A Technique for Hiding Propietary Details
While Providing Sufficient Information
for Researchers
or
Do You Recognize This Well-Known Algorithm?

Sallie Henry

TR 86-38

A TECHNIQUE FOR HIDING PROPRIETARY DETAILS

WHILE PROVIDING SUFFICIENT INFORMATION

FOR RESEARCHERS

or

DO YOU RECOGNIZE

THIS WELL-KNOWN ALGORITHM ?

DR. SALLIE HENRY

Department of Computer Science
VIRGINIA POLYTECHNIC INSTITUTE

Blacksburg, VA 24061

ABSTRACT

A major problem facing software engineering researchers is the
difficulty of performing validation experiments requiring "real-worid"
data. This data may be composed of the requirements document, design
descriptions, source code, test plans, and/or error histories. Most major
software organizations object to giving this usually proprietary data to
researchers. This objection is understandable since these organizations
do not desire their proprietary source code or error history to be made
public. This paper describes a technique to translate source code into a
meta-language which will maintain the proprietary nature of the original
source code by hiding the algorithms and data structures employed in the
source code. This technigue, however, preserves sufficient data for
validation experiments toc be performed by some software engineering
researchers, particularly those in the software quality metrics
community. '

I. INTRODUCTION

Can you recognize the algorithm in Figure 1?

This paper explains a technique which could be used fo translate
software systems into a sanitized string of characters. This string is
meaningless to anyone attempting to discover the implementation
(algorithms, data structures, etc.) of the original system. However, this
string can then be processed to obtain information required by some
software engineering researchers to evaluate proposed tools and
methodologies. In particular, those techniques dealing with software
quality metrics. -

This encoding technique is illustrated in Figure 1, where a
well-known algorithm has been encoded in the meta-language described in
this paper. Encryption, in a very Simpie form, is used io code the
identifier names in Figure 1. This simple encryption is to number the
identifiers (vari, var2,...) and precede each identifier with the function
name (F). This paper is not attempting to evaluate encryption techniques,
but simply to suggest that encryption should be used on identifier names
when attermnpting to encode source code.

The perceived use of this encoding technique is to provide validation
capabilities on proprietary corporate data. Software engineers propose
tools and technigues to aid software developers in producing more reliable
software systems. In order to judge the goodness of a tool, the system
resulting from using the tool must be validated for attributes of goodness.
For example, a software engineer proposes a new tool to aid in detailed
system design. The design document together with the final product and
perhaps a problem report history would be required to sufficiently perform
a validation on the proposed tool. If the problem reports indicated, for
example, that the design tool relieved some of the burden of
communication difficulties between the designer and the programmer,
then a point of goodness may be attributed to the toal.

FUNCTION F (FVAR1);

LOCAL FVAR2, FVARS;
BEGIN
FVAR2 := FVAR1:
COND FVAR2 & 100
BEGIN WRITELN ('100%;
COND FVAR2 & 100
BEGIN F:=FVAR2;
FVARS = 100;
COND FVARZ & 100
BEGIN FVARS := FVAR3 + FVAR2;
FVAR2 := FVAR2 + 100;
END;
F := FVAR3;
END;
END:
END;

Figure 1. Example of a well-known algorithm

At times, tools and methodologies are proposed and even used without
sufficient validation. This lack of validation could result in a designer
overlooking a perhaps better tool since that tool's goodness has not been
proven, i.e. the designer could use a bad tool. These methodologies or tools
are difficult to evaluate without the supporting decumentation.

A major problem facing researchers in the software engineering field
is the availability of real/ software systems to validate proposed ioois
and methodologies. This problem is most prevalent for a researchers in
academia. Non-academic software researchers normally have access to
some in-house software systems for purposes of validations. However,
we should note the weakness of this approach: that in-house systems used
for validation purposes lack the commonality of validation results across
the industry. Analogously, academicians occasionally must use student
projects for preliminary tests on a proposed tool or technique. Some
researchers have expressed concern that tools validated in a classroom
environment may not produce similar results in an actual production
software development environment. :

The author's area of research is software quality metrics. Metrics
attempt to quantitatively measure the quality of a software system. The
most simple metric is lines of code; i.e. a shorter routine has better
quality than a longer routine. Regardless of the metric employed, a number
representing the "quality" of a piece of software is assigned i{o a software
component. How do we know that these numbers adequately represent the
quality of that component? One method is o focus on factors such as

structure, readability, etc. and subjectively judge, using these factors, the

quality of a routine. A less subjective method of validation is to judge a
component's quality by considering the number and severity of errors
encountered in that component. Certainly, one attribute of quality is the
lack of errors.

Using student projects to perform a validation similar to the

above generates very weak results, the experiment is too controlled. True

production systems and their associated error histories are essential to
validating this type of measurement.

Most organizations classify their software as proprietary and are
reluctant o release these production systems. This paper proposes &

technique for hiding implementation' details while providing sufficient
information for, at least, metrics researchers. Other researchers should
also benefit from these encoded systems and perhaps will consider using
sofiware quality metrics for validating their methodologies.

Section 2 describes our research in software quality metrics This
description is included to provide the reader with an explanation of the
metrics collected and to supply a flavor of the information required by the
metrics. A reader may choose to bypass this section on the first reading
of this paper. Section 3 demonstrates the translation of source code to
our encoding language. A description of this translation technique as
applied to our research is presented in section 4. Finally, section 5
contains our conclusions.

lI. Overview of Software Quélity Metrics

One of the basic objectives of software engineering is to transform the
creation of software systems from an artistic, poorly understood, and
even undisciplined, activity into a carefully controlled, methodical, and
predictable enterprise. To make software an engineerable product, it is
important that the designers, implementors and maintainers of software
systems be able to express the characteristics of the system in objective
and quantitative terms. Quantitative measurement is commonly used to
evaluate some software characteristics. For example, software
performance [LYNW 81] is measured quantitatively in terms of running
time, response time, space, etc., while software reliability [MUSJ 75] is
measured by mean-time-between-failure, mean time to repair an error, or
error density. Other characteristics which have not been satisfactorily
quantified are those relating to software quality. Quantitative measures
of quality are coliectively referred to in this section as sofiware metrics.

When applied to a software system, the word quality brings to mind a
large range of attributes. Many of these attributes refer to the process by
which the software system was constructed. Measures of such attributes
are, therefore, termed process metrics. For example, the average staffing
size, or the average number of vears of experience of the staff are process
metrics. Alternatively, other quality attributes refer to the software
product itself and measures of these attributes are termed product
metrics. The software product, and its quality atiributes, may be viewed
from two different perspectives. One perspective is from the point of view
of the users of the software system. Attributes of interest to this group
include such factors as ease of use, relevance to the user's appiications,
cost, .and readability of documentation. Another perspective is taken by
the personnel who are concerned with design, implementation, and
maintenance of the software product and are not themselves the end users.
Of interest to this group are such attributes as ease of maintenance, -
simplicity of code, ease of understanding, and modularity. The metrics
discussed in this section fall only in the last of these categories: product
metrics which refer to attributes of interest to software designers,
implementors, and maintainers. For example, the number of decisions per
line of code, or the average number of lines of code per module are product
metrics which are included in this class. In the balance of this section the

terms software metrics and software product metrics will be used
interchangeably to refer to measures of those attributes relevant to the
personnel involved in creating or maintaining the software system.

Three general classes of software metrics can be distinguished:
measures based on an automated analysis of the system's design structure,
termed sfructure metrics; measures based on implementation details,
termed code metrics; and measures termed hybrid metrics, which combine
features of both of these other two. The structure metrics are global
indicators of software quality which can be taken early in the life cycle
while code and hybrid metrics can be brought into use as the
implementation details become visible.

Our attention should also focus on the process of generating software
quality metrics for a software system. In order for software systems to
be analyzed, a tool must be developed to automate this analysis. The
manual generation of software quality metrics is not feasibie for most
software systems.

The author has had considerabie experience in attempting to completely
automate the metric analysis. The major difficulty encountered with this
process is the dependency of the analyzer on the source language. In
previous versions of the metric analyzer, the process of analyzing a new
source language required the development of a preprocessor for the
language and the efiort expended was approximately one year. The author
has recently developed a language independent software guality metric
analyzer which is discussed in section four of this paper.

STRUCTURE METRICS

A guantitative measurement of design structure can be defined only in
terms of those features of the software product which have emerged
during the (high-level) design phase. Many design methodologies, typified
by Ross' SADT [ROSD 77] and Yourdan and Constantine's SA-SD [YOUE 79],
focus on identifying the components in the system and specifying how
these components are related through control and/or data connections.

Accordingly, structure metrics .use only these features, components and
relationships among components, to define a numerical measure. Note that
the actual source code is not necessary to observe the interconnections
among components of a system.

A structure measure based on the data relationships among components

is the information flow metric [HENS 79]. This metric identifies the -

sources (fan-in) and destinations (fan-out) of all data related to a given
component. The data transmission may be through global data structures,
parameters, or side-effects. The fan-in and fan-out are then used to
compute a worst-case estimate of the communication "complexity" of this
component. This complexity measure attempts to gauge the strength of
the component's communication relationships with other components.

Another structure metric, the invocation complexity, was defined by
McClure [MCCC 78]. The relevant features in analyzing the invocation
complexity of a components are: (1) all variables which control (via
conditicnal or iteration statements) the invocation of the component; and
(2) all components which can aifect the vaiue of these variables. In this
- metric a small invocation complexity is assigned to a component which,
for example, is invoked unconditionally by only one other component. A

higher complexity is assigned to a component which is invoked

conditionally and where the variables in the condition are modified by
remote ancestors or descendents of the component.

A third structure metric, defined by Woodfield, is based on the concept
of review complexity [WOOS 80]. Woodfield observes that a given
component must be understood in each context where it is calied by
another component or affects a value used in another component. In each
new context the given component must be reviewed. Due to the fearning
from previous reviews, each review takes less effort than the previous
ones. Accordingly, a decreasing function is used to weight the complexity
of each review. The iotal of all of these weights is the measure assigned
to the component. Woodfield applied this measure successfully in a study
of multi-procedure student programs. ' :

CODE METRICS

As is implied by the name, code metrics refer to measures that are
defined in terms of features not visible until much of the detailed coding
of the system has been completed. The simplest of all of the code metrics
is the ubiquitous "lines-of-code" measure. This measure has been used as
a common measure of size (e.g., a 100,000 line FORTRAN system), has been
used as the basis of programmer productivity measures (e.g., 10 debugged
statements per day), has been adopted as a quality criteria (no module
should exceed 50 lines of code), and has been a common parameter in
software cost estimation models (e.g., in Putnam's mode! [PUTL 78] or in
Boehms's model [BOEB 81]) where completion time and staffing levels are
a function of the size of the project measured in lines-of-code. Despite
wide differences in the method of counting lines of code, the measures
have been found to be no less valid a size measure than other more
sophisticated size measures.

Two other well known code metrics are those defined in Halstead's
software science [HALM 77] and the measure of cyclomatic complexity
defined by McCabe [MCCT 76]. The software science measures are all based
on four terms: the number of unigue operators and operands, and the

number of total operators and operands. The cyclomatic complexity, on

the other hand, is simply a count of the number of decision points in
structured programs. McCabe has shown that this count is related to the
cyclomatic number of the graph which represents the control flow
structure of the code being measured. McCabe related this value o the
ease with which code could be tested.

Several carefully designed experiments have shown that meaningful
relationships exist between these metrics and significant software
characteristics [CURB 79] [BASV 83]. Properly used, these metrics can
piay a useful role during the later phases of the software life cycle
(testing, acceptance, maintenance, etc.). More recently a study has shown
that a variation of the software science techniques can be used to identify
error-prone components [SHEV 85].

The difficulty with all code metrics is that they are available late in
the life-cycle. Once the code for a large system has been created there is
little incentive -- and usually no available resources -- to undertake a

major redesign or reimplementation of the system. In addition, the
software science approach has been the subject of considerable
controversy. Serious objections have been raised against the experimental
design and statistical treatment of a number of the software science
experiments [HAMP82] [LASJ 81] [SHEV 83].

HYBRID METRICS

A third category of sofiware metrics contain what are termed hybrid
metrics. Each of these hybrid measures is a modification of one of the
structure metrics. A hybrid metric determines a measure for a component
by weighting the structure measure for that component by a code measure.
To simplify matters we have used only lines-of-code as the weighting
term. Using any of the other code metrics does not appear to change the
overall character of the results. It shouid be noted that two of the
metrics used in this project (Henry and Kafura's information flow, and
Woodfield's review complexity) were originally posed by their authors as
hybrid metrics. The two hybrid metrics which have been studied are:
information flow weighted by lines-of-code, and Woodfield's meiric
weighted by lines-of-code. The McClure invocation complexity metric
does not lend itself to such weighting.

VALIDATIONS

The validation of a software metric is vital because it establishes the
relationships beiween the measures of software products (e.g., a
complexity -metric) and important cost drivers in the software process
(e.g., errors, coding time). One form of a validation, which may be termed
a quantitative validation, typically involves the empirical analysis of
historical project data. Equally important are qualitative validations
which seek to demonstrate that the metrics of software are consisient
with the prevailing of high quality sofiware design and implementation.
Qualitative validations rely on subjective evaluation to address those

10

issues of structure and design which cannot adequately be studied by an
examination of historical data. As described below, both gquantitative and
qualitative validations have been employed in this research area.

Several validations relating to code metrics have been referenced above.
These validations illustrated significant relationships exist between the
cyclomatic complexity and program comprehensibility, and alsc between
the software science measures and the error-proneness of components.

A few examples of such validations are presented, not as a complete set
of metric validations, but as examples of "real world" systems used in
metric validations. Indicative of the utility of the struciure metrics was
a study of the kernel of the UNIX operating system which showed:

there is a high statistical correlation between the
information flow metric and changes to the UNIX kernel
[HENS 79] [HENS 81a] [KAFD 82].

information flow metric was statistically different
than the code metrics - indicating that it was capturing
a distinct feature of the software than the code metrics
[HENS 81b].

the metrics could be used to identify, diagnose, and
repair a number of structural defects in the software
including missing levels of absiraction, improper
functional decomposition, and inadequate refinement
[HENS 84]. |

These results have been confirmed by a recently completed
comprehensive, retrospective validation employing all four structure
metrics. An automated analysis system was written to compute these
metrics from the source code of completed systems and, in one case, the
skeletal code of a system under design. The two major parts of this
-comprehensive validation served to confirm the earlier experiments using
the information flow metric and to advance our. understanding of how
several metrics can be together fo form a more complete view of the

11

sysiem structure.

Another comprehensive validation study [CANJ 85] examined three
systems which were developed at NASA/Goddard by the Computer Science
Corporation under the auspices of the Software Engineering Laboratory.
Historical data was collected during the developmient of these systems
[NASA 81]. The source code for these systems and the historical data,
recording manpower and error data, was used in conjunction with an
-automated analyzer to determine the statistical relationships between a
battery of software metrics and the error/effort characteristics of the
systems. This validation study is more robust than those previously
attempted in this field. This study:

confirmed the statistical difference between
structure metrics and code metric.

showed that structure meirics are competitive with
code metrics in their relationship to error occurrences
and coding times.

indicated that none of the metrics are precis enough to
finely distinguish between component with
approximately the same metric readings but that when
grouping techniques are used a clearer relationship to
errors and coding times emerge.

demonstrated that the grouping techniques cobe used to
isolate those componenis with the worst error and/or
coding times characteristics.

The resulis from several validation experiments were summarized.
Also a brief sampling of data from one of these experiments was
presented. In general these experiments have shown that significant
relationships exist individually between the software metrics and quality
attributes such as error characteristics, comprehensibility of code, length
of coding time, and structural soundness.

12

Software quality metrics are used by a wide variety of software
engineers to validate design methodologies and various other tools.
Section three describes a language which can be used to encode source
code while preserving the fundamental structure of the system necessary
o generate the structure metrics. A tool to generate metrics from the
encoded software is explained in section four.

13

lIll. DEFINITION OF RELATION !;ANGUAGE

Figure 2 displays the relationship between the company with its
proprietary software systems and the outside world with its respective
encoded software system. This encoding process involves the two steps
displayed in Figure 2. The first step encodes the actual source code using
the relation language described in this section. An equally important step
in this translation process is providing the outside world with some type
of historical data base of error information correspending with the given
software system. The names in the data base would be changed to
correspond with the names used in the relation language.

The relation language was developed as an intermediate form between
the source code and a set of relations [HENS 84]. Relations show the flow
of control and flow of information, both of which are necessary to model
the structure of the system. These relations together with a set of code
metrics are combined to produce the structure metrics defined in the
previous section. The process of analyzing source code and producing the
corresponding software quality metrics is discussed in the next section.

Data required to generate the siructure metrics is dependent on the
source code being processed. The relation language is our attempt to first
quantify a measurement of the source code independent of the source
language and second, to provide software organizations with a vehicle to
facilitate data sharing together with the hiding of proprietary data.

To achieve independence among source languages, certain observations
were made. All block structured languages have several constructs in
‘common. For example, all source languages in consideration contain
assignment statements, iteration statements, conditional statement,
-sequence, procedure calls, etc. Languages which have been translated are
Pascal and THLL (a high level language used by the Naval Surface Weapons
Center), with 'C' and FORTRAN soon io follow. Note that we are not
interested in languages not suited to this model (LISP, PROLOG, etc.).
Instead, we are interested in production software systems typically
implemented in languages with the above constructs.

14

OUTSIDE
COMPANY WORLD
PROPRIETARY ENCODED SOURCE
SOURCE CODE IN
CODE RELATION LANGUAGE
N \ Jr
HISTORICAL | \(ENCODED
ERROR | DATABASE
DATABASE

Figure 2. Relation between a company and the outside world

15

RELATION LANGUAGé STATEMENT TYPES

The statement types in the relation language are divided into two types:
declaration and executable statements. An explanation of the relation
language is given with examples of Pascal code being translated. Pascal is
simply an example source code. All high-level block-structured languages
could be translated in a similar fashion.

DECLARATION STATEMENTS

Seven keywords are used to describe the declarations.
LOCAL <variable names;

Any variable declared to be local to a procedure is declared with a
LOCAL statement. No type is associaied with the variable in the
declaration.

For example,

Pascal:

TYPE node = RECORD

x 1 INTEGER;
y : AHRAY [1..10] OF CHAR;

eEND;
VAR t :node:
s,r : CHAR;

Relation Language:
LOCAL t;

LOCAL s;
LOCAL r;

16

STRUCT < variable name>;

The STRUCT statement is used to define any non-local variable. In other
words any variable referenced in a procedure which is not declared in that
procedure is declared with the STRUCT statement.

CONST < variable name>;

This statement is used for any user-defined constants. Note that the
value of the constant is not used in the statement.

For example,
Pascal: Relation Language:'
CONST x = 26:; CONST x; -

PROCEDURE < variabie name> (parameters);

A procedure declaration appears just as it would in Pascal with the
elimination of the TYPES associated with the parameters. The parameters
are separated by commas.

For example,

Pascal:

PROCEDURE x (y : INTEGER; VAR z : node);

Retation Language:

PROCEDURE x (v,z);

17

FUNCTION < variable name> (parameters); -

A function declaration appears just as it would in Pascal with the
elimination of the TYPES associated with the parameters and the return
value. Commas separate the parameters.

For example,

Pascal:

FUNCTION x (v : INTEGER; VAR z : node): INTEGER,;

Relation Language:

FUNCTION x (y,z);

EXTERNAL < variable names :

The EXTERNAL statement was developed for those languages that allow
external procedure declarations.
INTRINSIC < variable name> ;

This statement defines a built-in function present in the source
ianguage. Essentially, the INTRINSIC statement provides a means to
dgistinguish built-in functions from user-defined funciions.

For example,

'Pascai:

the SIN function

Relation Language:

- INTRINSIC SIN

18

EXECUTABLE STATEMENTS

Executable statements in the source code are translated into the
following relation language statements. Three immediate translations are
defined. '

1. All constants, either character strings or
numeric constants are translated to "{100".

2. All variables in relational expressions
are separated with an "&".

3. All arithmetic operators are transiated

1o "+".
For example,
Pascal: Relation Language:
x:=x'*6/y; X=X+ 100 +v;

COND <expression> <stmi> ;

All conditional statement are translated to COND, and the <expression>
variables are listed according to rule 2. Pascal conditionals inciude IF,
FOR, WHILE DO, REPEAT UNTIL, and CASE. No differentiation is made
between the statements in a THEN and the statements in an ELSE.

For example,

Pascal:
iIF{{a=b)and(c>d+6))
THEN x =12
ELSE y = 0;

19

Relation Language:

CONDa&b&c&d & 100

BEGIN
X = 100;
y .= 100;
END;

Note, as in Pascal, BEGIN END's are used to group statements.

Figure 3 summarizes the relation language statements.

20

Declaration statements

LOCAL
STRUCT
CONST

EXTERNAL
PROCEDURE
FUNCTION
INTRINSIC

Executable statements

COND
100

BEGIN END

+
&

Figure 3.

local variable declaration

non-local variable declaration
defined constant

external procedure declaration
procedure declaration

function declaration

built-in function

all conditionals

all constants

assignment

statement separation
grouping statement

arithmetic operator _
conditional variable separator

Relation Language Statements

21

ACTUAL TRANSLATION PROCESS

All high-level, block-structured source languages can be translated into
this relation language. The major difficulty encountered in this
translation process is specifying variable names. Resolving variable
identification is a difficult problem in the translation process. Each
language has some idiosyncrasies regarding variable identification. The
Pascal WITH statement is an example of one of these idiosyncrasies. Not
all variables used in a WITH block need to be modified by the qualifier in
the WITH statement. |

For example,

WITH xy* DO
BEGIN
t=5;
END;

could be interpreted as

X.yM = x.yts; OR
XyM = s; OR
t = x.yhs; OR
t=s;

The choice of which of the statements is correct is dependent on the
declaration of "y". This transiation becomes even more complicated when
WITH statements are nested.

Difficufties with variable identification similar to Pascal's WITH
statements are found as well in other languages. Examples include
FORTRAN's COMMON statement and other languages synonym statements.
Resolving naming conflicts is then the responsibility of the transiator
implementor.

22

The relation language allows all implementation details of algorithms
and all data structure implementations to be hidden. Although all
algorithm details are hidden, sufficient information still exists to allow
validation of certain software engineering methodologies.

23

IV. DESCRIPTION OF SOFTWARE METRIC ANALYZER

A software quality metric analyzer which takes as input source code
and produces several software metrics, has been developed for use in our
- research [HENS 85]. The relation language described in the previous
section has been successfully used as a tool to express the intermediate
form of the source code. This intermediate form is then transiated into a
set of relations which are then interpreted to produce metrics. The
software quality metric analyzer produces three code metrics, three
structure metrics, and several hybrid metrics. This analyzer is based on
LEX (a lexical analyzer) and YACC (Yet Another Compiler Compiler) which
are tools available with a UNIX environment. Hence, the analyzer requires
a UNIX system.

The remainder of this section describes the details of the
implementation of the software quality metric analyzer. For purposes of
discussion, the analyzer is divided into three passes. The first pass
depicted in Figure 4 concentrates on the relation language franslator.
Passes two and three shown in Figure 5 combine to form the actual
analyzer which produces the software metrics.

Pass 1

The pass one which we have developed uses the UNIX tool YACC. Pass
one has as input the BNF grammar for the source language to be analyzed,
the semantic routines which dictate processing for each production in the
grammar, and the source code to be analyzed. A file containing the
intrinsic functions peculiar to the source language is also input. The
source code to be analyzed is assumed to be syntactically correct. Output
from pass one is first, a file containing the code metrics for each
procedure; length, McCabe's Cyclomatic Complexity [MCCT 78], and
Haistead's Software Science indicators, N, V, and E [HALM 77]. These code
metrics are produced in pass one since this is the only pass which has the
actual source code necessary to generate these metrics. The second file
output from pass one contains the relation language equivalent encoded
source code.

24

INTRINSIC
BNF FILE

V)

SOURCE :
CODE —-)LTRANSLATOR_] PASS 1

J J

‘CODE RELATION
METRICS LANGUAGE
CODE

Figure 4: Relston Language Transletor

25

PASS 2

Pass two uses the UNIX tools LEX and YACC. The encoded source code is
translated into a "set of relations” which correspond to the source code.
This set of relations is completely independent of the original source
language. Source code can be processed a procedure at a time. Only the
information necessary to generate the relations for a procedure is the
encoded source code for the procedure itself.

PASS 3

Pass three and the associated implementations of the structure metrics
are written in standard Pascal. The relation file from pass two generates
the three structure metrics, Henry and Kafura's information flow metric
[HENS 81a], McClure's invocation metric [MCCC 78], and Woodfield's review
compiexity [WOOS 80]. The structure metrics together with the code
metrics, file one from pass one, produce the hybrid metrics.

As previously stated, pass two is written completely in standard Pascal
and is independent of a UNIX environment. The user is in complete control
of the selection of metrics to be run and the method of viewing the
metrics. This pass is completely menu driven. The user then decides
which of the structure metrics he desires to apply to his system. In
addition to running the structure metrics and examining the metrics, the
user is allowed to define modules, a related collection of procedures, and
levels, a related collection of modules. It is assumed that the user would
like to view ali related procedures as a single module and likewise, all
related modules as a singie ievel. This feature is especially useful for
very large systems. Hardcopies of all reports are available at all fimes.

Pass one is the only language dependent portion of the analyzer.
Previous metric experiments have mandated that we develop the reiation
language translator. The intent of this paper is to encourage software
development organizations to construct a relation language transiator
specific to their source language, encode some software systems in the
refation language, and provide this encoded source code as a testbed for
software engineering researchers.

26

INTRINSIC
BNF FILE

V.

SOURCE

CODE RELATION
METRICS LANGUAGE
- CCDE
N
_ b
RELATION
MANAGER
(LEX) (YACC)
RELAFON S

o NA

METRIC
GENERATOR

CODE STRUCTURE HYBRID
METRICS METRICS METRICS

Figure 5: Metric Ansalyzer

27

PASS 1

PASS 2

V. CONCLUSIONS

Have you decoded the algorithm in Figure 17

If not, focus your attention on Figure 6. This algorithm is written in
Pascal with variable names in our simplistic encryption form. Figure 7
displays the same algorithm for the "well-known" FACTORIAL function
in Pascal.

We believe that the relation language coupled with some form of
encryption succeeds in our goal of completely hiding the implementation
details of both the algorithms and the data structures in a proprietary
software system vyet, furnishing sufficient information for the validation
of some software engineering tools and techniques.

If even a few software development organizations would provide their
source code in a condensed form using the relation language, software
engineering researchers would then have a data base of source data for
vaiidation purposes

We are not claiming that this language is the answer io all data

collection problems, but we believe it will assist researchers with at
least some existing data collection problems.

28

FUNCTION F (FVART:INTEGER):INTEGER;

VAR FVAR2,FVAR3: INTEGER;

BEGIN
FVAR2 = FVART:
IF (FVAR2 < 0)

THEN BEGIN WRITELN (ERROR FVAR? < 09
ELSE IF (FVAR2 <= 1) /* FVAR2 = 0 OR FVAR2 = 1 */
THEN F := FVAR2:
ELSE BEGIN
FVARS = 1;
WHILE (FVAR2 > 1) DO BEGIN
FVAR3 := FVAR3 * FVAR2:
FVARZ2 := FVAR2 - 1;
END;
F = FVAR3;
END:;
END;
=END;

Figure 6. Example coded in Pascal with simple encryption

29

FUNCTION FACT (NUM:INTEGER):INTEGER:

VAR X,TEMP: INTEGER;
BEGIN
X = NUM;
IF (X <0)
THEN BEGIN WRITELN ('ERROR X < 0"
ELSEIF X <=1)/*X=00RX=1%
THEN FACT .= X; -
ELSE BEGIN
TEMP = 1;
WHILE (X > 1) DO BEGIN
TEMP ;= TEMP * X;
X=X~ 1;
END:
FACT .= TEMP;
END:
END:;
END:

Figure 7. FACTORIAL Function

30

REFERENCES

m

[BASV 83] Basili, V.R., R.W. Selby, and T. - Y. Phillips,
"Metric Analysis and Data Validation Across Fortran Projects”,
IEEE Transactions on Software Engineering, Vol. SE-9.,
No. 6, pp 652-663, November, 1983,

[BOEB 81] Boehm, B.W., Software Engineering Economics,
Prentice Hall, 1981.

[CANJ 85] Canning, James T., The Application of Software Metrics to
Large-Scale Systems, Ph.D. Thesis, Computer Science
Department, Virginia Polytechnic Institute, April 1985.

[CURB 79] Curtis, B., S. Sheppard and P. Milliman, "Third Time Charm:
Stronger Prediction of Programmer Performance by Software
Complexity Meirics", Proceedings: 4th International Conference
on Software Engineering, p. 356-360, 1979,

[HALM 77] Halstead, M., Elements of Software Science, Elsevier
North-Holland Pub. Co., 1977.

[HAMP 82] Hamer, P.G. and G.D. Frewin, "M.H. Halstead's Software Science
-- A Critical Examination®, Proceedings: 6th international
Conference on Software Enginesring, pp. 197-208,

September 1982,

[HENS 791 Henry, SM Information Flow Metrics for the Evaluation of
Operating Systems' Structure, Ph.D. Thesis, Computer Science
Department, lowa S_tate University, Ames, lowa, 1979.

[HENS 81a] Henry, S.M. and D. Kafura, "Software Structure Metrics Based

cn Information Fiow", IEEE Transactions on Software
Engineering, Vol. SE-7, No. 5, pp. 510-518, September, 1881.

31

[HENS 81b] Henry, S.M., D. Kafura and K. Harris, "On the Relationships
Among Three Software Metrics”, Performance Evaluation
Review, Vol. 10, No. 1, pp. 81-88, Spring 1981.

[HENS 84] Henry, S.M. and D. Kafura, "The Evaluation of Software Systems'
Structure Using Quantitative Software Metrics", Software:
Prentice and Experience, Vol 14., No. 6, pp. 561-573, June 1984,

[HENS 85] Henry, S.M. and D. Kafura, "Software Quality Measurement:
Recent Experience and New Tools", Proceedings of the Eight
Minnowbrook Workshop on Software Performance Evaluation
Based on Interconnectivity, pp. 64-78, 1985.

[KAFD 82] Kafura, D. and S.M. Henry, "Software Quality Metrics Based on
Interconnectivity”, Journal of Systems and Software, Vol. 2,
pp. 121-131, 1982,

[KAFD 84] Kafura, D., J. Canning, and G. Reddy, "The Independence of
Software Metrics Taken at Different Life-Cycle Stages",
Proceedings: Ninth Annual Software Engineering Workshop,
NASA Goddard Space Flight Center, November 28, 1984,

[KAFD 85] Kafura, D. and Canning, J., "A Validation of Software Meitrics
Using Many Metrics and Two Resources", Proceedings:
International Conference on Software Engineering, London,
England, August 1985,

[LASJ 81] Lassez, J., D. Van dir Knijff and J. Sheppard, "A Critical
Examination of Software Science", Journal of Systems and
Software, Vol. 2, pp. 105-112, 1981.

[LNYW 81} Lynch, W.C. and J.C. Browne, "Performance Evaluation: A
Software Metrics Success Story", in Software Metrics
(eds. Perlis et. al.) MIT Press, pp. 171-183, 1¢81.

[MCCC 78] McClure, C. "A Model for Program Complexity Analysis”,

Proceedings: 3rd Iniernational Conference on Software
Engineering, pp. 149-157, May 1978.

32

[MCCT 76] McCabe, T. "A Complexity Méasure", IEEE Transactions on
Software Engineering, Vol. SE-2, No. 4, pp. 308-320, December
1976.

[MUSJ 75] Musa, J.D. "A Theory of Software Reliabitity and lts Application™,
IEEE Transactions on Software Engineering, Vol. SE-1, Nol. 3,
pp. 312-327, 1875.

[NASA 81] National Aeronautics and Space Administration, "Software
Engineering Laboratory (SEL) Data Base Organization and User's
Guide", Software Engineering Laboratory Series SEL-81-002,
September 1981.

[PUTL 78] Putnam, L.H., "A General Empirical Solution to the Macro
Software Sizing and Estimating Problem", IEEE Transactions
on Software Engineering, pp. 345-361, July 1978.

[REDG 84] Reddy, Gereddy, Analysis of a DataBase Management System
Using Software Metrics, M.S. Thesis, Computer Science
Department, Virginia Polytechnic Institue, June 1984.

[RGSD 77] Ross, D.T., "Structured Analysis (SA): A Language for
Communicating ideas,” IEEE Transactions on Software
Engineering, pp. 16-34, January 1977.

[SHEV 83] Shen, V.Y. S.D. Conte and H. Dunsmore, "Software Science
Revisited: A Critical Anaiysis of the Thecry and iis Emperical
Support", IEEE Transactions on Sofiware Engineering, Vol. SE-g,
No. 2, pp. 155-185, March 1983,

[SHEV 85] Shen, V.Y., Yu, T.J., Thebaut, S.M., and Paulsen, L.R., "Identifying
error - Prone Software - An Empiricai Study”, IEEE
Transactions on Software Engineering, pp. 317-323, Vol. SE-11,
No. 4, April 1985.

[WOOS 80]Woedfield, S.N.. Enhanced Effort Estimation by Exiending Basic
Programming Models to Include Modularity Factors, Ph.D. Thesis,
Computer Science Department, Purdue University, W. Lafyayette
Indiana, December 1980.

33

[YAUS 80] Yau, S.S. and J. Coliofelio, "Some Stability Measures for
Software Maintenance”, IEEE Transactions on Software
Engineering, Val. SE-8, No. 8, pp. 545-552, November 1980.

[YOUE 79] Yourdan, E. and Constantine, L., Structured Design,
Prentice Hall, 1979,

34

