sparrow
and Cess [7], Rizvi [8] (whose mathematical formulation and numerical solutions are incorrect), and
Pande [0]. Pao [10] studied the fow of a viscous electrically conducting fluid past a rotating disk
with-a circular magnetic field at the disk surface.

In the present investigation we study the effects of surface suction and injection on the flow
past a rotating disk io the presence of a circular magnetic field. The governing equations are similar
to those derived by Pao [10]. Here we assume that there is no magnetic field in the fluid far from
the disk, and also, that there is a field in the tangential direction in the boundary layer generated
by external means within the disk itself. Such a field may have application in the shielding of a
rotating body from excessive heating [10].
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" The governing partial differential equations of the problem are reduced to nonlinear ordinary
differential equations using similarity transformations. The system is then solved numerically using
modern quasi-Newton and homotopy methods. The flow depends on the nondimensional parameters
o (maguetic Prandtl number}, 8 (ratio of Alfven speed to the disk speed}, and A (suction or injection
parameter).

2. FORMULATION OF THE PROBLEM.

The governing equations in cylindrical polar coordinates (r,8,2) for an incompressible, viscous,
electrically conducting fluid in axisymmetric steady motion [8] are

u%;"i+w%§+%§_f%~hg~:i—vv2w=o, (3)
:—r(m) +a%(m) =0, (4)
S (ef) + o-(rh) =0, K
—;;(vf— ug) + %(Uﬁ ~wg)+n (V"’y - ‘r%) =0, (6)
(vh—wf)~n (gg - %f) =0, (7)
where
w202 18 &

57 T rar T oo
and u, v, w and f, g, h are the components of velocity and normalized magnetic field strength

respectively in the r, #, z directions respectively. v is the kinematic viscosity, # = 1/pc is the
magnetic diffusivity, u is the magnetic permeability and o is the electrical conductivity. Here

(£,9,8) = (1,01, 1) (1/0)/* and P =(f2+ g%+ h%)/2+p/p+x,

where fi, g3, by are the components of the magnetic field, p 1s the fuid pressure, p iz the uniform
density and x is the potential for a unit mass of the conservative body forces. It is assumed that v,
¢ and g are constants and the net charge density is zero.

3. SIMILARITY SOLUTION AND BOUNDARY CONDITIONS.

The disk surface is in the plane z = 0 and rotates about the z-axis with constant angular
velocity w. An axial electric current of uniform current density Jg is imposed at the disk surface.
Equivalently, a tangential magnetic field component g = Qr is imposed at the disk surface with
Q= (s/p)/*(Jo/2) a constant, and f and  are zero.
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Using the following similarity transformations

u=wrm'(¢), w=-2ww)?ml), P=wvwS(s),
v=wrG(g), g=ﬂrM(;), g:z(w/y)lfz’

equations (1)—(7} reduce to

m' + 2mm" — (m')2 4+ G ~ B2M*2 =, (9)
2mG’ ~ m'Q)+G" =0, (10)

M" + 2amM' =0, (11)
8+ dmm' + 2m" =0, (12)

where ¢ = v/n is the magnetic Prandt] number and 4 = 1/w is the ratio of the Alfven speed to
the disk speed. Note that equation (12} decouples from the others, and § {¢) is easily obtained once
m{¢) is known.

I is assumed that the disk is porous and that either suction or injection occurs at the disk
surface such that

w{0) = ~2/vw A,

80 A > 0 corresponds to suction and A < 0 corresponds to injection.

‘The boundary conditions for equations (9)-{12) are,

m(0) =4, m(0)=0, G0)=1 M(0)=1, (13)
m'(c}—= 0, G()—0, M(c)—0, 5()—0 as¢— oo (14)

4. NUMERICAL METHOD.

The computation of § {¢)is stralghtforward and is not discussed here. Following the format in
Heruska [11], define _
(mh‘(o) )
X=1 60 |. (15)
, M'(0)

Let m(¢; X), G(¢; X), M{¢; X) be the solution of the initial va.lue problem given by equations (9)-
(11) with initial conditions {13) and (15). The original two-point boundary value problem given by
equations (9)~(11) and {13) is numerically equivalent to solving the nonlinear system of equations

(m’(r;X)) _ '
FX)=| G(r,X) | =0, (16)
M(r; X)
where 7 13 éhogen Iar_-ge encugh such that

[m'{¢) = m'(r)] + |G{s) = G(7)| + IM(s) ~ M{7)| < ¢,
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for r < ¢ < o and a given € > 0. Equation (16) is derived from the boundary conditions (14). Algo-
rithms for solving norlinear systems like (16) typically require partial derivatives such as dm'/3X;.
We can write the functions needed as

‘Bm Am! 6m" AG A M BALS
r =- ] 14 } £ . -
¥ (m’m””’ ’G=G’M’M’3X,,’axk'axyax;axgax;axk)’

for £ = 1,2,3, where m, G and M are functions of ¢. Now m'(¢), G(¢), M(¢) and their partial
derivatives can be calculated from the first order system

Y =Y,

Y] =Y,

Y= B2YE +YF - Y2 - 21V,
Y=Y,

Y= -2 (Y1 Y3 - Y2Y,),

Ye = Yo,

Y{ = -2a¥; ¥,

Y, =Y,

Yo’ = Y10,

Yio = 2 (A%YeYis — Y¥i1 — YsYs - YiYio + ¥o¥a)
Yy, = Y, '
Yi, = 2{YoYe+ Ys¥i; ~ YiYis — YsYs),
Y = Y,

Yig = "—ZQ (Y3Y7 + Y1Y14) R i
Y(O) = (Aa Oy Xl: 17 X21 17X3;Oy 07 61&5 0: 625:;0: 53&) 5

where é;; i1s the Kronecker delta. Bjr solving this system three times, for k = 1,2,3, the Jacobian
matrix DF(X) of F{X) can be calculated.

Two methods were utilized to solve this problem, a quasi-Newton least change secant update
" metkod and a globally convergent homotopy method. The quasi-Newton code used was HYBRJ from
the MINPACK subroutine package from Argonne National Laboratory {12]. These quasi-Newton
routines are robust and usually quite eficient. However, they fail at times by converging to local
minima of F(X)*F(X) which are not solutions of F{X) = 0.

The other method, a globally convergent homotopy method from the subroutine package HOM-
PACK developed by Watson [17], does not suffer from the convergence problems of the quasi-Newton
method. However, this method requires considerably more computation time. Details about the
homotopy algorithm and some of its applications can be found in [13], [14], [15] and [16].

The computational strategy here was to try to solve (16) first using the relatively inexpensive |
quasi-Newton method. If that falled, then the expensive, but guaranteed convergent, homotopy
algorithm was used.



As previously mentioned, these quasi-Newton and homotopy methods use some partial deriva-
tives with respect to the initial conditions. For some values of A, @ and B, these partials increase
drastically as r increases. This results in pumerical instability in cases where A < —1 (i.e., large
injection) and o > 10. Also, cases of large injection and large # cause M(¢) to approach zero very
siowly. This requires r to be very large which also causes numerical instability. Such instabilities
are inherent with shooting, on which the definition of F{X) is based. Other ways of discretizing the
two-point boundary value problem (9)-(14) such as finite differences, coliocation, and finite elements
will be considered m future work.

5. DISCUSSION.

The rotating disk acts as a centrifugal fan. The radial flow is balanced by an induced axial flow
towards the rotating disk. When suction is applied at the disk surface, the radial fiow decreases, the
axial flow at infinity increases towards the disk, and the boundary layer thickness decreases. The
opposite effect is observed when the fluid is injected at the disk surface; the radial velocity increases,
the amial velocity at infinity decreases and the boundary layer thickens. With an impermeable
rotating disk, an increase in # decreases the axial velocity at infinity and increases the boundary
layer thickness. As o increases, the boundary layer thicknesses of the flow and magnetic field
decrease.

Figure 1 shows the effect of A on m’, G, m and M for a = .5 and # = .2. The case A =0
corresponds to the impermeable disk [10] in all the figures. The effect of A on axial velocity is
shown in Figure la. As suction (A > 0) increases, the axial velocity becomes almost constant and
maintains the suction value throughout the boundary layer. When fiuid is injected at the disk
surface {4 < 0), the incoming axial flow is retarded by the injected fluid. The greater the injection
velocity, the more the inflow is opposed. This results in decreasing the axial velocity at infinity
and moving the crossover point away from the disk. The radial velocity, m', is shown in Figure 1b.
The radial velocity increases monotonically from zero velocity at the disk surface to a maximum
near the disk and then decreases monotonically to zero at the edge of the boundary layer. As the
injection velocity increases, the maximum for radial velocity increases and moves away from the
disk. Increased suction velocity decreases the maximum and moves it closer to the disk. The radial
velocity becomes almost zero for large suction values causing the flow to be two dimensional. Figure
1c shows the varation in tangential velocity, G, due to changes in A. The boundary layer thickness
decreases with increased suction and increases with increased injection velocity. The thickmess of
the boundary layer for the magnetic field M also increases with injection and decreases with suction

(Figure 1d).

Figure 2 shows the effect of @ on the flows with a fixed value of B and a fixed injection velocity
(A = —.5). The eflect of @ on axial velocity is shown in Figure 2a. An increase in a causes only
a small increase in m pear the disk. A larger increase occurs at infinity. However, this increase
diminishes as a gets large; there ig almost no change in m between @ = 5 and o = 10. Similarly,
the effect of an increase in & on the radial velocity (Figure 2b) is a small and diminishing increase.
The effect on tangential velocity (Figure 2c) is small also, but decreases the tangential velocity. The
effect of @ on the magnetic field M is shown in Figure 2d. For large values of @, the magpetic feld
maintains the same strength as at the disk surface for a small distance from the disk and then falis
to its edge strength in a very short distance. A higher value of injection {4 = —1) gives similar
effects of @ on m, m' and G (not shown), but has a more pronounced effect on M (Figure 2¢). The
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same effect of a on m, m’, and G are observed when there is suction (A = .5) at the disk surface.
The only relevant difference is that m' peaks at a much lower level. The effect of increasing @ on M
in the presence of suction is to not maintain the initial strength for a short distance from the disk
surface, but to fall to the edge strength quickly (Figure 2f).

Figure 3 shows the eflect of B on the flow fieJds when fiuid is injected at the disk surface
(A= —.5) and & = 1. The axial velocity (Figure 3a) is decreased as f increases. The effect is more
pronounced st infinity. As J gets large, an increase in § causes larger decreases in m at infinity,
The crossover point from negative to positive flow moves away from the disk as B increases. The
radial velocity (Figure 3b) decreases as f increases. Again, this change increases as # increases.
But, tangential velocity (Figure 3c) and the magnetic field strength increase as 8 increases (Figure
3d).

Figure 4 shows the effect of # on the flow fields when suction (4 = 1) is applied at the disk
surface and a = 1. As f gets large, the axial flow {Figure 4a) towards the disk decreases and -
becomes & constant throughout the boundary layer when § = 1. The radial velocity (Figure 4b)
decreases as f increases and disappears at § = 1. The effect of 8 on the tangential velocity and the
magnetic field is not very pronounced, so is not shown.

From Table 1, we can see that changes in A have a more pronounced effect on G'(0} than do
changes in a and #. .Changes in o have a very small effect on G'(0). As A gets smaller (which
decreases |G*(0)] ), the effect of A decreases. However, as § gets larger {which also decreases |G(0)]
}, there is an increasing effect on G*(0).

From Table 1, critical values (where G'(0) = 0) of A4, & and § would occur for small A and large
B. 1t is apparent from the M'(0) column that ‘M?(0) approaches zero faster than G’ {0) does. Thus
shooting needs to use a large 7 for G and M to converge to zero. As previously mentioned, this results
in numerical instability, and considerable computational dificulty was encountered attempting to
find critical values. To find values for A, @ and § where G'(0) = 0, an expensive and involved
multiple shooting technique [18] was employed. Using this technique, values for G*{0) close to zero
were obtained varying § and keeping A = .1 and & = 1.0 . Using three data points close to zero,
quadratic extrapolation to the limit yielded # = 1.1072.

Table 2 shows excellent agreement of our results with the a.ppro:ﬁmate analytic solution obtained
by Pao [10] for 4 = 0. The maximum percent difference in Table 2 is 0.197% for m”{0), 0.174% for
G'(0), 0.391% for M'(0), and 2.016% for 2m(oo), the latter occuring at & = 1.0, B = .70.

6. ASYMPTOTIC COMPARISONS. -

Applying standard perturbation technigues to equation.é (9)-(11) for large A and small o and
£ we get
G0} ~ G'{0) = —24,
M(0) ~ M0} = —2A4aq,
" o _ - ﬁz
m" (0} = (0)——4,4& .

From Table 3, we see that the asymptotic formula values compare favorably with obtained results
for A 2 1. Also, changes in @ do not affect the goodness of the asymptotic formulas within the
range studied. Furthermore, there is good agreement for B values less than 1.0,
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A a I 2m{oo) m"(0) ~M'(0) -G'(0)
4.00 5 .2 8.0008 05749 4.00023 8.00057
2.00 .5 .2 4.0066 11479 2.00180 4.00456
1.00 5 .2 2.0450 .22387 1.01351 2.03422
.50 5 2 1.2301 36553 56466 1.16202
0.00 5 2 - 8223 48806 25234 60054
-0.05 5 2 .7999 49210 22068 .56088
-1.00 5 2 5111 .38300 01678 .13083
-0.50 5 .2 6560 46997 08367 .29220
-0.50 1.0 2 7249 46982 06460 .29280
050 | ..50 2 7305 46826 .00072 20178
-0.50 10.0 2 .7392 46799 00000 .29138
-1.00 .5 .2 5111 .38300 01678 .13083
-1.00 1.0 .2 6441 38278 00334 .13070
-1.00 5.0 2 6642 38267 00000 .13055
.50 .5 2 1.2301 .36553 56466 1.16202
.50 1.0 2 1.2530 .37531 1.08979 1.17023
.50 5.0 2 1.2602 38587 5.07951 1.17484
.50 10.0 2 1.2605 38764 10.05441 1.17511
-0.50 1.0 0.0 7607 48948 06982 30217
-0.50 1.0 | 7524 .48459 06855 .20988
-0.50 1.0 2 7249 .46982 064861 .29280
-0.50 1.0 3 - 6680 44495 .05391 .28026
-0.50 1.0 4 5212 40054 .04441 .26031
1.00 1.0 0.0 2.0578 .24242 2.01941 2.03853
1.00 1.0 2 2.0556 .23290 2.01867 2.03707
1.00 1.0 6 2.0378 15625 2.01266 2.02519
1.00 1.0 1.0 2.0000 .00000 2.00000 2.00000

Table 1. Effect of A4, a, and £ on m(oo), m"(0), M*(0) and G'(0).




a | A | w"0) | m"(0) | -G'0) | -G"(0) | -A£(0) | -M(0) | 24m(00) | 2m(oco)
0 | 0.00 | .51024 .51023 61692 61592 .26227 26229 884 B84
5| .05 ] .50886 | .50885 | .61501 | .61501 | .26170 | .26172 882 881
.5 10 .00470 .50471 .61223 61223 25997 25997 .B71 .B70
.5 16 49778 49779 60749 B0748 .25606 25692 852 852
.0 .20 48806 48806 60054 | 600564 25236 25234 .B23 B2z
R .26 47550 47550 58102 .58100 24573 24566 778 17
1.0 | 0.00 51024 01023 61592 61592 39625 39625 .B84 884
. 1.0 10 .50558 50558 61362 61363 .39469 39469 880 .880
1.0 .20 40154 49154 60657 B0657 38901 38091 867 867
1.0 .30 46786 46786 | . .50423 .09423 38152 38512 844 844
1.0 40 43406 43405 57552 57552 36872 36874 809 .809
1.0 .50 .38936 .38036 .b4836 54834 34998 .34988 755 755
1.0 60 | .33266 33265 .b0B822 .b0816 32186 32175 669 669
1.0 .70 26206 .26289 .44319 44242 27451 27344 506 496
10.0 | 0.00 51024 51023 61502 615982 | 1.13399 | 1.13412 884 884
10.0 .20 50058 50057 61378 61378 | 1.12916 ! 1.1201% 883 .883
10.0 [ - .40 47120 47119 60717 60717 | 111380 | 1.11370 B78 878
100 | - .60 42078 42078 .59540 09540 | 1.08638 | 1.08638 870 870
10.0 .80 .34650 .34650 57695 87685 | 1.04322 | 1.04322 .857 857
10.0 | 1.00 | .24202 | .24201 | .54816 | 54816 | 97545 | .07545 838 838
10,0 § 1.20 .087714 08713 .49600 49600 85155 85155 .BOS 805
10.0 | 1.30 | -.07124 | -.07110 41399 41412 65578 | .65606 b7 759
Table 2. Comparison of current results with those of Pao (hatted).
Al a | B | m'0) | m"(0)| % &iff | —G"(0) | —G'(0) | % &iff | —M*(0) | —AP(0) | % &iff
40| 0.5[02] .05749 | .0575 | .07 |8.00057 81 .007] 4.00023| 4.0 .006
20| 05|02 .11479| .1150 .183 | 4.00456 4 1141 2.00180C 2.0 090
1.0} 0502 .22387 ) .2300 ] 2.738 | 2.03422 2| 1682 1.01351 1.0 1.333
05| 05702 .36553 | .4600 | 25.845 | 1.62020 1]13.6562 | .56466 51 11.451
201 05 (0.2 .11479 | .1150 .183| 4.00456 4 14| 2.00180 2.0 090
204 10102 .11975| .1200 2209 | 4.00407 4 24| 4.00249 4.0 062
20| 5.0{0.2] .123741 .1240 .210 § 4.00517 4 129 1 20.00185 20.0 009 |
201100 [0.2 .12424 | .1945 211 | 4.00518 4 .129 | 40.00118 40.0 003
2.0 05 0.2 .11479 | .1150 .183 | 4£.00456 4 J14 1 2.00180 2.0 .090
20} 0564 .08401 .0850 104 | 4.00270 4 067 | 2.00007 2.0 048
201 05106 .03499 | .0350 .033 | 3.99958 4 011 | 1.606838 2.0 021
20] 05 |0.8] -.63517 | -.0850 487 | 3.99517 4 L2114 1.08762 2.0 119
20! 05(1.0] -.12585 1 -.1250 672 3.08944 4 265 | 1.99507 2.0 | - .247

Table 8. Comparison of obtained values with asfmptotic formula values (batted).
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Figure Captions.

Figure 1. Effect of 4 on flow and magnetic fields with @ = .5 and £ = .2 (a) Axial velocity,
A=4,21,.5,0,-.01, -1 (top to bottom). (b) Radial velocity, A = —1,-.05,0,.5,1,2, 4
(top to bottom). (c) Tangential velocity, A = —1,—.05,0,.5,1,2, 4 (top to bottom). (d)
Magnetic field, A = -1, -.05,0,.5,1,2,4 (top to bottom).

Figure 2. Effect of @ on flow and magnetic felds with § = 2. (a) Axial velocity, 4 = -.5,
a = 10,1,.5 (dotted, dashed, solid). (b) Radial velocity, 4 = —.5, a = 10,1, 5 (dotted,
dashed, solid). . (c) Tangential velocity. A = ~.5, @ = 10,.5 (dotted, dashed). (d)
Magnetic field. A = -5, @ = 10,5,1,.5 (dotted, short dashed, long dashed, solid}. (e)
Magnetic field. A = -1, o = 5,1,.5 (dotted, dashed, solid}. {f) Magnetic field. A = .5,
a = 10,5,1,.5 (dotted, short dashed, long dashed, solid).

Figure 3. Effect of £ on fiow and magnetic fields with A = —.5, & = 1 and £ =0,1,.2,.3, .4 (dotted,
short dashed, long dashed, solid, daskh-dot). (a) Axial veloc:ty (b} Radial velocity. (c)
Tangential veloc:ty (d) Magnetic field.

Figure 4. Effect of # on ﬂow and magnetic fields with A =1, a = 1, and § = 0, 2,.6,1 (dotted,
dashed, solid, dash-dot). (a) Axm! velocity. (b) Radial velocity.
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