A Task and Resource Scheduling System
for Automated Planning

David P. Miller

TR 87-1

A Task and Resource Scheduling System for Automated Planning

David P. Miller

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061
Phone (703) 961-5605
Net: miller%vtcs1@bitnet-relay.arpa

Abstract

Planning is done at both the strategic and tactical levels. This paper classifies some previ-
ous planning techniques into these different levels, and details some of their problems. A
planning technique known as heuristic task scheduling is then presented along with a plan-
ner arhitecture that integrates task-scheduling with more traditional techniques to form a
system that bridges the strategic/tactical division.

1 Introduction

Most planning work of the past has concentrated on formal systems with limited practical
abilities. While these systems have laid the groundwork for planning research, they have
dealt with idealized, static domains that do not well represent a modern factory or other real-
world situation. Therefore, work on artificial intelligence planning has had little practical
influence on task planning, scheduling, or other issues of interest to operations research.
Recently, it has become clear that Al search techniques can be used to attack some GR
problems [8]. The research and system described in this paper yse Al search techniques as a
bridge to link the (mostly) theoretical work on artificial inte]ligence planning with practical
problems found in arranging, scheduling and allocating resources for real-world factory and
robot applications.

The remainder of this section provides a brief historical perspective and classification of
some of the previous work in planming. The need for search in planning will be demonstrated,

~as well as the need for a new type of representation. The next section provides a description

for a new planning module: the Heuristic Task Scheduler. Some of the techniques and
algorithms used in the HTS are described. The third section describes how the HTS can
be integrated into a more general type of planning system. An implemented system is
described along with some ideas for future work.

1.1 Strategic and Tactical Planning

Robot planning may be thought about as two distinet activities:

e making strategic planning decisions

» choosing the proper tactics, based on the actual situation, for executing those strate-
gies.

Hierarchical least-commitment planning systems (e.g., Noah [19] and Nonlin [21]), which
have dominated planning research for the past decade, concentrate exclusively on the strate-
gic part of planning. Part of the reason for this lopsided research is that tactical planning
decisions are only important in dynamic domains. The highly rarefied domains that most
planners operate in (such as the blocksworld) leave little room for tactical decisions to be
made.

For example, in the blocksworld domain there is really only one way to go about accom-
plishing a goal such as achieve block A on block B. There may be several different “plans”
for accomplishing this goal but all of those plans contain the steps:

1. clear block A
2. clear block B

3. stack Aon B

The tactical details (e.g., exactly how to clear the blocks] are left to the robot’s imagination.
Leaving the actual execution details out of a plan is ok in the blocksworld but may leave
the majority of the planning work undone for more realistic domains.

It may at first appear that the tactical details of a plan could be fleshed out by simply
recalling the planning system until a sufficient level of specification had been reached. Un-
fortunately, most planning systems have been based on two assumptions that do not hold
once a certain level of planning detail has been reached. These assumptions are:

1. plans involving conjunctive goalis cau have the subplans for each goal expanded inde-
pendently of one another

2. information needed to perform plan expansions down to the level of primitive actions
is available at plan time.

A simple example should help to show the lack of reality in the two assumptions above.
Imagine a simple factory that produces a single plastic product that is made of two sub-
assemblies. The top-level strategy for creating the product is to accomplish three steps:

e create subassembly A
e create subassembly B

e join the subassemblies while both are still warm

Assume that the factory contains one furnace and one plastic mixer, and that either sub-
assembly can be created by melting a plastic blank into a mold or by mixing plastic liquid
and a catalyst. If the melting plan is chogen for subazsembly A then the mixing plan must
be chosen for subassembly B. If it is not, then one of the subassemblies will be cool by
the time the other is ready. Therefore, the first assumption, that subplans may be refined
independently from one another is clearly not always valid.

If the expansion of the melting plan is:

1. put blank in mold

2. put mold in furnace

3. turn furnace on

4. turn furnace off as soon as plastic bubbles

5. remove mold

then the second assumption is also not valid. A plan, such as that immediately above,
cannot be reduced to primitive actions before the plan is well underway. When should
the actor look at the melting plastic? When should the furnace be turned off. These
questions cannot be answered untii the actions are actually in progress. A plan to handle
this situation must contain calls to gather sensory information. It may need loops and
conditionals to detail the necessary behaviour. As we shall see in the remainder of this
section, such structures do not fit well with current planning strategies. Therefore, a new
planning paradigm, simulation-based planning, is needed.

1.2 Situation-sBa_sed Plannpers

Situation-based planners such as Strips [6], and its many decendents, try to derive a sequence
of actions that will produce a state of the world where the goal of the task is achieved.
Situation-based planners represent the state of the world as a conjunction of predicate-
calculus assertions. The goal-state is represented similarly. The planner compares the
representations of the two states, notes the differences, and applies a sequence of operators
to the initial-state in order to transform it into the goal-state.

In order for the planner to know which operator to apply, it maintains lists, associated
with the operator, that specify the predicate-calculus assertions that should be added and/or
deleted as each operator is put into the plan. Each operator can also have a list of assertions
that must be in the state of the world before it can successfully be applied. For example,
the (stack A B) operator may require that (clear A) and {clear B) must already exist in the
world state before stack may be applied. These preconditions are added to the plan before
the operator that actually is chogen to reduce a difference between the current world-state
‘and the goal-state.

The features that make situation-based planners practical to implement unfortunately
also make them unsuitable for most real-world problems. Primary among these features
is the dependence on first-order predicate-calculus as the representation scheme. The
predicate-calculus is necessary to make difference comparison and operator selection prac-
tical because it makes such a comparison well-defined and reduces the actual comparison
operation to simple patern matching. Unfortunately, such a representation scheme is not
readily suited for handling temporal factors, quantitative issues, or uncertainty [3]. Exten-
sions to predicate calculus have been suggested by Allen [2], and McDermott [14] to allow
temporal, resource and default reasoning. However, further work has shown that these
extensions can provide the basis for a system of limited abilities at best [9)].

Another difficulty with the situation-based planners is that they are neither strategically
or tactically oriented. The lack of high-level strategic guidance in forming a plan can greatly
increase the amount of search that is necessary in selecting the proper operators to achieve
a goal. If several goals are to be achieved in conjunction, and not any order of solution will
suffice, then it is only luck that will guide a Strips-like system to an efficient solution rather
than trying to reduce all the differences independently and probably most inefficiently. The
Abstrips system [20] was a first attempt at adding hierarchical organization to the search
strategy of a situation-based planner.

While situation-based planners deal almost exclusively with low-level operators, they
are not necessarily practical tactical planners. Their method of reducing differences does
not at all guarantee that the reduction of one difference will not add other differences.

1.2 Hierarchiesl Least-Commitment Planners

Hierarchical least-commitment planners were developed to overcome some of the shortcom-
ings of situation-based planners. Chief among these shortcomings were the situation-based
planners’ inability to deal with any sort of interaction between conjunctive subgoals (the
first planning assumption). Hierarchical planners such as Noah and Nonlin form plans
through the successive refinement of an initial task statement. The task is indexed into a
library of plans, and an appropriate plan is selected. This plan consists of a partial order
of subtasks to be achieved, the conjunctive solution of which should achieve the original
task. Each of these subtasks is then indexed into the plan library and similarly expanded.
. Some sort of table of predicted side-effects is maintained as each plan is retrieved from the
library. '

As the plans are expanded, usually in a breadth-first manner, the side-effects are factored
into the required preconditions for each plan at that level of expansion. Should a side-effect
contradict a precondition for some other plan, then the planner will attempt some sort of fix
to resolve the problem. This fix usually takes the form of putting in an explicit ordering link
between the two plans in conflict forcing the side-effect to occur after the precondition is
met. This allows hierarchical planners to solve some problems considered unsolvable by the
situation-based planners. However, the case where a side effect contradicts a precondition
at the same level of plan expansion is but one of large set of conditions where goals interact
[24].

To avoid some of the problems from other types of goal interaction, if no conflict is
detected at that level of expansion and there is no ordering of tasks explicit mn that part of
the plan, the subtasks are left unordered. This has the advantage of allowing more flexibility
in subsequent levels of expansion. Unfortunately, as discussed previously, leaving plan steps
unordered makes it impossible to detect certain types of context-dependent side-effects that
can cause problems later on.

While hiearchical planners can solve many problems unsolvable by situation-based plan-
ners, situation-based planners have an important advantage over hierarchical least-commit-
ment planners. That advantage is that if the representation used by the situation-based
planner is sufficient to capture the interaction between the plan steps, if the situation-based
planner is able to derive a plan, and if the information that the planner used was correct,
then the plan i1s more likely to be feasible then a similar plan produced by a hierarchical
system. The reason being that the situation-based planner has performed, through the
addition and deletion of the relevant predicate-calulus assertions, a simple linear simulation
of the plan. And any simulation is more likely to discover context-dependent interactions
then is possible through debugging a partially-ordered plan hierarchy.

2 Simulation-Based Planning

The planning strategy used in this research is to search through a variety of simulations
of the execution of different plans, and select the plan with the most successful simulation.
By simulating the execution of a plan the planner can take a more global perspective in
making planning decisions than is possible in a traditional hierarchical planner. It is im-
possible to ignore deleterious interactions among subplans when the plan is being generated
and simulated in a totally-ordered manner, rather than in a partially-ordered hierarchical
manner.

A detailed simulation allows the limits of reliability to be accurately calculated. As
each action in the plan is simulated, anticipated errors in movement, timing, and resource
consumption can be propagated. The points in the plan where errors accumulate above
acceptable levels are the places in the plan where feedback will be needed and some real-
time tactical decisions might be necessary.

The planner’s job is to create a sequence of primitive actions that, when executed by
the roebot, will accomplish the desired task. The plan thus produced must

e Be free of adverse interactions among the plan steps
e Have all the necessary resources explicitly assigned to each task
¢ Have the plan steps temporally coordinated with one another

s Explicitly include state-transition tasks (e.g., the tasks necessary to bring any re-
sources required for a particular task into the state that they are required for that

task.)

Planning, by this definition, bears some resemblance to scheduling, and may be ac-
complished by taking a scheduling approach called task scheduling. Task scheduling is
accomplished through the incremental extension of selected schedule prefizes until a com-
plete schedule is found. A schedule prefix of length n is a partial schedule that starts with
the first task to be done, and continues sequentially for n — 1 additional tasks. A heuris-
tic task scheduling program (HTS) has been implemented which performs task scheduling
over a partially-ordered set of tasks. The HTS effectively combines features from both the
situation-based planners and the least-commitment planners. The idea of a totally-ordered
search is a major part of the situation-based planning approach. The HTS augments this
approach with the idea of searching through plan-space, rather than the operator-space
that Strips searched through. By searching through plan space, and by actually performing
a more detailed simulation, the HTS has much more information available to it to guide its
search than is available to a system such as Strips.

Most scheduling problems are NP-complete in their computational complexity. The
task scheduling problem is no exception, In order to create a feasible planning system, it is

therefore necessary to attack the task scheduling problem from a heuristic approach. The
next section presents details of the heuristc algorithm used by the HTS. -

2.1 Searching for a Good Schedule

The role of the HTS is to convert a partial ordering of tasks into an efficient executable
total ordering. The total ordering has associated with it a sequence of temporal intervals;
one interval associated with each step in the ordering. This allows the robot to monitor
its progress through the plan as well as allowing the total ordering to be integrated with
‘other schedules that are to precede and follow it. In order to emsure that the ordering
.produced by the scheduler is a good one, the scheduler performs a limited simulation on the
ordering. This system simulates tasks and calculates the state that would result from the
execution of those tasks. Additionally, this system uses the results from partial simulations
to efficientiy order tasks that are to be performed later in the schedule. Towards this end
the scheduler searches through the space of possible task orderings in an attempt to find
a reasonably efficient ordering. Since the number of possible schedules rises exponentially
with the number of tasks being scheduled, the system relies on scheduling heuristics [22],
[18] to trim the search tree to a reasonable size. The search heuristics rely on the following
properties that are associated with each task:

o The location and type of resources required for the task
o Partial ordering constraints with respect to other tasks
o The absolute execution window for the task (e.g., do this between 9:00 and 11:00am)
e Metric ordering information with respect to other tasks (e.g., do B between fifteen

and twenty minutes after completing A)

These properties of the tasks, and their relationships with one another, can be used to
reduce the total scheduling space in a totally domain-independent way. The reduced search
space can then be searched using further domain-independent and dependent heuristics to
help guide the search.

A detailed description of the basic scheduling process is presented next. Immediately
following the scheduling algorithm are descriptions of the data structures manipulated by
that algorithm. Finally, the methods in which prospective schedules are rated and chosen,
are discussed.

2.2 The Scheduling Process

The HTS uses a heuristically guided best-first search for creating the plan schedule. For
this type of search, all the conceivable schedules can be thought of as being arranged in the

form of a tree as in Figure 1. Of course to make the schedule search efficient, as little of
the search tree as possible is generated.

ROOT

The pl; efix AC
A B C)

B D ‘ A/B\D
CA ! L ¢ AU
[] * ® ii)A
DC '
“S—— The schedule
CBDA

Figure 1: A Scheduling Tree for Four Tasks: A B,.C; & D

There are two basic strategies for limiting the search spa.cezr

e generating only the feasible schedules

¢ generating only the promising schedules.

The HTS uses a combination of both of these strategies.

Scheduling is done, in this system, by incrementaily extending selected schedule prefizes
until a complete schedule has been found. At each iteration through the search process the
system selects the prefix that looks most promising (see section 2.7). The feasible extensions
to that prefix are then generated and the process repeats. If there are no legal extensions
to the prefix then that prefix is deleted from the search space. Occasionally, during the
generation of the prefix extensions a flaw will be found that may be common to a whole
class of prefixes. When this is the case a critic will be generated (see section 2.7.3) and
passed back to the search routines instead of the prefix extensions. The critic is then run
over all of the prefixes under consideration. Those that share the flaw are detected and
removed from the gearch space.

2.2.3 The Searcher

The HTS uses a heuristically guided state-oriented searcher for exploring the space of totally
ordered plans. This type of search strategy involves generating partial schedules and saving
the state produced by the partial schedule. The partially generated schedules are then rated,
and the most promising one is expanded further. The prospects are then rated again, and
the most promising schedule prefix is extended. Several different prefixes, in different states
of completion, may be being examined at any one time. The quality of the search strategy
is judged not only on the schedule it finally selects, but also on the number of schedule
expansions it does. To reduce the number of schedule expansions the HTS search strategy
is a combination of several search techniques such as: beam search, best-first, and branch
and bound. How each of these techniques fits in the overall search strategy is described
below.

One common situation which could cause a search-based scheduler to perform badly
is when it is given a lightly constrained set of tasks where one task is very expensive to
perform. In such a situation the scheduler might expand a prefix until it reached the point
where it had to schedule the expensive task. This might sufficiently lower the prefix’s
viability score so that some less developed prefix looks more promising. The new prefix
would then be expanded until it also had to add the expensive task. In the worst case this
would continue until almost the full search tree had expanded and the expensive task was
the only expansion possibility left for all of the possible prefixes. At this point the system
would take the best scoring prefix and expand it with the expensive task, and then continue
on. The prefix it finally chooses to make the expansion was probably the prefix it had been
inittally working with; all the subsequent work was just an exponential sink hole.

To overcome this problem the HTS only has a small fraction of the full search space
available to it for backing up and improving the score. The limited search space causes
the scheduler to follow its original “intuition;” the system cannot vacillate between possible
prefixes because it does not have access to the list of alternatives.

The search space is constrained by putting limits on the bushiness of the search tree and
the number of prefixes that are considered at each iteration. The bushiness, or branching
factor, of the tree can be thought of as how many possible extensions there are to a given
prefix. In a totally unconstrained scheduling problem there are N — k possible extensions
to each prefix where there are a total of N tasks to be scheduled, and the prefix in question
is of length k.

The number of prefixes being considered by the search mechanism is the same as the
number of leaves in the partially constructed search tree. In a poorly constrained problem of
size V the number of leaves approaches N!, This performance can be drastically improved
by using some sort of beam search technique as in [12). Beam search uses an arbitrary
cutoff of say ten, so that only the ten most promising prefixes are considered for extension

at any time.

Unfortunately, putting limits like these on the search can cause the system to report
that no feasible schedule could be found where in fact one might really exist. Limiting
the overall number of prefixes being examined is especially bad in this respect, because in
large problems the early level prefixes have large numbers of possible extensions, most with
about the same score. In this situation, most or all of the limited number of prefixes being
considered will have many early ordering decisions in common. If those decisions happen
to have been wrong then the search will fail because the system had discarded the workable
alternatives early on as not promising enough.

The best strategy appears to be a blend of restrictions on the bushiness of any branch
in the search tree along with limits on the total search front — the set of prefixes that can
be expanded upon. This gives the effect of performing several widely spaced beam searches
each having an extra narrow beam. This strategy is preferable to a straight beam search
because in task scheduling, if a prefix turns out to be unworkable it is quite likely that a
significantly different prefix should be pursued. Using a normal beam search would require
a very large beam width to ensure that a satisfactory answer was eventually found. The
HTS’s search uses the limitations on bushiness and the length of the search front, along
with a new system for handling worst-case backtracking. To get the best results, the size of
the front must be coordinated with the allowed bushiness of the search space. As the search
progresses under a normal tree search algorithm, the number of possible prefixes rises, but
at the same time the bushiness decreases. However, the two are not well balanced so that
the number of nodes that could be considered peaks at level N — 1. What is needed is an
algorithm that keeps the number of nodes at a smaller and more constant level, yet still
keeping a wide variety of possible solutions available to the system. This can be achieved
by limiting the bushiness of the tree at any level £ to an amount considerably smaller than
than the total number of nodes being examined. A good heuristic appears to be to set an
overall limit of maz(4,log N?) prefixes to be available to be examined and a bushiness of
maz(2,log N). On small problems (N < 100) there is sometimes not enough information
available to the heuristic rating functions to allow logarithmic trimming of the search tree.
So on small problems the bushiness of the tree is kept at twe and the number of nodes
under examination at any time is limited to four.

The prefixes and prefix expansions that are removed from the front by these limitations
are place onto a backup queue. There they can be accessed by the system should it prove
that no feasible schedule can be extracted from the possibilities available to it from the
search front. The size of the backup queue can be varied to control the search time verses
assurance of finding an answer tradeoff. For the experiments performed so far with the
system, a backup queue size of maz(4,log N?) seems sufficient to ensure the construction
of a reasonable schedule.

10

2.2.2 The Schedule Dependency Array

In order to perform a heuristic search there must first exist some coherent method for selec-
tively generating possible extensions to the search tree. It is the SDA’s job to produce, upon
request, all of the feassble daughter nodes to a particular node in the search tree. A feasi-
ble node is one that produces a schedule prefix free of domain dependent and independent
problems, i.e., one that meets all of the restrictions imposed on the schedule so far. In the
event that there is more than one daughter node for the prefix that the SDA is expanding,
it falls upon the SDA to perform an initial evaluation upon the possible expansions and to
pass on only those that appear promising.

An SDA is a data structure designed to keep track of a particular schedule prefix’s task
interdependencies. The SDA consist of a dependency matrix and a set of status vectors
which keep track of various properties about each task that has yet to be scheduled. With
a minimal amount of computation on an SDA, the answers to the following questions can
be derived about each task:

» Does the task being considered still need to be placed on the schedule?
o Is the current simulation time a legal time for a particular task to be scheduled?
e Have all of the prerequisites for the task in question been placed on the schedule?

» Are other tasks being executed in this state with which this task is supposed to be
disjunctive?

e Can all of the spatial and resource restrictions be satisfied?

The SDA also indicates whether the particular prefix it is working on leads irrevocably
into some sort of dead end. A dead end would be where some deadline violation or resource
restriction must occur no matter how the prefix is expanded. The SDA serves as an or-
ganizational device from which information on the many possibie relational objects can be
quickly and efficiently derived.

The SDA can be thought of as a N x N matrix where N is the number of tasks being
scheduled. Each task has associated with it a column and a row. The elements of the matrix
are filled with the task inter-dependencies. The columns contain all the information about
what a particular task is dependent on. The rows give information on what is dependent
on that task. Three vectors of length N are also part of the SDA. One vector contains the
State Objects (SO’s). The S0’ arc simulation packets which keep track of the states of
the resources required for a particular task [16]. Another vector has the tasks’ execution
windows (see section 2.4). The third vector has each task’s Current Status Object (CS0),
which is used to guide the processing of that task’s row in the SDA (see section 2.5).

11

LT Tn

I §......

S I T 2 T A

Ll ..]l......
SR i L
i ¥

............ If not empty
Tﬁ-—l then T. is
T, e : dependent on T}

Figure 2: How Dependencies Are Organized in the SDA

With the arrangement described above, the SDA can be used to easily calculate what
tasks have had all of their dependencies fullfilled, and how much of a delay, if any, will
be necessary before they themselves may be executed. A task has all of its dependencies
fulfilled if the column associated with it is empty or has the non-empty elements (i.e., the
dependencies) in their final stages of counting down their delays. If the dependency is in
the countdown stage then the prerequisite has been fulfilled and it is just a matter of some
temporal delay being exhausted before the task may be executed. If some element SD A; J
is not empty nor in the countdown stage then that indicates that task; is still dependent
and waiting for task 1 to be put on the schedule before it may follow suit.

When a task is put into the schedule the SDA makes it a simple job to start all of the
task’s dependencies counting down. H task { is added into the schedule then its CSO is
appropriately altered. The CSO then sends an appropriate message to the task’s row in the
SDA. The message is passed down all of the dependencies in that row instructing them to
go into the countdown state — a state where the delays between tasks start to decay.

When the SDA is being updated to take into account some amount of simulated time
that has gone by, the updating process is done row by row. At each row the appropriate
C80 is checked to see whether or not the dependencies in that row are in the countdown
state. If they are, then an appropriate amount of time is deducted from each of the delays in
that row. Relative deadline counters are also decremented. If one of the deadline counters
should go negative then a deadline critic (see section 2.7.3) is created. All of the execution
windows in the execution-window vector are updated when the SDA matrix is updated.
The execution windows can be updated independently of the status in the CSOs.

12

When the ready tasks, those whose dependencies have all been fulfilied, are being
searched for, the algorithm is: find all of the columns in the SDA whose elements are
empty or in the countdown stage. For each task, whose column meets these requirements,
check its SO, found in the vector of SOs, and check to see if there exists a legal state
transition to that state required for the task. If a legal transition can be found then that
‘task is passed onto the SDA’s thinning routines. The transition time for the expansion is
matched against that task’s closest deadline (both absolute and relative). If the transition
time is found to be longer than the time scheduled before the task’s deadline would oceur,
an impending-deadline critic is formed.

In large problems with few ordering and/or resource constraints it is possible that there
will be a great many ready tasks. The information available to the SDA, after calculating
the ready tasks, is sufficient to thin down the number of possible expansions passed back
to the rest of the scheduler. The SDA selects just the union of the following tasks:

e tasks with other tasks dependent on them
¢ the two tasks with the nearest deadline
¢ the two tasks with the smallest state-transition time

e the two tasks with the least time left over when their delay times are subtracted from
their nearest deadline.

These particular criteria are used in order to select the tasks that are needed to avoid
resource and/or dealine violations. Tasks with dependencies are always included to ensure
that a relatively unconstrained task that has heavily constrained dependents is carried along
far enough in the search process to at least be evaluated by the final rating heuristics (see
section 2.7). Each of the above criteria has its mark placed in a data area for the tasks
to which it applies. When a task is incorporated into a schedule prefix, its marks can be
examined to ascertain why it was placed at that particular point in the schedule.

The SDA performs one final evaluation of the ready tasks that are left. It is quite
possible that the ready task with the nearest deadline has its deadline closer than the time
it would take to perform the state transition for some of the other ready tasks. If one of
the tasks with a lengthy state transition should be used as the prefix expansion then a
deadline violation would arise when the SDA is next updated. In order to avoid this, the
SDA evaluates the remaining ready tasks, and calls a potential-deadline critic to eliminate
these expansions that would cause such a violation.

2.2.3 Determining if a Feasible Schedule Can be found

The dependency matrix of the SDA can be thought of being an adjacency matrix [1] for the
dependency graph of the problem being scheduled. The dependency graph for a scheduling

13

problem must not contain any cycles if a feasible schedule is to be produced. The SDA
offers a fast and efficient way to check if any cycles exist. The process for this is similar to
the methods used to reduce a determinant in linear algebra.

A B ¢ ABC_;‘ABC

7 9
12
Task B is done first Finally, task A is ready

After B, task C has no
more dependencies.

Figure 3: Reducing a Three Task SDA for Schedule Validation

The initial SDA, that is formed from the original task specifications, must have at least
one column with every element empty or in countdown mode. If this were not the case then
_that would mean that every task in the problem had a prerequisite task in that problem. I
every task is dependent on some other task in the problem, then none of the tasks can ever
be done. The column that is empty of prerequisite objects, and the row with the same index,
can be deleted from the SDA {see figure 3). After the deletion operation one or more columns
must become similarly clear. At each iteration all of the empty or countdown-only columns
are deleted, and with them their associated rows. I the complete SDA (not counting the
rows and columns containing the $0s, C80s, and execution windows) is eventually deleted,
then there are no contradictory or mutually exclusive ordering constraints present in the
problem.

2.3 Task Orderings and Prerequisites

In real planning situations it is very common for the various tasks to be interrelated in a
variety of ways. The most typical of these relations is that one task is required to precede
another. For most Noah-type planners [19] this is the only type of explicit relation that two
tasks can have.

However, when time is brought into the picture, additional inter-task relations can occur.

14

These include:

o delays between tasks
e deadlines between tasks
e disjunctive sets of tasks

e conjunctive sets of tasks.

Delays between tasks are most common when two tasks are the start and finish processes
of some higher level task. For example, if task; is to put a steak into the broiler and task,
i3 to take the steak out, then task, must come at least ten minutes after task;.

Deadlines between tasks often crop up in the same situations. If the person designing
the task specifications does not want to risk eating a steak that has been burned beyond
recognition, then it would be a good idea to put a deadline between task; and tasks of
about fifteen minutes. Deadlines between tasks allow the scheduler to avoid gearching
through the possible schedules that, in this example, would cause the steak to be removed
from the broiler more than fifteen minutes after it went in. Possible schedules that have
a larger delay between tasks than that specified by the inter-task deadlines cause deadline
violations, and are disqualified immediately. The structure representing inter-task deadlines
must be set up so that a deadline violation occurs by the point when the scheduler’s time
has advanced past the deadline. Waiting until the task with the deadline is put into the
schedule to realize that a deadline violation has occurred could be very detrimental to the
efficiency of the scheduler as a whole.

In the HTS, inter-task delays and deadlines are represented for each pair of tasks by a
Prerequisite Object (hereafter referred to as a PO). A PO is associated with the dependent
task (in the steak cooking example the dependent task would be taking the steak out of
the broiler, i.e. taskz). Through the machinations of the SDA (see section 2.2.2) the PO is
notified when the prerequisite task is scheduled. Once the prerequisite is scheduled, the PO
starts counting down its delay and deadline counters — keeping pace with the scheduler’s
clock. When the delay has counted all the way to zero, the PO sends out a message that,
as far as that particular prerequisite task is concerned, the dependent task is ready to be
scheduled.

As the scheduler’s clock continues to count down, the PO’s deadline counter also contin-
ues to count down. I the deadline counter reaches zero before the dependent task has been
put into the scheduler, then the PO sends a message to the SDA saying that the current
schedule has failed.

Of course a PO need not have both a delay and a deadline. Some tasks and/or domains
(such as the blocksworld) have no deadlines, just ordering constraints.

15

Disjunctive task situations (e.g., not eating just before, during, or right after working
out at the gym) are handled by having two deactivated POs {one associated with each
task) each making its task dependent on the other. Each PO has the appropriate ordering
delay so that if, for example, eating lunch is put onto the schedule then going to the gym
cannot be scheduled to happen less than an hour later. When one of the tasks is put onto
the schedule then an appropriate message is sent down that task’s row of the SDA; this
message causes the correct PO to be activated. This ensures that the two tasks will not be
scheduled to come too close together in time.

Conjunctive situations (e.g., schedule all your job interviews within a week of each other)
can be handled in a similar manner. In this case, all the POs associated with each task
are set up to be triggered by every other task in the conjunctive set. Each of these POs
would have an appropriate deadline (in this case a week). Thus once the first of the tasks
was scheduled all of the other tasks in the set would be under a deadline to be scheduled
quickly.

2.4 Execution Windows

Tasks often have absolute temporal constraints that must be met in addition to the ordering

constraints describe in the previous section.

It is not at all uncommon to have tasks constrained by the particular time at which
they are supposed to be executed. Most of the activities in a person’s day are constrained
in this way. When one thinks of an itinerary, usually a time-mapped schedule like that in
Figure 4 is pictured. However, such a mapping into time is quite ambiguous. For example,
what does 12:00-1:00 funch really mean? Does lunch start at precisely noon and terminate
exactly one hour later? Or perhaps lunch occurs sometime between noon and 1:00pm. K
the latter is the case then how long does the actual event of lunch last? In a similar vein,
does Figure 4 actually suggest that one is to leave work at 5:00 pm, or i3 that just the
earliest time one could leave. Perhaps 5:00 pm is a deadline one must leave the office by;
at 5:00 pm vicious guard dogs are released into the building.

What is lacking in the figure is a sense of slop or fuzziness. A preliminary task description
should not specify exactly when anything should happen. Ideal times, as suggested in
Deviser [23], try to specify the exact time at which a task should be done, but by the time
other scheduling considerations come into play the ideal times must usually be ignored.
What first appears, in isolation, as a good time for an event to take place may not look as
attractive when brought into context with the other tasks that must be scheduled. Hence
tasks in the HTS are assigned ezecution windows which represent the total interval over
which the task may be done. The POs can then be used to control the length of the actual
task. The inter-task dependency delays capture the fuzziness of the length of the task, while
the execution windows on the endpoints allow the necessary slop for the task’s placement

16

8:45 get up
8:00 go to work
12:00-1:00 hinch

5:00 go home

e & a

Figure 4: An Itinerary of a Typical Day

in the time line. In this way the start and end points of a task are represented by intervals;
the duration of the task is controlled by the countdown and deadline encoded in the PO
linking the start and end subtasks.

Unfortunately not all tasks have a continuous interval over which they can be executed.
When trying to get an appointment it is not at all ancommon for the window to be described
as something like: “Come in between 9am and noon or between 2 and 5pm.” However, even
in cases such as this there is an interval over which the task must be executed, i.e., between
9am and 5pm. It just so happens that there is a two hour interval during whick the task
may not be accomplished. There is a fundamental difference between trying to schedule
the task at 1pm and trying to put it at 6pm; for the first, there will be an additional hour
delay reported by the task’s window, for the latter, placement of the task in the schedule
at 6pm will cause a deadline violation.

Thus an execution window is more than just a window, it is actually a series of non-
overlapping windows in which the task can be done. The execution window is implemented
similarly to a PO. The difference is that when the end of a window is reached, the delay
until the next window begins is reported, and a deadline violation is not set up. When the
scheduler’s simulation time has passed the end of all of the windows, a deadline violation
is created if the associated task has yet to be scheduled.

2.6 Current Status Objects

There can be up to N? — N task interdependencies — delays and deadlines, for a set of
N tasks. In order to make scheduling a smooth and efficient process, the system requires
some method to track which of these dependencies are active and which are not. This is
an especially complex problem in the case of disjunctive tasks, since the dependencies may
switch about depending on how the schedule is being expanded.

To handle the task interdependency bookkeeping the scheduler uses a set of N Current
Status Objects, further referred to as CSOs. A CSO is created for each task, The main

17

purpose of a CSO is to alert the scheduler to which of the following states its task is in.
These states include:
e wailing
schedulable
fintshed

s looping

evaporated

e fasled

When most tasks first start out they are in a wasting state. This means that the task
is dependent upon some other task or set of tasks that have yet to be scheduled. When a
task’s CSO reports that the task is waiting then no further consideration is given to that
task on that iteration of the scheduling process. A task’s CSO is computed to be in the
waiting state during the preprocessing done before the scheduling process ever begins. Such
a CSO can only be moved into another state by the tasks upon which it is dependent.

After all of the tasks upon which a particular task is dependent are scheduled then that
task’s CSO reports that it is now in the schedulable state. Schedulable means that a task
is not dependent upon any other task directly. It is possible that such a task may still not
be worked into the schedule due to a resource conflict or other state restriction. Only tasks
in the schedulable state are checked for state restrictions and transition delays. Those that
have no such restrictions will be returned to the scheduling routines as possible extensions
to the partial schedule which is currently being expanded. They are the ready tasks.

When one of the schedulable tasks is placed onto the current prefix then its state is
changed to finished. Being in the finished state indicates that this task need not be examined
or updated again. When a CSO becomes findshed it sends out a series of messages to the
CSOs that are still in the waiting, schedulable, or looping states informing them of its
change in status.

It is also possible for the scheduling of one task to cause another task to evaporate —
1.e., be removed from the list of schedulable tasks. For example, if a message must be sent
to Tom there may be several plans for accomplishing it:

1. Go to Tom’s house and deliver it to him personally
2. Write and mail him a letter

3. Go to a computer and send him electronic mail

18

- All of these are workable plans, and it may be very difficult if not impossible to tell which

- tactics will become the most expedient to actually execute when they are being examined
at plan expansion time. Only as the HTS creates a plan is it possible to determine which
tactics, for sending a message to Tom, would be the best to use. Therefore all of the plans
are submitted to the scheduler with a note that if any of these plans are incorporated into
the schedule, then the other two should evaporate (i.e., their CSOs should report a status
of evaporated). Upon evaporation any tasks formerly dependent on the evaporated task are
released from those dependencies.

Disjunctive sets of tasks, where all of the tasks will eventually be used in the schedule,
are implemented in a similar manner. When a task, which is the start of one of the disjunct
intervals, is worked into the schedule, its CSO passes a special message to the CSOs of all
tasks which are not to overlap its interval. This message instructs the CSOs to activate the
necessary POs in the SDA to ensure that the disjunctive intervals cannot overlap.

A status of looping has the combined effects of the finished and schedulable statuses.
The looping status indicates that the task has been placed onto the schedule at least once
but must be placed onto the schedule at least one more time. The POs dependent on a
looping task start to countdown much as if the task had been finished, but the looping
task remains active to be updated by the SDA as necessary. It 1s the CSO that eventually
changes the status of the task from looping to finished when a sufficient number of iterations
have been incorporated into the schedule. What this number is depends on the exact type
of task, In a repeated task such as: wash both the cars, the number is known at plan
construction time. The number 2 is placed in the repeated task’s CSO. A task such as: hit
the nail until it is all the way in would have a maximum estimate of hammer strikes placed
in the CSO. An observation task would have to be set up as part of the loop to change the
task status to finished should the nail be knocked in all the way before the planned number
of strikes had been executed.

Whenever an intertask deadline violation occurs, a message i3 sent to the task’s CSO.
In such a case the CSO reports a status of fasled. This serves as a flag to the scheduling
routines and causes the partial schedule under consideration to be discarded. The particular
task which caused that failure is kept track of for debugging purposes.

2.6 Scheduling Windows

The output of the HTS is an stinerary where an itinerary is a list of tasks and events,
and the windows and states under which they should take place, The states described in
the output are those defined by the various task’s §Os [17], as worked out by their state
transitions.

The windows produced by the scheduler differ in several aspects from the execution

19

windows described in section 2.4. Most notable among the differences is that the scheduling
windows are made up out of three time values rather than two. These three times are:

¢ The lower time bound
® The safe time bound

» The upper time bound

Each of these times represents a different aspect of the schedule with regard to the execution
time of the task. The times can also serve to aid in execution monitoring.

The schedule is guaranteed to succeed if the lower bound is followed. This bound
is calculated using the minimum time spent for accomplishing state transitions and the
minimum execution time for each task upto that point in the schedule. The lower bound
refers to the earliest time that can be planned on to start a task, assuming that all the tasks
preceding this point have taken as little time as possible.

The safe time bound, coming out of a scheduling window for a particular task, represents
the last time that the task can be started and have the schedule remain valid. If a task is
executed at a time later than the safe time then it is impossible for the remainder of the
tasks to be executed without a deadline violation occuring.) The safe time limit is caleulated
from the total ordering by propagating the lower limit backwards from the various deadlines
incorporated in the schedule. The safe times are similar to latest allowable dates in PERT,
and serve a similar function.

Finally, the scheduler also produces a pessimistic view of the execution world. In this
case the scheduler uses the upper bounds on the tasks’ execution times and state transitions.
The longest times for a task’s execution time and state transition are added onto the
minimum of the previous task’s safe and upper bounds,

Just because execution times remain below the upper bounds specified in the schedule
does not have any bearing on whether or not the execution is proceeding in a manner that
concurs with the schedule. Upper bounds serve only as warnings as to how long a task
or transition could possibly take; only the safe limit can be used to monitor whether or
not a schedule is remaining valid. Places where the #afe limit comes before the upper time
bound indicate places where the schedule is likely to fail. These are the prime spots for the
insertion of monitor tasks and contingency plans.

This of course assumes that one of the tasks remaining to be executed does not take substantially less
time to be executed than was marked in the task specification. Similarly for the amount of time spent
executing the state transitions.

20

2.7 Schedule Rating Heuriatica

While the algorithms for scheduling tasks have been covered in detail, there still remains
the question of how the schedule searcher decides which prefix, and which expansion for
that prefix, the system should be working on. The answer to that question is that the
system maintains a rating of how promising each prefix and expansion is. What that rating
iz based on and how it is calculated make up the remainder of this section.

2.7.1 Rating the Schedule So Far

At any point in the scheduling process, it is easy to find out how much time and how
many tasks have been scheduled for a particular prefix. With these numbers it is trivial to
calculate the average time scheduled for each task. Assuming that the average task’s time
remains constant throughout the remainder of the scheduling process allows the system to
estimate the total time required for the schedule, if the number of tasks to be scheduled is
known. Unfortunately, the number of tasks to be scheduled is often not well known when
only a part of the schedule has been decided upon. The number of iterations for some loops
may yet to have been calculated. If decisions on exclusive disjunct task sets have not been
scheduled then they also can contribute to the task number uncertainty. However, estimates
can be made of the sumber of tasks remaining to be gcheduled, and the average task time
can be improved upon by sampling the delay times stored in the SDA. These can help to
improve the quality of the Estimated Total Time, or ETT for short.

The ETT can give some estimate of the quality of its own value by tracking its change
during the scheduling process. If two prefixes’ ETTs are the same, but one prefix’s ETT
has decreased every time its prefix has been expanded, then that prefix should get a higher
score {since its ETT has a history of being pessimistic). So the score associated with an
ETT is a function of both the value of the ETT and the trend of the ETT over the last
several prefix expansions.

The ETT’s reliability (and likewise its overall weight in the prefix’s rating) depends
heavily on the proportion of the ETT that has already been scheduled. In other words, a
prefix that is almost a complete schedule should have its ETT play a more important role
than a prefix that has only a couple of steps in it.

The score based on the schedule-so-far is a function of how much has been scheduled and
how much the system thinks there is yet tc schedule. Additionally, the rating is modified
by whether the estimmates it is based on are believed to be conservative or optimistic. If
the estimates are believed to be conservative (based on the trends of the ETT) then the
score associated with it would be raised; if optimistic then the score would be lowered. The
rating based on these time estimates helps to distinguish markedly different prefixes from
one another.

21

2.7.2 Rating Possible Prefix Expansions

‘Choosing the best prefix expansion for a particular prefix relies on information that is

local to the possible expansions, and therefore mostly provided by the SDA. The particular
factors that play a role in the rating of expansions are:

o the expansion’s closest deadline
o the expansion’s state-transition delay
e the expansion’s prerequisite delays

o the tasks that are dependent on the task in the expansion

the task’s place in the overall set of state transitions.

The way that these factors interact with one another can also effect the expansion’s score.

If a task is placed onto the schedule at a time such that its prerequisite delays will run
out simultaneously with its state-transition delays, then the robot will spend little or no
time idle. The task will assuredly be done before any deadline violation can occur. If the
task is scheduled so that its prerequisite delays are larger than the transition delays then
the robot will spend that difference being idle — a sign of an inefficient schedule. This is
wasted time, and is detracted from an expansion’s score.

Tn most scheduling problems a better solution can be found if the scheduler has freedom
on how to order the tasks to be performed. One set of factors that limit the scheduler’s free-
dom are the prerequisite constraints. Prerequisite constraints can keep a large percentage

of the tasks unavailable for scheduling if their prerequisites have yet to be fulfilled. For cre-

ating a near optimal schedule, and for meeting certain deadlines, it is desirable to schedule
the prerequisites as early as possible in a schedule. Therefore, the number of tasks for which
a particular expansion’s task serves as a prerequisite has some effect on that expansion’s
score.

The relationship between an expansion’s state-transition delay and that task’s nearest
deadline is an important factor in an expansion’s score. If the state-transition delay takes up
almost all of the time before the task’s deadline, then that expansion has a higher priority
than an expansion that has a large gap between its nearest deadline and transition delay.
The reason for this is quite simple: an expansion that contains little slack between the
end of the state-transition and the task’s deadline can probably not afford to be delayed
any longer. Those expansions with a wide disparity between their deadlines and transition
delays have more leeway, and are more likely to be postponable without an adverse effect.
Expansions whose state-transition delays take up the exact amount of time before the task’s
deadline comes up form a delay-deadline critic, to ensure that they are tried as the next,
and usually only (see section 2.7.3), expansion.

22

State-transition delays for different tasks can Auctuate greatly depending on the order
in which the tasks are done. To take this into account the resource four time, or RTT, is
~figured into each prefix’s overall rating. An RTT can be thought of as the minimum total
state-transition delays for the tasks yet to be scheduled. If there were: ten tasks: A'B ..

J left to be scheduled, each task had to be done at a different workstation, the only source
of state-transition delays was moving the robot from one workstation to the next, and the
robot was currently at location R then the RTT for task A would be equal to:

tsm(4 : B,C, D, B, F,G, H,1,J) + |F4|
10)
The function tsm calculates the traveling salesman tour for the ten workstations with the
constraint that workstation A must be the first visited. The RTT for task B would involve a
traveling salesman tour that was constrained to visit workstation B first. Unlike traditional
traveling salesman problems, the distances between cifies are neither commutative nor
associative, due to the nature of state transitions. It is possible that not all RTTs are
possible due to resource conflicts among the tasks.2

An RTT is calculated for each prefix expansion with the constraint that the first state
to be visited is the state associated with the task to be added to the schedule by that
expansion. The other stops on the tour are the other ready tasks. Figure 5 shows the
RTT scores for three schedulable tasks whose only resource is the robot’s position. For this
simple example each task’s RTT reduces to calculating the shortest route for visiting every
workstation starting with the one needed for the task. The result is then normalized. The
figure gives the RTTs for each of the three tasks.

To make the claculation of RTTs tractable, a traveling salesman approximation should
be used — rather than calculating the optimal path. The algorithm used in this imple-
mentation is nearest neighbor insertion. This runs in time O(M?), but since M is only the
ready tasks, this does not significantly add to the overall scheduling complexity.

The RTTs are used for scoring purposes, rather than the individual transition delays,
because the RTTs are immune to certain types of situations where scoring only on transition
delays would produce a very bad schedule. A trivial example of a situation where RTTs
produce better scores that transition delays is shown in Figure 6. The figure presents a
problem where the robot must visit four workstations: A, B, C, and D. The workstations
are positioned so that ordering visits based upon the shortest transition delay will actually
produce the most time-consuming schedule. The RTTs suggest a schedule that is consider-
ably more efficient. Additional resources can transform this problem into one with similar
behaviour in several dimensions.

?A resource conflict among the ready-tasks is not indicative of a serions resource conflict. It is quite likely
that a task that was not yet ready, or was thinned from the list of ready-tasks, will supply the necessary
resources so that all tasks can be scheduled.

23

RTT,=(8+8+4)+3~=6.
RITp=(2+4+10)+8=53
RITc=(3+4+8)+3=5

9
./'C
B _

Figure 5: Calculating Three RTTs for Three Ready-Tasks

39
16 =~ 20
10 —
et -
A B ? C ' D
Ordering tasks by | Initial Orderi
state delays yields an Robot Position tbei: E?%g ;ﬁgz :ﬁ
.order of B,C,4,D order of B,A,C,D
and a travel time of 7} and a travel time of 53

Figure 6: Why RTTs Are Used Instead of Transition Delays

2.7.3 Final Scoring, Re-Scoring, and Critics

The factors that go into rating a prefix and expansion have been explored in the sections
immediately above, but the question remains: How are these factors combined into a final
score? The answer to that question is not as simple as one might hope.

Different scheduling problems have different scoring needs. A relatively lightly con-
strained problem can have an optimal score produced by paying close attention to state-
transition delays, waste time, and getting prerequisite tasks scheduled as quickly as possible.

) 24

Deadline-intensive sets of tasks need more attention paid to minimizing waste time and the
relationship between prefix expansion deadlines and their state-transition delays, in order
to just find an answer. Resource-intensive tasks must pay more attention to domain-specific
scoring factors, and must make sure to get prerequisite tasks scheduled as early as possible.

Unfortunately, many problems have part of their schedules being unconstrained, while
other parts are resource and/or deadline intensive. Since there is no one scoring system that
works for all problems, the HTS uses a flexible system which adapts itself to the problem

being worked on.

Scoring factors are initially balanced towards producing a maximally efficient schedule.
As the scheduling process proceeds, the system may try to expand a prefix that leads to a
dead end. When that dead end in encountered it is analyzed and an appropriate critic is
constructed. A dead end can be one of three types:

Update Deadline: a failure that is spotted by the SDA when the time required for the
most recently scheduled task is added into the SDA and one of the tasks remaining
to be scheduled is forced past its deadline. A Deadline critic is created in response to
this failure.

Impending Deadline: a failure that is uncovered when the SDA is comparing ready tasks’
deadlines to their state and prerequisite delays. An Impending Deadline critic is
created to handle these situations.

Resource: a failure that results because of there being no legal state transition from the
prefix’s last state to any of those states of the tasks that are otherwise ready. A
Resource critic is made up in these circumstances.

These types of dead ends, and their associated critics, are used to reset the balance in the
score of schedule prefixes and their possible expansions. The ways in which the scoring are
changed are shown in Table 1. The critics then go through each of the prefixes and possible
expansions in the search front, and rescore them.

Heuristic Absoluie Deadlines | Relative Deadlines Resource Restrictions
Task Weight + - +
| Deadline + +
RTT * -
Domain *
No Wait - -
Waste Time -

Table 1: Scoring Changes Due to Scheduling Dead Ends

Each time a dead end is encountered the scoring is altered. The extent of the alteration
is proportional to the size of the dead end. If a deadline is missed by a couple of minutes,

25

the chages to the scoring weights are much smaller than if it suddenly comes to light that
five tasks will each go several days overdue.

The effects of the scoring changes are cumulative, but not long lasting. I several con-
secutive impending deadline failures are encountered, then the scoring is going to be heavily
shifted in order to avoid future failures of that type. However, it is quite possible that the
part of the schedule that is likely to cause difficulties in that direction has been or will
very soon be completely scheduled. In order for the scheduler to produce efficient schedules
the scoring strategy must revert back to the efficiency-directed strategey with which the
system started out. Scoring changes decay over time. The rate of the decay is affected by
the number and spacing of the dead ends that are encountered. If several somewhat closely
spaced dead ends of the same type are encountered then the decay rate is reduced. If no
dead ends are encountered for a substantial period then decay rate increases in an attempt
to revert the HTS to an efficiency-oriented scheduling system.

In order to reduce the number of failures encountered of the various deadline varieties,
two other critics are commonly constructed:

Potential Deadline: a critic used when some of the ready tasks have state transitions
that are longer than the nearest deadlines of some of the other ready tasks.

Delay Deadline: a critic that is produced when a ready task’s transition delay takes
exactly as long as the time scheduled before its nearest deadline.

Neither of these critics causes the mass re-scoring that is initiated by the other critics
described above. Instead, these critics eliminate some of the expansions for the prefix. The
Potential Deadline Critic removes ali of the expansions for a prefix that have state transitions
taking longer than the time until the nearest deadline of any of the expansions. This is
to avoid the Update Deadline failure that would certainly result if one of the expansions
eliminated were to be used. The Delay Deadline critic removes all of the prefix expansions,
except for the one that cause the critic’s appearance. Since that task’s state-transition delay
will take up all of the time before its deadline, it must be scheduled next — otherwise it
will surely violate its deadline. The other possible expansions are saved for the somewhat
rare cases where the scheduling of one of them would cause the task that formed the critic
to evaporate.

The flexible scoring system outlined above, when combined with critics and and the
structured search provided by the SDA, usually leads to efficient schedules produced with
a near minimum of search. The efficiency of a schedule is measured by the total scheduled
time required for achieving the tasks while meeting all of the task constraints. Because of
the heuristic nature of the search algorithm, a formal proof of the system’s effectivenss is
difficult to provide. However, extensive testing has been performed on a wide variety of
tasks and problem sizes. The system has always found a solution to the problem where one

26

was known to exist (and sometimes where no solution was initially believed to exist}. These
solutions have always matched or beaten any solution worked out by hand. Additionally,
the system has reliably performed in linear time, with a coefficient of approximately 3.5.
For details on the testing procedure, the reader is refered to [17].

3 Strategic/Tactical Planning with the HTS

In this section the role the HTS plays in planning is discussed. The HTS has been integrated

into several Al planning systems. They are described below. At the end of this section, the

HTS is compared to more traditional OR project planning techniques.

3.1 Integrating the HTS Into Planning

The HTS has been used in several different planning systems. In the Bumpers planner [17]
the HTS coordinated all planning activity. The planning domain was the cocrdination of
sensory resources with motor activities in 3 mobile robot. A primary function of the HTS
was to create feedback loops, and then to integrate those loops with one another to form an
efficient plan. Because of uncertainty in the domain, sensory feedback was used to decide
when to terminate certain plan steps, and when to go on to the next task.

The Forbin planner [7], [15] explored the effects of various forms of temporal reasoning
on the planning process. Forbin is a hierarchical planner which consults the HTS and a
temporal data-base, or time-map, when doing plan choice. In Forbin, having many alterna-
tive plans for a single task is commonplace; tactical plan choice becomes more important
in this system then is common in most other planners.

If there are many possible plan choices, then some mechanism must be used to distin-
guish which is the best choice. In Forbin, this choice is made by the HTS with the help of
the temporal data base. First the Time-Map Manager, [5], [4] which controls the temporal
data-base, is queried with each of the possible plan choices for the task currently being
expanded. For each choice, the TMM returns all of the temporal intervals in which it can
find no conflict for executing that plan. Associated with each interval and plan, the TMM
attaches a list of all of the constraints that executing that plan, at that time, would add
to the state of the world. K there is no time at which a particular plan choice could be
successfully executed, the TMM returns no intervals.

The TMM makes all of its predictions based on information formed from the partial
order of the plan prefiz (i.e., the plan as it has so far been constructed). Therefore, if the
TMM finds a reason for believing that a task would not execute successfully, it is almost
certainly correct. However, a recommendation by the TMM to execute a specific plan
during a specific temporal interval does not necessarily guarantee success. The TMM is

27

not capable of detecting adverse plan interactions that are dependent on the exact order
in which the plan steps are executed. To make the final plan choice, and to guarantee
that a choice with a high probability of success does exist, the plans, intervals, and their
~ constraints are sent to the HTS.

The HTS gets, from the time-map, a copy of the plan prefix. It then attempts to create
a schedule of plan-steps using the prefix, and one of the plan choices for the task being
expanded. Which plan choice is picked depends on which the scheduler says will produce
the best schedule overall. Several or all of the choices may be examined before one is finally
picked.

The schedule that is produced by the scheduler is consistent with all of the constraints
that were already introduced by the plan as previously constructed. Additionally, all of the
constraints added by the TMM for the plan and time choice picked by the scheduler are
also taken into account. The tactical plan used in the HTS’s schedule becomes the plan for
the task being expanded. It will become incorporated into the larger plan. The particular
time-slot chosen, along with the rest of the time and ordering constraints added by the
scheduler, will not be enforced, in keeping with the policy of least commitment.

Work is currently underway to extend the Forbin planner through the exlicit separation
of strategic and tactical plans. This new planner (whose architecture is shown in Figure 7)
has a separate plan library for strategic planning and for tactical planning. The strategic
planning is done after the style of Forbin; a hierarchical least-commitment planner forms
the basic plan outline, which is then criticized, verified, and has final plan selection made
by the TMM and HTS.

Once this basic strategic plan® has been constructed, its steps are fed to the robots who
will carry out the plan. The robots then feed back their sensory impressions to the temporal
database allowing the planner to monitor the plan’s execution. Should the actual execution
deviate, beyond acceptable limits, from the plan, then the reactive tactical planner part of
the system wiil be called into action. This part of the planner uses an associative memory
index to find relevant repair tactics for the type of deviation occuring and the plan strategy
that it is affecting. The repair routine is then given to the HTS, along with the unexecuted
remains of the original plan, in order to produce a coordinated repair for the plan. The
repaired plan is then sent to the robots and further execution is monitored similarly.

3.2 The HTS Verses PERT for Project Planning

The HTS bears many similarities in form and function to organizational techniques such
a8 PERT (see survey in [10]). Both have similar point-based representations for tasks (in

*While this plan is referred to as “strategic” it contains many tactical decisions (such as the selection of
which particular version of a plan to use, and various timing decisions) that are missing from planners
such as Noah

28

Planner Sensory
Controller processing
Plan routines
Librar
(strategic)
Associative
Memory
Repair
Library
(tactical)

Figure 7: The Architecture for the Forbin Strategic/Tactical Planner

PERT called events): tasks take no time — rather they represent the start or conclusion of
some activity. In fact, the HTS creates and uses a matrix representation of something very
much like a PERT network in its SDA.

However, PERT leaves a much heavier organizational burden on a project organizer
than does the HTS. Figure 8 shows a simple PERT chart for a task that involves creating
two machined objects: a widget and a gizmo. It would not be uncommon for each of the
two tracks of the PERT chart to be put together by different people. The chief widget
administrator might draw up the top part of the chart and a gizmo expert might draw up
the bottom. The gizmo part of the chart may be created up without the knowledge that
a widget chart is also being drawn. It is possible that there may only be one lathe — and
each adminstrator is expecting to use it towards the completion of his part of the project.
In PERT it would be up to the project organizer to make sure that adequate resources
were available for each subproject. The HTS would automatically allocate the resources
available,

If there was only one lathe available then the project manager might rearrange the chart

29

Figure 8: PERT Chart for Creating a Widget and Gizmo

as shown in Figure 9. However, the time estimate of 0 for the lathe setup for producing
a gizmo may have been based on the state of the lathe at start, which will have changed
now that a widget has been produced. If the lathe steps had to be linearized and the setup
time for a gizmo increases if the lathe has been used for a widget, then the HTS would
‘have automatically scheduled the gizmo operations first. Additionally, if a single worker
could carry both the finished widget and gizmo, the two storage steps would have been
automatically collapsed, by the HTS, into a single trip. This is beneficial since it does not
increase the overall project time, and it conserves resources (a workers time and energy).

Figure 9: Revised PERT Chart for a Single Lathe

An additional advantage of the HTS is that it integrates into an overall planning system.
The HTS can select among alternate plans for accomplishing a subproect. The selection
is made upon the basis of which plan fits in most smoothly with the other elements of the
overall project. Alternate plans for a single task do not fit in well with the PERT paradigm
since PERT looks at each event as an individual rather than as a piece of a sub-project as

B 30

does the HTS (or a Gantt chart [11]).

4 Summary and Conclusions

Previous popular planning systems such as Noah and Nonlin have concentrated on deriving
and debugging high-level strategic plans. The plans produced by such systems are seldom
adequate for real-world domains because the hierarchical least-commitment planning strat-
egy avoids tactical decision making issues such as uncertainty, temporal constraints, and
resource allocation/constraints.

The algorithm for a heuristic task scheduling module has been outlined. This program
has been implemented in NISP [13], a dialect of Lisp, and integrated into several planning
systems — giving them expanded abilities to handle uncertainty, temporal and resource
constraints, and the ability to reason about repeated tasks. Additionally, the scheduling
module provides a global view of the plan, and a detailed simulation of the plan — which
provides a much greater confidence in the accuracy of the system.

The simulation of the plan provided by the task-scheduling module allows more detailed
tactical decisions to be made during the planning process. This means that the input to

the system can be simpler while stil) deriving more detailed results than traditional task

scheduling methods such as PERT. During plan execution, the task scheduler ean be used
to coordinate reactive changes made to the plan — to counter any unexpected deviations
from the orginal schedule. The efficient search through the space of totally-ordered plans
i8 necessary for effective tactical planning, and catching context-dependent interactions at
the strategic planning level.

References

(1] Alfred V. Aho, John E. Hoperoft, and Jeffrey D. Ullman.
The Design and Analysis of Computer Algorithmea.
Addison-Wesley, 1974.

[2] James Allen.
Maintaining knowledge about temporal intervals.
Comm. ACM, 26(11):832-843, 1083.

[3] David Chapman.
Planning for Congunctive Goals.
Technical Report TR-802, MIT Al Laboratory, 1085,

31

(4] Thomas Dean.
Temporal Imagery: An Approach to Reasoning gbout Time for Planning and Problem
Solving.
Technical Report CSD/RR 433, Yale University, Department of Computer Science,
October 1985,
PhD thesis.

[6}] Thomas Dean.
Temporal reasoning with metric constraints.
In Proc. CSCSI 84, pages 28-32, Canadian Society for Computational Studies of
Intelligence, 1984.

[6] Richard Fikes and Nils J. Nilsson.
Strips: a new approach to the application of theorem proving to problem sclving.
Artificial Intelligence, 2:189-208, 1971.

[7] R.J. Firby, T. Dean, and D. Miller.
Efficient robot planning with deadlines and travel time.
In Proc. of the 6th Int. Symp. on Robotics and Automation, pages 97-101, IASTED,
Santa Barbara, CA, May 1985.

[8] M.S. Fox, B. Allen, and G. Strohm.
Job-shop scheduling: an investigation in constraint-directed reasoning.
In Proc. of the National Conf. on Artificial Intelligence, pages 155-158, AAAI, Pitts-
burg, PN, August 1982,

[9] Steve Hanks and Drew McDermott.
Default reasoning, nonmontonic logics, and the frame probiem.
In Proceedings of the Fifth National Conference on Artificial Intelligence, pages 328-
333, Philadelphia, PN, August 1986.

[10] F. S. Hiller and G. J Lieberman.
Operations Research.
Holden-Day, 1974.

{11] R. L Levin and C. A. Kirkpatrick.
Planning and Control with PERT/CPM.
McGraw Hill, 1966.

[12] B. Lowerre.
The HARPY Speech Recognition System.
PhD thesis, Carnegie-Mellon University, 1976.

32

[13]
[14]

(18]

_ [16]

[£7]

18]
[19]
120]

[21]

[22]

Drew McDermott.
The NISP Manual.
Technical Report 274, Yale University Computer Science Department, June 1983.

Drew V. McDermott.
A temporal logic for reasoning about processes and plans.
Cognitive Sctence, 6:101-155, 1982,

D. Miller, R.J. Firby, and T. Dean.

Deadlines, travel time, and robot problem solving.

In Proceedings of the Ninth International Joint Conference on Artificial Intelligence,
pages 1052-1054, I3CAI, AAAI, Los Angeles, CA, August 1985,

David Miller.
Ai planners for shop scheduling.
In Proc. of the Second Annual Artificial Intelligence and Advanced Computer Technol-

ogy Conference, pages 220-225, 1986.

David Miiler.

Planning by Search Through Simulations.

Technical Report 423, Yale University Computer Science Department, October 1985.
PhD thesis.

David Miller.
Scheduling Heuristics for Problem Solvere.
Technical Report 264, Yale University Department of Computer Science, 1983.

Earl Sacerdoti.
A Structure for Plans and Behavior.
American Elsevier Publishing Company, Inc., 1977.

Earl D. Sacerdoti.
Planning in a heirarchy of abstraction spaces.
Artificsal Intelligence, 5:115-135, 1974.

Austin Tate,

Generating project networks.

In Proc. of the 5th Int. Joint Conf. on Artificial Intelligence, pages 888-893, IJCAI
Cambridge, Ma, U.8.A, August 1977,

Steven Vere. _

Temporal scope of assertions and window cutoff.
1984,

JPL, Al Research Group Memo.

33

[23] Steven A. Vere.
Planning in time: windows and durations for activitez and goals,
IEEE Transactions on Pattern Analysis ond Machsne Intelligence, PAMI-5(3}:246-267,

May 1983,

[24] Robert Wilenskey.
Planning and Understanding,
Addison- Wesley, 1083,

34

