An Analysis of
Conjunctive-Goal Pianning

David E. Joslin
John W. Roach

TR 86-34

1

AN ANALYSIS OF CONJUNCTIVE-GOAL PLANNING
David Eugene Joslin

Committee Chairman: John Roach
Computer Science

(ABSTRACT)

This thesis develops a formal theory of planning, using a simple paradigm of plan-
ning that has been previously explored in work such as GPS, HACKER, STRIPS

stated as a conjunction of sub-goals. In this analysis we assume that the problem
has a finite state space, and that operators are reversible.

Graph theory can be used to characterize these sub-goal interactions. The en-
tire state space is treated as 2 graph, and each sub-goal or conjunction of sub-goals
defines a subgraph. Each subgraph is composed of one or more connected com-
ponents. 'Solving each sub-goal by choosing a connected component that containg
a final goal state is a necessary and sufficient condition for solving any planning
problem.

. In the worst case, analyzing goal interactions is shown to be no more effective
than enumerating the state space and searching, This complexity proves that no
complete algorithm can solve all planning problems in linear time.

The technique of goal ordering is analyzed, along with several extensions to that
technique. While a generalization of goal ordering is possible, in the worst case
generating the goal order requires as much computation as solving the problem by
a brute-force search.

A technique called capability analysis, derived from the connected component
results, uses first-order logic to find the constraints that must apply as sub-goals are
achieved. A partial implementation uses counterfactual logic to identify the com-
ponents of a world state that prevent the remaining sub-goals from being achjeved.

Contents

1 Imtrodunction
1.1 Anoutline of the thesis _ . . .

2 Previous work.
21 GPS ..
22 STRIPS L
23 LAWALYand ABSTRIPS
24 JANITORand HACKER
25 NOAHandNONLIN..................
26 GAGS L
2.7 MACRO-OPS
28 TWEAK.
29 Summary................f

3 Theoretical development
3.1 State spaces as graphs L. L
3.2 Sub-goals as subgraphs. e e e e e e e e
3.3 Intuifive analysis , ., e e e e e e
3.4 Connected components.

85 Swmmary L

10
10

12
12
13
15
16
17

CONTENTS

4.3 Anpoteon representations
4.4 Complexity from goal interactions
45 Summary

6 Analysis of goal ordering

5.1 Goalordering B
5.2 Enhancements to goalordering
5.3 Limitations to goal ordering -
54 Summary L.

6 An algorithm using logic

6.1 Representing connected components
6.2 Capabilities and consistency
6.3 Using theconstraints.
6.4 Constraints and counterfactuals
6.5 Summary e e e e e e e e e e e e e e e e e e

7 Summary and conclusions _
7.1 How this thesis fits into the world of AT
7.2 What this thesis accomplished

7.3 Directions for furtherresearch

List of Figures

2.1
2.2

3.1

4.1
4.2
4.3

6.1
6.2

STRIPS operatorexample 5
The CABoproblem 7
The tworooms problem 14
STRIPS-like description of maze problem 20
Card arrangement for tic-tac-toe isomorphism 22
Maze problem with goal interactions 24
Counterfactual program for CABproblem 36
Results for CAB problem with counterfactuals 37

vi

Chapter 1
Introduction

Every time you have a task before you, examine it carefully, take exact measure
of what is expected of you. Then make your plan and, in order to execute it
properly, create for yourself a method, never improvise.

~—MARSHAL FERDINAND FOCH

There is nothing better in fife than to have a goal and be working toward it.
— GOETHE

The most basic type of planning is the ordering of actions to achieve a stated
goal. The subject of planning also includes a broad spectrum of problems such as
time reasoning, resource management, spatial reasoning and path planning.

This thesis addresses 2 much more limited type of planning. We star{ with
a known initial world state, then apply operators that transform one state into
another. A successful plan is 2 sequence of operators that transforms the iniiial
world state to some goal state. '

Even with this limited view of planning, the problem of goal tnteractions is
not a simple one. Goal interactions may occur when the final goal is stated as a
conjunction of simple sub-goals. A plan that achieves one particular sub-goal may
interfere with a plan that achieves another sub-goal.

A number of fechniques for handling these interactions have been attempted,
most with only partial success. One of the earliest planners, STRIPS, could only
handle problems that could be solved in a few steps and was inefficient even
for those. The idea of goal ordering, originating with GPS and later refined by
LAWALY and ABSTRIPS, appeared at first to be a powerful fechnique. Soon af-
ter, though, the discovery of a class of problems called non-knear problems revealed
some serious flaws in that technique. Later planning systems such as NOAH were

Chapter 2
Previous work

When a thing is done, its done. Don't look back.
Look forward to your next objective.
— GEORGE C. MARSHALL

Plans fail for lack of counsel, :
but with many advisers they succeed.
~—PROVERBS 15:22 (NIV)

This chapter reviews some previous research in planning, and also introduces
some basic concepts and terminology. Some of the more significant planning sys-
tems are described, along with some of their achievements and weaknesses. These
systems and basic concepts are analyzed in later chapters after a theoretical frame-
work is developed.

2.1 GPS

Oune of the earliest general-purpose planning systems was GPS [Ernst 69]. GPS
used a technique called means-ends analysis. GPS is described as a problem solving
system, rather than a planning system, but in this case the two ideas mean the
same thing. GPS derives a sequence of steps to solve a problem, and that sequence
of steps can be called a plan. '

The GPS system established several ideas in the field of planning. A particularly
important one is the idea of solving a compound problem by solving each of its
component sub-goals independently.

Another idea fundamental to GPS was that of differences. The difference be-
tween the current world state and the goal state is ideally the distance from the

3

CHAPTER 2. PREVIOUS WORK 4

4

current state to the goal. In GPS and almost all of the systems we discuss here,
the idea of differences is used to help choose the appropriate sub-goal to achieve
next.

In GPS, differences were grouped into classes that were ranked according to dif-
ficulty. The ranking is intended to arrange the sub-goals so that it is always possible
to solve lower-ranked goals without disturbing any previously solved higher-ranked
goals. This idea of goal ordering was also used in the systems LAWALY and
ABSTRIPS, and will be discussed in more detail later.

2.2 STRIPS

in 1971, Fikes and Nilsson published their work on STRIPS {Fikes 71}. This work
established a technique for describing world states and operators that strongly
influenced many other efforts. The world state is a database of well-formed formulas
(wffs) in first-order logic, such as atrobot(a) or nextto{robot, bozrl). Things that are
true in the world are represented in the database by positive atomic wffs, STRIPS
uses a closed world assumption, meaning that if an atomic wff is not in the database,
its negation is true. Thus if neztio(robot, boz2) is not in the database, then we know
that the robot is not next to boz2

An operator has three components, the preconditions, the delete list and the
add list. The precondition is an expression that must be satisfied in order for the
operator to be applied. If the operator is applied, then all of the wifs in the delete
list are deleted from the world state and all of the wifs in the add list are added to
the world state.

For example, a gothru operator, used when the robot goes through a door into
another room, is shown ir Figure 2.1, The preconditions state that the robot must
be next to the door before going through the door, that the door must connect the
room the robot is currently in with the destination room, and that the door must
be open. The delete list specifies that after the operator is applied the robot will
no longer be in the current room and will have moved away from any object it was
next to. The add list says that after the operator is applied the robot will be in
the room on the other side of the door.

Another contribution of STRIPS was the formalization of the idea of differ-
ences. GPS used problem-dependent functions to determine differences. STRIPS
formmalized this idea by defining the differences to be the atomic wife reguired by
the goal state but not satisfied in the current state.

STRIPS could only solve simple problems and was computationally expensive.

STRIPS did not have an effective method for choosing the best sub-goal to solve
next, and consequently had to do a lot of searching. STRIPS used a theorem prover

CHAPTER 2. PREVIOUS WORK 5

gothru(d,m,n): Go from room m to room n via door d

Preconditions: NEXTTO_ROBOT(d)
CONNECTS{d,m,n)
STATUS(d, open)
INROOM(m)

Delete list: NEXTTO_RGBOT(+)
INROOM(m)

Add list: INROON(n)
Figure 2.1: STRIPS operator example

to conduct the search, but the theorem prover suffered from exponential blowup
and as a resuli the system could not handle problems that required more than six
steps or so to solve.

2.3 LAWALY and ABSTRIPS

LAWALY [Sikléssy 72] [Sikléssy 73] in 1972 used a technique called goal ordering to
choose the sub-goal to solve next. Goal ordering, as mentioned with GPS, consists
of ranking the goals in such a way that solving a lower-priority goal will not affect
a previously solved higher-priority goal.

For example, suppose we have the two goals of turning a light switch on and
stopping in room A. I the light switch is not in room A, then we have to turn
on the light switch before going to room A. The state of the light switch does not
affect our ability to go to a particular room, but if we go to a particular room and
stay there we can only affect a light switch in that room. If we have 3 conipound
goal consisting of any light switch goal and any location goal, we can always solve
them in that order.

Finding an effective goal order is not possible for all problems, though. The
effectiveness of goal ordering is analyzed in more detail in Chapter 5.

LAWALY recognized that a sub-goal that has been previously achieved can
sometimes be undone by the plan to achieve another sub-goal unless care is taken
to prevent it. This idea has been termed goal protection, becaunse a goal is protected
from being undone after it has been achieved.

ABSTRIPS [Sacerdoti 74], a system similar to LAWALY, also used goal order-
ing. ABSTRIPS was based on STRIPS. ABSTRIPS did not use goal protect:on,

CHAPTER 2. PREVIOUS WORK 6

A

it assumed that previously solved sub-goals cannot be affected by plans for later
sub-goals, and did not detect that a sub-goal had been undone. This assumption
is not valid for all problems so the system sometimes gave incorrect solutions.

2.4 JANITOR and HACKER

A non-linear or non-serializable problem is one that cannot be solved by goal
ordering. The first non-linear problem was described in a paper on the JANITOR
robot planning system in 1972 [Roach 72]. This non-linear problem is described
and analyzed in Chapter 3 (Figure 3.1).

The JANITOR system used goal ordering and so could not handle this non-
linear problem. Up to this point goal ordering was thought to be an extremely
powerful technique. This problem began to show some of the limitations of the
{echnique.

Sussman’s HACKER [Sussman 75], originally published in 1973, was an early
attempt to solve some non-linear problems. HACKER, like STRIPS, was a linear
planner — a planner that assumed each sub-goal can be solved in turn, without
regard fo the sub-goals not yet solved. HACKER attempted to handle non-linear
problems by trying to solve them linearly, then patching the plan after it was devel-
oped to take care of non-linear situations. This approach was partially successful.

Sussman described a nop-linear problem that could not be solved by HACKER.
This problem is illustrated in Figure 2.2(2). We will refer to this problem as the
CAB problem, since that is what the blocks spell in the initial configuration. This
problem is sometimes called the Sussman anomaly.

The problem uses three blocks, A, B and C. A block can be picked up only if
no other block is on top of it. Initially block C is on block A, and blocks A and B
are on the table. The goal is to have block A on block B, and block B on block C.

If we attempt to put block A on block B first, we reach the state shown in
Figure 2.2(b). Block C is removed from block A so that block A can be picked
up; block A is then picked up and placed on block B. We cannot put block B on
block C now without undoing the goal that we have already achieved, block A on
block B.

A similar situation arises when we try to put block B on block C first. This
can be done in one step, but if we want fo then put block A on block B we have
to remove block B from block C first. This is an example of a non-linear problem
because if we solve either sub-goal first in the most direct manner, we must undo
that sub-goal in order to achieve the remaining sub-goal.

CHAPTER 2. PREVIOUS WORK

C

A

B

Initial State

A

C

B

A
B
C

GQal State

(a) Problem description

(b} Achieving on{4, B) in the most direct way

B

C

A

(c) Achieving on(B,C) in the most direct way

Figure 2.2: The CAB problem

CHAPTER 2. PREVIQOUS WORK 8

2.5 NOAH and NONLIN

A linear planner assumes that the sub-goals can be solved in some order that will
never require a previously solved sub-goal to be undone. We have seen some prob-
lems are non-linear, and cannot be solved under this assumption. This realization
led to the development of non-linear planners that did not make the assumption
of linearity.

Sacerdoti’s NOAH system [Sacerdoti 75)[Sacerdoti 77 is 2 non-linear planner.
It is also called a hierarchical planning system. The hierarchy begins with a sip-
gle node representing the compound goal. This node is expanded into sub-nodes
corresponding to each sub-goal, so that the top level goal is achieved when all of
its sub-nodes are achieved. Similarly, the second-level goals can be broken down
further.

In effect, NOAH generates a plan for each sub-goal, then finds the ordering that
has to be imposed between operators. This ordering is imposed when an operator in
one sub-goal’s plan interferes with an operator for another sub-goal’s plan. Once
this ordering is established additional operators may need to be inserted. An
advantage of this approach is that no assumptions are made about the order of
achieving goals until goal interactions force an ordering. Delaying the ordering was
one technique that gave NOAH more flexibility than earlier systems.

NOAH was structured with a2 number of critics that refined the plan as it was
developed. Some of the critics have been analyzed in [Chapman 85]. These critics
were able to handle many of the non-linear problems that other systems had failed
to solve, but were unable to solve some other simple problems.

A key concept in allowing the fiexibility of joining individual sub-goal plans was
that of delayed binding. For example, if a sub-goal is that the robot be in room
Z, then we may be able to go through any of several doors to achieve that goal.
We can specify that a “go through door” operator will be used to achieve this goal
without specifying which door to go through. Another sub-goal may make one of
the choices more desirable than the others, so the decision is delayed as long as
possible.

This flexibility allowed NOAH to solve many problems without having o back-
track. NOAH was able to solve the CAB problem, and Sacerdoti made the following
observation [Sacerdoti 77, p. 40]:

The planning system has chosen the correct ordering for the subgoals,
without backtracking or wasted computation. By avoiding a premature
commitment to a linear plan, the system never had to undo a random
choice made on the basis of insufficient information.

CHAPTER 2. PREVIOUS WORK 9

In fact, NOAH made no provision for backtracking., This prevented NOAH from
solving some problems, but NOAH was useful in investigating the kinds of problems
that can be solved in linear $ime by a hierarchical planner.

Sacerdoti recognized that backtracking would be necessary. He noted that
search with backtracking “will have to be done if NOAH is to be truly competent
at solving problems” [Sacerdoti 77, p. 91]. This was done by Tate in 1976, in a
system called NONLIN [Tate 77]. NONLIN enhanced NOAH by adding a top-level
backtracking control structure.

2.6 GAGS

In 1975, Giorgio Levi and Franco Sirovich published their work on generalized
and/or graphs (GAGs) [Levi 75{[Levi 76]. Their algorithm allows the solution of
many problems, inciuding problems that involve consumable resources.

Ax and/or graph is equivalent to a context-free or type 2 grammar {Hall 68]. A
context-free grammar has production rules with left-hand sides consisting of only
a non-terminal symbol. A generalized and/or graph is shown to be equivalent
to the most general type of grammar, a type 0 grammar. Production rules in 2
type 0 grammar may be length-contracting, with the right-hand side having fewer
symbols than the left-hand side. The productions may also be context-sensitive.
Conceptually, a generalized and/or graph is able to represent the interdependencies
between sub-goals that would not be shown by a simple and /or graph.

Levi and Sirovich give an algerithm that they prove to be able to solve any prob-
lem that can be expressed in GAGs. The system is apparently not implemented,
and details for its implementation are not given. The distinguishing factor in this
work is ite formalism.

2.7 MACRO-0OPS

In the decade or so between NON-LIN (1877) and MACRO-OPS (1985), planning
research paid little attention to the extension of conjunctive-goal planning as such.
Some planning systems during this period addressed the need for planning with
resource management or time management. More recently there has been some
renewed interest in the simpler domain that we are studying here.

Korf [Korf 85] describes a system called MACRO-OPS that uses macro oper-
ators fo solve problems. A macro operator is formed by concatenating several
primitive operators. Korf based his work on some previocus planners that used

CHAPTER 2. PREVIOUS WORK 10

macro operators, but was able to extend and improve the technique. In particular,
Korf was able to give a formal explanation for the applicability and performance

of his system.

In MACRO-OPS, the macro operators are used to generalize the idea of goal
protection. Rather than requiring that a goal be protected once it has been
achieved, macro operators are created that might undo a goal temporarily, but
that restore the goal before the macro operation is completed. Thus the goal is
protected at the macro operator level, but not at the level of the primitive opera-

tors.

The MACRO-OPS system is able to solve complicated problems such as the
Rubik’s cube. The Rubik’s cube state space has approximately 4 x 10 states,
and the average length of a solution is about 95 moves. The pre-processing time
required to learn the macro operators for Rubik’s cube is less than 15 cpu minutes
cn a VAX 11/785, using about 200K words of memory. :

The macro operators transform 2 non-linear problem into a linear one, solvable
with goal ordering. Once the macro operators have been learned, the pre-processing
does not have to be repeated.

2.8 TWEAK

Chapman’s system, TWEAK|Chapman 85|, is similar to NOAH or NON-LIN in
that it generates a partial ordering on operators, and allows variables to be bound -
as late as possible. As with NON-LIN, the top level of TWEAK does the searching.

Chapman describes his planning algorithm in 2 rigorous manner that allows
him to prove that it is correct and complete. In this sense, TWEAK is similar to
MACRO-OPS. Both improved upon some partialiy-successful planning techniques,
then described the generalized technique in a rigorous way. Chapman is able to use
his theoretical framework to analyze a number of previous algorithms, including

HACKER, NOAH and NONLIN.

2.9 Summary

As we review the previous work in this paradigm of planning, we see progress in
the types of problems that can be solved. Early planners suffered from an incor-
rect assumption of linearity. Sussman tried to solve this problem in HACKER
by patching linear plans when the assumption of linearity failed. With NOAH,
Sacerdoti got away from the idea of linear planning with his hierarchical plan-
ning technique. NONLIN was an improvement on this, adding a necessary search

CHAPTER 2. PREVIOUS WORK 11

component; Chapman’s TWEAK improved on these systems even further, and
Chapman was able to prove that his algorithm was complete and correct.

Few systems have had much of a theoretical basis. GAGS was based on formal
languages, but implementation details have never been reported. Chapman’s sys-
tem is perhaps the first implemented system to be proven complete. This thesis is
even more theoretical because it only attempts to analyze the problem of planning,
rather than to create a new planning algorithm. Some of the successes and failures
of these systems will be explained in the following chapters.

Chapter 3
Theoretical development

Here arises a puzzle that has disturbed scientists of all periods. How is it that
mathematics, a product of human thought that is independent of experience,
fits so excellently the objects of physical reality?

~—— ALBERT EINSTEIN

Our experience hitherto justifies us in believing that nature is the realization of
the simplest conceivable mathematical ideas.
—— ALBERT EINSTEIN

In this chapter we use graph theory to develop a formal representation of plan-
ning problems. Later chapters apply this representation to analyze previous work
and to develop new solution techniques. In order to use graph theory for this analy-
sis we have to assume that the problem has discrete states, and has a finite number
of states. We will make a few other simplifying assumptions as we go along. The
assumptions that we will be making are consistent with the problems that have
been studied in the research efforts described in the previous chapter.

3.1 State spaces as graphs

If our problem domain has a finite number of discrete states, we can view the
state space as a graph by considering each legal world state to be a node. If any
operator changes one state to another, we have a directed arc from the first state to
the second. I we allow that at most one operator can cause a given state transition,
we have a 1-graph. A l-graph is a graph that has at most one arc from any given
initial node to any given destination node.

 The idea of treating a problem space as a graph is not new. Both Berge
[Berge 73] and Carre [Carre 79|, among others, make use of it. Treating the entire

12

CHAPTER 3. THEORETICAL DEVELOPMENT 13

state space as a graph is useful only for small worlds; in many worlds the number
of states is much too large to make this practical. Nevertheless, this representation

is useful for analysis.

As an example we can consider the simple problem shown in Figure 3.1(a),
first described in [Roach 72]. The initial state has a robot in room A, not next to
anything, and the door between rooms A and B is closed. The goal state has the
door closed and the robot next to a sink that is in room B. We will refer to this

problem as the two rooms problem.

The door can only be opened or closed if the robot is next to the door. The
robot can go into the next room only if it is next to the door and the door is open.
The robot must be in the same room as something before it can go next to it. The
door is considered to be in both rooms.

The door has two states, open and closed. The robot can be in four places.
In room A, the robot is exther next to the door or not next to anything. In room
B, the robot is either next to the door or next to the sink. In Figure 3.1(a) these
locations are numbered one through four. The initial location is labeled number
one, and the final location is number four.

The entire state space, shown in Figure 3.1(b), has eight states. Each state

s identified by the number for the robot’s location, and by the letter O or the
letter C for the door’s state of open or closed. The initial state is in the lower left,
labeled 1C. The goal state is in the lower right, labeled 4£C. Note that the arcs are
not directed arcs since in this particular problem the transitions are all reversible.

3.2 Sub-goals as subgraphs

Having defined the state space as a graph, we see that each sub-goal defines a
subgraph. A subgraph can be defined by specifying a subset of the nodes of a
graph; a sub-gozl specifies the subset of world states where the sub-goal is satisfied.
A conjunction of sub-goals defines a subgraph where all of the sub-goals in the
conjunction are satisfied.

~ In our two rooms example, the subgraph that has the door closed is showzn in
Figure 3.1(c). We see that as long as the door is closed the robot is constrained to
be either in room A (iccations one and two) or room B (locations three and four).

Likewise, the goal of having the robot next to the sink defines 2 subgraph, This
subgraph consists of two isolated nodes. In Figure 3.1(b), these nodes are labeled
40 and 4C.

These subgraphs allow us to give a more formal definition to the idea of goal
protection introduced in Chapter 2. If we achieve a goal such as closing the door

CHAPTER 3. THEORETICAL DEVELOPMENT

i4

©)

Initial State Goal State

B®

(a) Problem description

Initial

State Goal State
~ (b) State space

Initial State | Goal State

(c) Subgraph with door closed

Figure 3.1: The two rooms problem

% @u@ o %
=]

CHAPTER 3. THEORETICAL DEVELOPMENT 15

and then protect that goal, we confine ourseives to the subgraph that has the goal
satisfied. If 2 problem is to be solved using goal protection, then as each sub-
goal is achieved the final goal state must be reachable while remaining within the
subgraph defined by the conjunction of all sub-goals achieved so far,

The final goal state can also be defined in terms of these subgraphs. The final
goal state is any state in the intersection of the subgraphs for all of the sub-goals.
In the two rooms problem, the final goal subgraph is the single state satisfying
both sub-goals. _

3.3 Intuitive analysis

Before continuing with rigorous analysis based on graphs, it is helpful to gain some
intuitive understanding by looking at the state space of the two rooms example.
The two rooms problem turns out $o be a difficult one for some systems. As we will
see, goal ordering is not effective for this problem, so LAWALY and ABSTRIPS
cannot solve this problem. '

A planning system such as ABSTRIPS might try to solve the two rooms problem
as follows. Since the door-closed goal is already solved in the initial state, that goal
is not perceived as a difference to be resolved. To solve the remaining goal of being
next to the sink, the plan would be to go next to the door (state 2C), then open
the door (state 20), then go through the door (state 30), then go next to the sink
(state 40). Unfortunately, this plan undoes the goal of having the door cloged.

We can see why goal ordering does not work here by looking at the subgraphs
for each of the sub-goals. The door-closed subgraph (Figure 3.1(c)) consists of two
separate parts. The initial state is in one of those parts and the final state is in
the other, so when we try to protect the door-closed goal that is initially true we
cannot reach the part of the subgraph that has the goal state. Similarly, if we solve
the next-to-sink goal in the most direct fashion and then protect that goal, we find
ourselves in a subgraph that consists of only one state, but not a goal state.

Since neither goal order allows us to solve each goal in the most direct fashion
possible, systems based on goal ordering will not solve this problem. The correct
solution follows essentially the plan described above, but inserts the step of closing
the door after going through it but before going next to the sink. In other words,
the door closed goal is actually solved in the middle of the process of going next to
the sink.

In general, then, we see that if a goal is to be achieved and then protected, it
must be achieved in such a way that we are in a part of the goal’s subgraph that
also contains a final goal state. In the following section we formalize this notion of-
solving each sub-goal within a particular part of the subgraph.

C'HAPTER 3. THEORETICAL DEVELOPMENT 16

3.4 Connected components

In graph theory, the “parts” of the subgraph discussed in the previous section are
called connected components. The subgraph in Figure 3.1(c) has two connected
components. The subgraph for the goal of being next to the sink also has two
connected components, each an isolated node.

A connected component for a directed graph can be defined in terms of chains.
[Berge 73] defines a chain as follows:

A chain is a sequence g = (1, fis, ..., ttg) of arcs of [a graph] G such
that each arc in the sequence has one endpoint in common with its
predecessor in the sequence and its other endpoint in common with its

guccessor in the sequence.

Note that a chain is more general than a path. In a chain the traversal of an arc
in the sequence does not have to follow the direction of the arc.

If a graph has a chain connecting every pair of distinct nodes in the graph,
then the graph is called a connected graph. A connected component is a maximal
connected subgraph. In other words, two nodes in a graph are part of the same
connected component if and only if there is a chain between them. A connected
graph has exactly one connected component.

The subgraph for a sub-goal can have multiple connected components, even if
every state in the full graph is reachable from every other state. This is the case
with our two rooms example.

For simplicity, we will assume that if 2 world state can be changed to another
werld state in one step (one operator), then the reverse operation may also be
performed in one step. Many planning problems meet this assumption, including
the blocks world and most robot worlds. Some examples of worlds where the
assumption does not hold are worlds with consumable resources and robot worlds
with one-way doors.

Under this assumption we can treat the graph as an undirected graph. More
importantly, any state within a connected component is reachable from any other
state within that connected component.

We can achieve a sub-goal by entering any of the connected components in its
subgraph, but protecting the sub-goal will confine us to that connected component,.
If the connected component does not contain a final goal state then proteciing that
sub-goal prevents us from solving the problem. If no connected component in the
subgraph contains a final goal state, then the problem cannot be solved.

CHAPTER 3. THEORETICAL DEVELOPMENT 17

A

Achieving a sub-goal in a connected component that contains a final goal state
is clearly a sufficient condition for solving the remaining goals without undoing the
first goal, since under our assumptions every state within a connected component
is reachable from every other state. It is alsc a necessary condition, since we cannot
solve the problem unless the connected component we have selected does contain a
final goal state. Note that if we had not assumed reversible operations, selecting a
connected component that contains a final goal state would not be sufficient, since
the goal state is not necessarily reachable from all states within the connected

component.

Achieving each sub-goal within a connected component that contains a final
goal state is therefore a necessary and sufficient condition for solving a problem if
we are going to protect each sub-goal as it is solved. This result does not tell us
how to solve a sub-goal within a connected component that has a final goal state. It
does tell us that any planning system that does not solve sub-goals in this manner
cannot be a complete system. Furthermore, if we did have a planning algorithm
that could solve each sub-goal within a connected component that had a final goal
state, we would know that the system was complete.

- If sub-goals are not protected, as with MACRO-OPS, then a sub-goal may be
achieved and undone any number of times. Even here, though, each sub-goal will
be achieved for the last time at some point. The world state must then be part of
2 connected component that contains a final goal state. A planning system that
does not always solve sub-goals in this fashion cannot be 2 complete system.

3.5 Summary

We saw in the two rooms example that a sub-goal may have to be solved in 2 par-
ticular way so that it will not have to be undone in order to achieve the remaining
sub-goals. In this particular problem the door must be closed while the robot is in
the same room as the sink. This idea of achieving a sub-goal in a particular way
to avoid conflicts with other sub-goals is characterized in this chapter in terms of
connected components. We showed that finding connected components with final
goai states is a necessary and sufficient condition for planning.

The next chapter will use graph theory to prove the complexity of planning.
The fact that goal protection requires that a planner solve goals within certain
connected components will be shown in Chapter 5 to be the source of failure for
some previous systems. In Chapter 6 we will develop a technique for finding the
added conditions that guarantee that a sub-goal has been solved according to the
connected component requirement,

Chapter 4

The complexity of planning

No problem is so big and so complicated that it can’t be run away from.
— LINUS

For every complex problem there is a solution that is simple, neat, and wrong.
—H. L. MENCKEN

He who every morning plans the transaction of the day and follows that plan,
carries a thread that will guide him through the maze of the most busy life.
—VICTOR HUGO

This chapter demonstrates that the worst-case computational complexity of
planning is proportional to the size of the state space. We then show that the pres-
ence or absence of sub-goal interactions does not change the inherent complexity
of planning.

All of the complexity results in this chapter refer to computational complexity,
not to time complexity. Parallel computation may reduce the actual time required
to solve a probiem, but this does not reduce the inherent computational complexity
of a problem. We will refer to “linear-time” algorithms in the discussion, but we
are assuming here that no concurrency of operations is being used.

In investigating the computational complexity of a problem we are not con-
cerned with the fact that many problems in the domain may be substantially
easier than the worst-case problems. This discussion is only concerned with the
worst-case complexity. We have already noted that many problems were solved in -
linear time by NOAH and other algorithms. As we will see, these problems are
much simpler than the worst-case problems that we describe in this chapter.

As mentioned previously, graph theory is only applicable when the state space
is finite. In fact, Chapman showed in [Chapman 85] that planning problems are
rot decidable if the state space can be infinite. All of our analysis assumes a finite
state space.

18

CHAPTER 4. THE COMPLEXITY OF PLANNING 19

4.1 A lower bound on complexity

This chapter uses 2 maze as an example problem to demonstrate a lower-bound
on worst-case planning complexity. The problem consists of a robot finding a path
between two specified rooms in a maze. The robot has a map (a list of room
connections) so it does not have to move through the maze to discover paths. We
assume that the robot has not seen the maze previously, and so does not start with
any additional information. This problem can be stated in STRIPS-like notation
as shown in Figure 4.1.

If a doorway connects room X and room Y, then the initial database has
CONN(X,Y) and CONN(Y,X). We assume that all doors are open and that the
robot can go through a door in either direction. The goal is INROOM(Z), for some
room Z.

We can determine the complexity of solving this problem by observing that it
can be mapped directly to a graph. Each room in the maze corresponds to a node
and each CONN predicate corresponds to an arc. Since the CONN predicates are
chosen so that we do not have any “one-way doors,” we can treat the graph as an
undirected graph.

A depth-first search will find a path to the goal node with worst-case complexity
of O(maz(|E|,|V])) operations, where |E| is the number of edges and |V is the
number of vertices [ALo 74]. We can see that an algorithm that always finds a
path through an arbitrary graph must be of at least O(maz(|E|, |V])) complexity
by observing that in the worst case an algorithm may find the goal node only after
visiting every other node in the graph. That last node might only be found after
trying every arc in the graph. Therefore, the complexity of finding a path in a
maze or a graph must be at least O(maz(|E|,|V}{)).

We see from this that, in general, the maze problem cannot be solved in linear
time; some search with backtracking (or the equivalent) will be required. Note that
our discussion is limited to worst-case problems. We have already seen that some
problems can be solved in linear time by algorithms such as NOAH’s hierarchical
planning. Worst-case problems such as mazes require search with backtracking,
and therefore cannot be solved by any linear-time algorithm.

4.2 An upper bound on complexity

The maze problem is a model for searching a state space, since by a change in
- representation any state space can be treated as a maze. Since a state space search
is a combinatoric algorithm, we would expect that maze problems are of the same
complexity.

CHAPTER 4. THE COMPLEXITY OF PLANNING 20

Initial world
INROON(A)

CONN(A,B)
CONN(B,A)
CONN(A,C)
CONN(C,A)
CONN(B,D)
CONN (D’ B)

... etc.

goto(x,y) operator
reconditions:
CONN(z,y)
INROOM (x)

Delete list: _
INRGON(*}

Add list:
INROOM(y)

Figure 4.1: STRIPS-like description of maze problem

CHAPTER 4. THE COMPLEXITY OF PLANNING 21

The fact that any state space can be treated as a graph allows us to transform
any problem into a maze problem. Therefore the complexity of the maze problem
is an upper bound on the complexity of any planning problem. Planning problems
therefore have a worst case complexity of O(maz(|El, |V|)).

Although the previous chapter assumed that operators are always reversible,
this worst-case complexity is valid for general graphs. Since the maze problem has
reversible operators, the same complexity holds under that assumption.

4.3 A note on representations

The previous sections showed, by using the maze example, that some planning
problems are of O(maz(|E|,|V|)) complexity. Next it was shown that no planning
problems are worse than O(maz(| E|, |V|)) complexity, since the state space for any
problem can be treated as a maze.

This argument is valid for establishing a worst-case complexity and proving
that a complete planning algorithm must do some searching. But even though some
problems such as mazes are inherently difficult, many real problems are significantly
easier. A maze has no “structure” to take advantage of, while many problems have
some structure that can be useful.

A mail delivery robot, for example, may have to find jts way from room to
room within a building. This problem has some similarity to the maze problem.
For most buildings, however, the problem of finding a room can be reduced to the
problem of finding the right floor followed by the problem of finding the right room
on that floor. The structure of floors and rooms reduces the amount of searching
that is required. If the problem were structured with two predicates, FLOOR and
ROOM, we might say that the goal interactions between the FLOOR and ROOM
goals were helpful in reaching 2 solution.

If a problem has some inherent structure, then that structure must be preserved
under any isomorphic transformation of the problem’s representation. The inherent
computational complexity is not affected by a change in representatior as long as
the new representation is isomorphic to the old one. Rut computational complexity
and ease of solution by a human are two separate things. It is possible that an
isomorphic change of representation may make a problem significantly easier (or
more difficult) for a2 human, without changing the computational complexity.

As an example consider a game that begins with nine playing cards, ace through
nine. Each card is worth its face value in points, with the ace worth one point.
The players take turns selecting cards from the table, and the winner is the first
player whose hand contains three cards totaling fifteen points.

CHAPTER 4. THE COMPLEXITY OF PLANNING 22

8§ 3 4
1509
67 2

Figure 4.2: Card arrangement for tic-tac-toe isomorphism

The isomorphism between this game and tic-tac-toe consists of arranging the
cards to form a magic square, with each row, column, and diagonal totaling fifteen.
The arrangement is shown in Figure 4.2. Each card represents a square on a tic-
tac-toe board, and a player taking a card corresponds fo playing in the square for
that card.

Although we have an isomorphism between the two problems, the problems
are not equally easy for a human to solve. The tic-tac-toe problem has a spatial
structure corresponding to the mathematical structure of the card game. A child
can play ftic-tac-toe because the spatial structure involved is easy to understand.
The card game seems to require more mental calculation. Yet both games have
the same computational complexity.

In arguing about computational complexify, isomorphic transformations are
allowable. We do need to be carefu] when transforming problem representations
that we do not unwittingly add or remove structure in the problem, since changing
the inherent structure can change the computational complexity.

The next secticn uses a transformztion of representation fo show that goal
interactions do not, in the worst case, Teduce the complexity of planning. This is
not denying that some problems, due to the nature of thejr goal interactions, are
not as complex as the worst-case problems. Unfortunately, the results given here
do not help characterize the types of goal interactions that are helpful.

4.4 Complexity from goal interactions

‘The maze example is difficult because the domain for the INROOM predicate is
large and sparsely connected. Because we have only one predicate, we cannot have
any goal interactions to analyze. Without any additional information about the
structure of the maze we cannot do anything but search.

CHAPTER 4. THE COMPLEXITY OF PLANNING 23

Much of the successful work in planning has been based on the analysis of goal
interactions. Furthermore, typical problems do have goal interactions. This raises
the question of the effect of goal interactions on the complexity of planning.

We will show that in the worst case goal interactions do not reduce the com-
plexity of planning. We do this by converting the maze problem to an equivalent
problem whose complexity is entirely due to goal interactions.

The first step is to assign each room an arbitrary N-digit binary number, where
N is large enough to allow a unique number for each room. We then create a
predicate for each binary digit, and convert our states and operators as follows.

The INROOM predicate is replaced by N predicates. For example, if we
need three binary digits to encode all of the rooms, and room A is assigned the
number 011, then our initial state of INROOM(A) becomes the three predicates
INROOM.0(0), INROOM _1(1), and INROOM_2(1).

Each CONN predicate is replaced by a CONN predicate with 2N arguments,
with each of the two original arguments converted to N arguments by taking the
N digits of its binary number. For example, if room A is assigned the number
011 and room B is assigned the number 101, then CONN(A,B) is replaced by
CONN(0,1,1,1,0,1). |

The goto operator is transformed accordingly. Qur previous STRIPS-like ex-
ample might be transformed as shown in Figure 4.3.

Each INROOM predicate now only has two possible values, zero and one, so
none of the complexity of the problem in its present form can be due to the large
domain of a predicate. We instead have interactions between the INROOM pred-
icates, and our goal is now 2 conjunction of N sub-goals. If it is always true that
goal interactions simplify the process of planning, then we should be able to solve
the problem in better thar O{maz{|E|,|V!}} time. But since an ar ifrary maze

is equivalent fo an arbitrary graph, no technique can improve on the worst-case
complexity of G(maz(|E|,|V1)).

We saw that complexity in planning problems could be due to a predicate with
a large domain. We then showed that even if each predicate has a domain of only
two values, the interactions between the operators can give us the same degree of
complexity. Furthermore, we showed that problems of one type can be converted
to the other type. From this we see that we cannot differentiate between the two
types of interactions. In the worst case, analyzing goal interactions is no more
effective than enumerating the state space and searching.

CHAPTER 4. THE COMPLEXITY OF PLANNING 24

Initial world

INROOM_0(0)
INRDOM_1(1)
INROOM_2(1)

CONN(0,1,1, 1
CONN(1,0,1, ©
CONN(O,1,1, ©
CONN(0,0,1, O,
1,1
0, 1

CONN(1,0,
CONN(1,0,

.. etc.

goto(x,y,z) operator

Preconditions:
CONN(a,b,c,x,y,2)
INRDON_0{a)
INROOM_1(Db)
INROON_2(c)

Delete iist:
INROON_0 ()
INROOM_1 (%)
INRDOM_2(*)

Add list:
INROOM_0O(x)
INROON_1(y)
INROONM_2(z)

Figure 4.3: Maze problem with goal interactions

CHAPTER 4. THE COMPLEXITY OF PLANNING 25

4.5 Summary

This worst-case analysis helps us understand the fundamental limits for a “com-
plete” algorithm — one that solves all planning problems within this particular
paradigm of planning. Some problems, such as traversing a maze, are inherently
unstructured and therefore difScult. Unfortunately, this analysis does not tell us
what characteristics of a representation make it 2 good repregentation. This is a
good area for future research,

Because the complexity of planning is proportional to the number of states in
the state space, and state spaces can be arbitrarily large, a complete algorithm
is not actually very interesting. A depth-first search algorithm can solve any of
these planning problems, and is of optimal complexity for worst-case problems.
For many other problems, of course, a depth-first search is far from optimal. A
more interesting direciion for future research is to find a usefu] subset of planning
problems with a manageable computational complexity.

Chapter 5

Analysis of goal ordering

Divide each problem into as many parts as are feasible, and as are requisite for
its better solution.
— RERE DESCARTES, Discours de la méthod

Direct your thoughts in an orderly way; beginning with the simplest objects,
those most apt to be known, and ascending little by littie, in steps as it were,
to the knowledge of the most complex.

— REKE DESCARTES, Discours de Ig méthod

This chapter analyzes the technique of goal ordering in terms of connected
components. This analysis applies only to means-ends analysis; it does not ap-
Ply to other techniques, such as hierarchical planning. We are not analyzing the
computational complexity of these problems, just investigating the limits to the
effectiveness of means-ends analysis for a given problem and representation.

5.1 Goal ordering

We noted previously that goal ordering is 2 powerful idea, although it does not help
solve all problems. Ideally, goal ordering would allow the possible goal predicates
to be given a fixed order, independent of the jnijtjal state or goals for a particular
problem. In terms of graph theory, this is possible if, for the given order, every
connected component of the subgraph for the conjunction of the first N sub-goals
contains a final goal state.

A non-linear problem is by definition a problem that cannot be solved by simple
goal ordering. Non-linear problems are those that » for any sub-goal order, have at
least one connected component without a final goal state in the subgraph for the
first N sub-goals, for some ¥ .

26

CHAPTER 5. ANALYSIS OF GOAL ORDERING 27

These definitions are actually too strict. A connected component that does not
contain a final goal state is a necessary condition for non-linearity, but whether or
not a planning algorithm falls into the trap of solving a sub-goal in that dead-end

Do algorithm can always choose the right connected component unless it searches,
but such an algorithm is no longer goal ordering.

Each algorithm solves the sub-goal in what it congiders to be the most direct
way. Unfortunately we cannot give a more precise definition without defining the
“most direct way” of achieving a sub-goal, For this analysis, we will assume that
the most direct way is the one that requires the fewest number of operations,
although no known planning algorithm claims to ensure this,

5.2 Enhancements to goal ordering

Goal ordering is not a general technique. We have already seen that the two rooms
problem does not yield to goal ordering algorithms. Whep goal ordering does work,
however, it leads very directly to a solution. Planning can be done in roughly linear
time when goal ordering is effective. This alope would be motivation to look for a
generalization of the technique.

In looking at the two rooms problem we can easily find ways to allow goal
ordering to work. We first observe that the only goal state has the robot in room
B. If we add this requirement as a goal, then the goal ordering

L. inroom(R)
2. door{closed)

3. neztto(sink)

is effective. We can look-at the effect of solving each of these sub-goals in the state
space in Figure 3.1{b). Solving tnroom(B) leaves us in a subgraph with only one
connected component, consisting of the states labeled 80, 8C, 40 and 4C. If we
then close the door, we again havea subgraph with only one connected component,
states $C and 4C. The fina] goal state is then reachable in one step,

With another representation, however, the same problem doesn’t yield to this
approach. The same state Space can be represented with only a door predicate
and a location predicate, with the goals being door(closed) and atrobot(4). This

CHAPTER 5. ANALYSIS OF GOAL ORDERING 28

1

follows the state diagram in Figure 3.1(b) more closely. Now we cannot add the
inroom(B) sub-goa) because it is not part of the representation.

We can extend the idea of goal ordering and solve thig problem by allowing
negated sub-goals. For example, goal ordering is effective with the following se-
quence of sub-goals

1. ~atrobot(1)
2. ~atrobot(2)
.3. door(closed)
4. atrobot(4)

The goal of not being at location 1 is solved first and protected. As each of
these sub-goals is achieved, the resulting sub-graph is again a single connected
component.

Yet another alternative is to allow a disjunction of sub-goals to act as 3 single
sub-goal. The following goal order also worka:

1. atrobot(3) v atrobot(4)
2. door(closed)
3. atrobot(4)

This follows naturally since the disjunctive goal here ig logically equivalent to the
two negated goals in the previous example, for this system. That is, if the robot

+ + I 1 1 1 £ 1 &3 * 4. £
ig eisher al location 3 or location 4 then the robot is not at location 1 angd not zf

location 2,

subgraph defined by door(closed). As we have frequently noted, the door{closed)
sub-goal must be solved in the right connected component. This connected com-
ponent ig specified by any of the following:

* inroom(B)
* atroboi(3) v airobot(4)

© ~atrobot(1) A ~atrobot(2)

CHAPTER 5. ANALYSIS OF GOAL ORDERING 29

1

Each of these extensions consists of adding a sub-goal or sub-goals_that cause a
move into the correct connected component,

Many other problems allow goal ordering with the addition of simple sub-goals.
The CAB problem given in Figure 2.2, for example, becomes linear with the addi-
tion of the goal of putting block C on the table. The goal order then becomes:

1. on{C, table)
2. on(B, C)
3. on(4, B)

As with the two rooms example and the inroom(B) sub-goal, the added sub-goal
is always true in any final goal state.

If it were possible to convert any problem to a linear problem by adding goals,
we would have to design a way to discover what the added goals should be. As we
see in the following section, however, this result does not lead to a useful generalized
goal ordering technique.

5.3 Limitations to goal ordering

In this section we consider a problem that does not yield to any of the extensions
mentioned above. Moreover, we will argue that no added sub-goal, simple or
compound, allows this problem to be solved by means-ends analysis.

The problem involyes three variables, A, B and C, in a Pascal program. The
objective is to swap the contents of two variables, 4 and B, Variable € is avaiiable
to hold an intermediate value, but its initial ang final values must both be Zero,
Our compound goal has three sub-goals; variable A must have the valpe originally
found in B, variable B must have the value originally found in A, and variable ¢

must have the value ZETO.

If we copy variable 4 to variable B immediately, we no longer have the original
value from variable B available to copy into variable A. This means the sub-goal
has been solved in the wrong connected component. The same is true if we try to
solve the sub-goal for variable 4 immediately. The move required to get us into
the correct connected component is {c copy either 4 or B intc variable €. But
variable C' will have the value zero in both the initial state and the fina] state,

CHAPTER 5. ANALYSIS OF GOAL ORDERING 30

6.4 Summary

Goal ordering is a powerful technique when it works. For this reason, it is reason-
able to look for a generalization that would allow it to solve more problems. We
showed that some non-linear problems can be made into linear problems simply
by adding additional sub-goals. For some problems these added sub-goals had to
be more complex than just positive atomic wffs. We also saw that some problems
cannot made linear by the addition of sub-goals,

The analysis here applies only to means-ends analysis. It is not powerful enough
to analyze planning algorithms such as NOAH. NOAH was able to solve more
problems in linear time than means-ends analysis could, but was still limited i
the types of problems that it could solve.

Chapter 6
An algorithm using logic

“Contrariwise,” continued Tweediedee, “if it was so, it might be, and if it were
s0, it would be; but as it isn't, it ain't. That's logic!®
——LEWIS CARROLL

When you have eliminated the impossible, whatever remains, however
improbable, must be the truth.
— SHERLOCK BHoLMES

fnconsistent data — | must re-evaluate,
——NOMAD space probe, Star Trek

We saw in previous chapters that some problems require that certain conditions
be met when a particular sub-goal is achieved. Those conditions were described
in terms of connected components. Unfortunately, the graph theory results did
not give us a technique for deriving the conditions that must be met for a given
problem. In this chapter we develop such a technique using first-order logic.

Note that although we assume 2 pariicular order for achieving the sub-goals
this technique is not limited only to goal-ordering algorithms. The conditions that
must apply as each sub-goal is achieved are indeperdent of the algorithm used to
find a plan to achieve the sub-goal. If a particular algorithm allows a sub-goal to
be achieved and then undone, it must still achieve each sub-goal for the last time
at some point, and the conditions found here must apply at that point.

The technique presented here has several imitations. First, it applies only when
the compound goal consists of two sub-goals. Another limitation is that, while it
is capable of deriving the conditions that must apply when the first sub-goal is
achieved, it does not tell us how to solve the sub-goal to satisfy those conditions.
We also do not make any claims about the complexity of this approach. The value
in investigating this technique comes from the fact that jt opens up some potentially
useful formal representations for planning problems.

31

CHAPTER 6. AN ALGORITHM USING LOGIC 32

6.1 Representing connected components

Graph theory can be used to characterize planning in terms of connected compo-
nents. When we want to find the connected components, however, graph theory is
of limjted use. Many research planning problems are stated with wifs, so we might
consider using first-order logic in our analysis.

One difficulty with using logic for planning is that the world state is modified
by the application of operators. But first-order logic does not deal with time or
changing worlds; it is monotonic. We can, however, use wifs in first-order logic to
represent a single world state.

We will limit our analysis to problems whose goal consists of two sub-goals.
In this analysis we want to represent a world state that has one sub-goal already
achieved, and derive the conditions that must apply if the remaining sub-goal is to
be achieved without undoing the first sub-goal. If thege conditions are met, then
we have found a connected component with 2 final goal state.

To do this we introduce the idea of a capabsisty. A capability is the potentia]
to use a given operator without violating a sub-goal that has been achieved and

Suppose that the current world state has a sub-goal satisfied, and we want to
protect that sub-goal. If we disallow all operators that can make the subgoal false
by denying those capabilities, then the sub-goal is protected. If no operator can
make the sub-goal false, then we are forced io remain in the current connected
component of the subgraph for that sub-goal.

But we also want to be sure that the connected component we choose containg
a final goal state. Again we can state this in terms of capabilities. If we know
that the capability exists of applying an operator that can achieve the remaining
un-solved sub-goal, then we know that this connected component contains a final
goal state.

So with two sub-goals we can express the conditions that must be true for a
connected component with a final goal state by using capabilities. We disallow any
operator that could make us leave the connected component for the first sub-goal,
and also require that some operator to achieve the second sub-goal is applicable
within the connected component. The following seciion describes a system in
predicate logic that uses logical consistency to express each of these requirements.

CHAPTER 6. AN ALGORITHM USING LOGIC 33

6.2 Capabilities and consistency

A world state may be stated as a wff. The world state wif is the conjunction of
all of the atomic wffs that are true in the world and the negation of all the atomic
wifs that are false. For example, if our world consists of block A on block B, then
the world state might be represented by the wif:

on{4,B) A ~on(B, A) A clear(A) A ~clear(b)

Other predicates may be necessary, depending on the representation being used.
A different representation may also use the wfis over(4, B) and ~over(B, A).

It is possible to derive formulas in predicate logic that are consistent only with
legal world states. GPS, for example, used tests to determine whether a state was
legal. In the blocks world we would have the statement

VzVy [on(z, y) — ~clear(y)]

meaning that a block cannot have a clear top if some other block is on it. We call
these wils legality constrasnts.

- A sub-goal, such as on{4, B), is also a wiff. This wif js consistent only with states
- that have the sub-goal satisfied. If our two sub-goals are logically inconsistent with

the legality constraints, then we know that it is not possible to reach a siate
satisfying both sub-goals. We would like to use logical consistency in a similar
fashion to determine whether or not a state with one sub-goal achieved is within a
connected component that will allow us to solve the other sub-goal.

To do this we need to find the restrictions that affect capabilities, called cepa-
bility constrainis. An example of a capability constraint js: '

VeVy [~pickup(z) A on{z,y) — ~pickup(y)]

This says that if we cannot pick up one block because it would undo a protected
sub-goal, and if that block is on top of a second biock, then we cannot pick up the
second block either. This is because a block can only be picked up if it is clear,
and we cannot clear 2 block unless we can move all blocks that are on top of it.
The capability constraints represent the indirect effects of protecting a sub-goal.

Now suppose we have a set of legality constraints and capability constraints,
stated as formulas in predicate logic, so that only legal combinations of states and
capabilities are logically consistent with that system. We now assert a wif called a
sub-goal constraint. If our two sub-goals are A and B then we assert

AN ?vundo(A) A ~B Acando(B)

CHAPTER 6. AN ALGORITHM USING LOGIC 34

]

where undo(A) is the conjunction of all capabilities that could undo sub-goal A,
and cando(B) is the disjunction of all capabilities that can achjeve sub-goal B.

A world state is consistent with this sub-goal constraint only if sub-goal A has
been achieved in a manner that allows sub-goal B to be achieved without having
to undo sub-goal A. The assertion of sub-goal 4 and ~undo(A) restricts us to a
connected component satisfying sub-goal A. Sub-goal B is not yet satisfied, but by
asserting cando(B), we know that at least one operator for achieving sub-goal B
can be applied. A logical inconsistency in this system of constraint wffs tells us
that no world state meets the connected component requirements, and the goals
cannot be solved in this order.

We can see here the difficulty in extending this approach to more than two sub-
goals. Asserting cando(B) is sufficient to guarantee that we can achieve that sub-
goal, but the capability of achieving each of several sub-goals independently does
not guarantee that we can reach a state that satisfies all of them simultaneously.

6.3 Using the constraints

We can use the constraints described jn the previous section to determine whether
a given state satisfies the connected component requirements. We want to carry
this a step further. Given our sub-goals 4 and B, we would like to derive the
conditions that must be met in order to be in the correct connected component.

Suppose that we assert the sub-goal constraints and find that we have a consis-
tent system of wifs. This tells us that we can solve sub-goal A before sub-goal B,
and not have to undo sub-goal A4 to achieve sub-goal B. But now suppose that
some wif X is consistent with this system of wifs, but that ~X is not consistent.
We then know that we can solve sub-goal 4 before sub-goal B only if condition X
ie satisfied. '

Of these conditions, we do not need to be concerned about any that involve
capabilities. We can also ignore any that are direct consequences of legality con-
straints, since only legal states can be achjeved. The remaining wifs, if any, give
us the conditions that must be met when sub-goal A is achieved and protected.

- Unfortunately, deriving all of the implications and identifying the ones that are
important does not appear to be a simple task. The following section describes a
technique that is more straightforward.

CHAPTER 6. AN ALGORITHM USING LOGIC 35

6.4 Constraints and counterfactuals

Rather than trying to derive zll of the conditions that must be met when the
first sub-goal is achieved, we can simply solve the sub-goal in the most direct
manner, then analyze the resulting world state to find the conditions that prevent
the remaining goal from being achieved. The first sub-goal then must be re-planned
to remove those conditions. Finding the source of a logical inconsistency is not part
of standard first-order logic. A type of logic that does almost exactly what we want
18 counterfactual logic. Counterfactual logic is described in [Rescher 68].

Counterfactual logic consists of taking an inconsistent set of wifs and making the
seb consistent by throwing out some of those wiffs. The wifs are grouped into modal
categories that indicate bow strongly the wif is believed, with lower numbers having
stronger belief. Given a choice of making the system consistent by discarding either
of two wifs the counterfactual engine will throw out the wif with the higher modal
category.

The counterfactual engine used here is described in [Roach 85b]. The input
to the counterfactual engine consists of the constraints discussed earlier in the
chapter and a world state. The world state is derived by solving one of the sub-
goals without worrying about interactions with other sub-goals. The resuliing
world state may not be one that is useful ig solving the problem, but if this is the
case the counterfactual engine will be used to determine why it is not useful. The
capabilities for undoing that sub-goal are negated, and capabilities for achieving
the remaining sub-goals are asserted.

Figure 6.1 gives the input to the counterfactual engine for the CAR problem
described in Figure 2.2. The counterfactual engine and its input are written in a
local dialect of Prolog called HC [Roach 85a). The mk_facts rules assert facts such
as {on b ¢} for block B on block C. Varizbles are prefixed by an asterisk. Two modal
categories are used. Modal category one azssert the fact that no block can be og
bop of itself. Modal category two asserts facts that are irue in the quick-and-dirty
world state that we are testing against the connected component requirements.

The mk_rules rule assert the constraints that must hold true. The rule:
((over *a *b) -> (not (clear *b)})

says that if one block is over another, then second block cannot be clear., This is
an example of a legality constraint. '

The capability used here is move, with three parameters. If block A is taken
from the top of block B and placed on top of block C, that operation is

(move a b ¢)

CHAPTER 6. AN ALGORITHM USING LOGIC 36

(mk_facts 1
(not (on 2 2)) (not (on b b)) (not (on ¢ ¢))
(not (over a a)) (not (over b b)) (rot (over c c))

)

(mk_facts 2
(on b ¢} (not (on b a))
(on ¢ a) (not (on ¢ b))
(not (on a b)) (not (on a c))

(clear b) (not (clear a)) (not (clear c))

(over b ¢) (over b a)
(over ¢ a) (not (over ¢ b))
(not (over a b)) (not (over a c))

(move 2 *e *f) (move b *g *h) (move c *i i)
)

(mk_rules
{(over *a *b) -> (not (clear *b)))
((clear *a)(i= *x xa) -> (not {over *x *a)))
((on *a *b) -> (over *a *b))
({not (cver *a *b)) -» (not (on *a xb)))
((over *a *b) -> (not (over *b *2)))
{(over *a #*b) (over *b *c) => {over *a *c))
((not (move *a *x *y)) (over #a *b)

-> (not (move *b *z *W}))

Figure 6.1: Counterfactual program for CAB problem

CHAPTER 6. AN ALGORITHM USING LOGIC 37

((on b c) (not (move b *0 *1)) (move a *2 b)
=> ({(not (move c *0 *1))
=> ((not (over c a))
=> (not {on ¢ &8))))
(not (over b a)))

Figure 6.2: Results for CAB problem with counterfactuals

The only capability constraint is:
((not (move *a *x xy))(over *a *b) -> (not (move *b *z *w)))

indicating that if a block cannot be picked up, then neither can any block that it is
over. The rules given here are not complete, but they are sufficient for the solution
of this example. -

. In this example the {on b ¢) goal has been solved by simply putting block B on
block C. This approach is wrong, of course, since now block A cannot be put on
block B without taking block B off of biock C.

If the goal has been solved in a wrong connected component the system is
logically inconsistent, and the counterfactual engine identifies the causes of the
inconsistency. The counterfactual engine is invoked by the command:

(cf ((on b c)(not (move b *x *y)) (move a *z b)) 1)

The first argument is a list of facts that must be irue, These are the sub-goal of
having block B on block C, the negation of the capability of moving block B, and
the capability of putting block A on block B to achieve the second sub-goal. The
second argument requires that consistency be restored by changing only wifs with
a modal category higher than one. '

The answer returned is shown in Figure 6.2. The first line is the list of facts
thai must be true. The counterfactual engine then derives the fact that since block
B cannot be moved, and block B is on block C, then block C cannot be moved
either. But since the system must ensure that block A can be moved, if block C
cannot be moved then block C cannot be over block A. If block C cannot be over
block A, it cannot be on block A. Finally, by similar reasoning, block B cannot be
over block A either.

The key fact that contradicts our initial guess at how to achieve block B on
block C is (not (on ¢ a)). When we put block B on block C, it must be done

CHAPTER 6. AN ALGORITHM USING LOGIC 38

in such a way that block C is not over block A. For this problem, adding this
new condition as a sub-goal happens to give us a problem that is linear. We saw
in chapter 5, though, that the conditions required to specify the right connected
component cannot always be added as sub-goals. For this reason, it is unclear how
to proceed in general once we have derived the conditions that must be satisfied.

The example shown here executes in three cpu seconds on a lightly loaded
Vax 11/780. The counterfactual engine requires about twelve ¢pu seconds to load
the facts and rules. The Prolog that we are using executes at approximately one
thousand logical inferences per second (1 K-lips). Currently available Prologs are
about two orders of magnitude faster.

If we run the above example with the goal order reversed, trying to put block A
on block B before we put block B on block C, the counterfactual engine returns
nil indicating that it is impossible to solve the goals in that order. The system is
inconsistent and cannot be made consistent without throwing out the hypothesis
that block A is on block B.

- 6.6 Summary

A planning algorithm based on the counterfactual technique would need to re-plan
to solve the sub-goal according to the constraints returned by the counterfactual
engine. The new plan would also have to be tested by the counterfactual engine,
possibly turning up new constraints. This is becaunge the engire is grouping all
facts into those that are retaiped and those that are thrown out. Those facts
that are retained, however, could be further divided into two groups: those that
are constrained to be true, and those that are superfluous. Those facts that are
constrained to be irue need to be maintained during the re-planning, but the
current counterfactual ergine does not make this distinction.

This technique does not directly lead to a planning algorithm. The system
is capable of determining what makes a state good or bad, but does not teli ug
how to reach a good state. One possibility for future research is fo incorporate
this technique into a constraint satisfaction system. It is also not clear how to
generalize this techniqueé to more than two sub-~goals.

Another problem with this method is that it is not clear how to generate the
constraints. A typical formulation of blocks world operators allows the operators
to be applied to illegal states, generating new states thai may or may not be
legal. Because of this, it is impossible to derive the legality constraints by simply
analyzing the operators. A legal world state must be taken as 2 starting point, and
from there it seems that enumeration of states may be necessary. The capability
constraints also do not seem to be easily derivable,

CHAPTER 6. AN ALGORITHM USING LOGIC

The technique presented here is current}
a system that supports experimentally som
chapters, It also represents a formal system

39

y of theoretical interest only. It gives

e of the theory presented in previous

that may be useful in future analysis.

Chapter 7

Summary and conclusions

There are two kinds of people in this world: those who divide everything into
two groups, and those who don’.
- —KENNETHE BOULDING

tam a “scruffy” (or hacker or pragmatist) but there seem to be plenty of
people in Al who hold that the problems will fall apart if and only if we solve
the underlying difficult cases rigorously.

—KEKNETH LAws

This final chapter of the thesis is divided into three parts. The first section
discusses how this thesis fits into the broad field of planning and artificial intel-
ligence. The second section reviews the accomplishments of the thesis, The last

section gives some possibilities for future research springing from this thesis.

7.1 How this thesis ftg into the world of AT

Several authors have divided research in the field of artificial intelligence into two
paris, one emphasising theory and one more interested in working systems, The
theoretical or “neat” side is accused of being impractical. The practical or “scruffy”
side is accused of being just a bunch of hackers.

Ariificial intelligence has been described as an attempt to solve intractable

roblems with tractable algorithms that handle enough cases to be useful. The

theoretical side is concerned with analyzing the intractability of a problem. The
bractical side is concerned with discovering the tractable algorithms,

We have seen examples of both types of work. The STRIPS, ABSTRIPS,
LAWALY, HACKER, NOAH and NONLIN systems are examples of the hacker

40

CHAPTER 7. SUMMARY AND CONCLUSIONS 41

side. Each could solve a few more problems than could be solved before, but there
was no characterization of the types of problems that could or could not be solved.
Some authors gave examples of problems that they could not solve; the rest only
hinted at the incompleteness of their systems.

. The examples of theoretical research in planning are fewer and more recent.
GAGS, MACRO-OPS, TWEAK and this thesis are examples of a more formal
approach to planning. :

I would like to suggest that this theoretical branch of Al research can itself be
broken down into two parts. On ore side we have the explainers; they devise a
planning system, and give a rigorous explanation for its effectiveness. On the other
side we have the explorers; they begin with a formal representation, then explore
the limits of the problem by analysis with that representation.

- MACRO-OPS and TWEAK are good examples of the explanatory side of the-
oretical AL Both of these are generalizations of previous work. MACRO-OPS
followed several other attempts at using macro operators in planning; TWEAK
followed the non-linear style of planning begun by Sacerdoti. Both systems signif-
icantly improved on the previous work, and both sysiems justified their improve-
ments with a formal argument. The formal characterizations explain the success
of the new methods.

The exploratory side operates in reverse. Here the formal representation is used

to derive a new method. With GAGS, the theory was based on formal languages,.

and GAGS formed the basis for a planning algorithm. This thesis follows a sim-
llar pattern. Beginning with graph theory, some characteristics of planning are
investigated. A partial algorithm is described based on this work.,

The two groups have different characteristics. The explanatory group tends to
have more practical results, since the work ultimately derives from prior “scruffy”
research. The ability to prove the efectiveness of ihese algerithms allows future
research to identify potential improvemenis and to compare various approaches in
a more concrete manner,

The theoretical tools developed in exploratory research tend to give better in-
sight into the inherent nature of 2 problem. While that approach may not lead
to practical systems immediately, it should influence the development of future
systems, '

7.2 What this thesis accomplished

The accomplishments of this thesis can be grouped into two major parts. First, the
results on the complexity of planning show us some limitations of a complete algo-
rithm. For worst-case problems, no complete algorithm is better than a brute-force

CHAPTER 7. SUMMARY AND CONCLUSIONS 42

'

search. Because of this, complete algorithms are not as interesting as algorithms
that take advantage of the characteristics of some useful subset of planning prob-

lems.

This work also suggests a number of formal systems that may be useful in
further exploratory research. Graph theory has proven useful, as bave first-order
logic and counterfactual logic. The section on future research gives some reasons
that finite state automata and semigroup theory may prove helpful.

7.3 Directions for further research

Most of the worst-case problems we have examined are either unstructured, as with
the maze problem, or have state representations that do not reflect the problem’s
structure. Typical problems, however, often have some useful structure. A good
direction for future work would be to quantify the degree of structure in a problem,
and identify its effect on the algorithmic complexity. A related idea is to try to
change the representation of a problem so that it can be solved more easily. Korf
has addressed this problem in [Korf 80].

. Another direction for future research is to investigate other formal systems for
representing and analyzing planning algorithms. A possibility is finite state au-
tomata (FSA). FSA are closely related to both graph theory and formal languages.
FSA have many similarities to planning probiems: both have states represented by
one or more variables, with one initial state and one or more goal states. Some the-
ories of FSA decomposition have been developed using semigroup theory [Stone 73]
[Arbib 68].

A state machine may be decomposed into simple interacting state machines
if the state variables are independent{ or partially independent. ¥ the variables
are independent, then the state machine decomposes inio several smaller machines
sharing the same input. The reverse process is the formation of a cross-product
machine, where two or more smaller machines that share the same input can be
combined into a single machine. With only partial independence, transitions for
one machine may depend on the current state of another machine. This interde-
Ppendence of state variables is reminiscent of goal interactions; a measure of partial
interactions might prove useful.

Some simplifying assumptions appear worth looking into. For example, most
problems that have been studied have ihe property that only one operator is avail-
able to achieve each sub-goal. Here we are referring to a parameterized operator,
corresponding to more than one arc in the problem graph. This assumption ap-
pears $o create some degree of structure within the problem, but it is not clear how
to take advantage of that structure.

Bibliography

[Aho 74]

[Arbib 68]
[Bergé 73]

[Carre 79]
[Chapman 85]

[Ernst 69]

[Fikes 71]

[Hall 68]
[Korf 80]
[Korf 85]

[Levi 75]

Abo, Alfred V., John E. Hopcroft, and Jeffrey D. Ullman, Thke
Destgn and Analysis of Computer Algorithms, Wesley Publishing
Company, 1974.

Arbib, Michael A., Algebraic T, heory of Machines, Languages, and
Semigroups, Academic Press, 1968,

Berge, Claude, Graphs and Hypergraphs, North Holland Publishing
Company, 1973.

Carre, Bernard, Graphs and Networks, Clarendon Press, 1979.

Chapman, David, “Planning for Conjunctive Goals.” Technical Re-
port 802, MIT Artificial Intelligence Laboratory.

Ernst, George W., and Allen Newell, GPS: A Case Study in Gen-
erality and Problem Solving, Academic Press, 1969.

Fikes, Richard E., and Nils J. Nilsson, “STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solving.” Ar#i-
ficsal Intelligence 2, 1671, pp. 189-208.

Hall, P., “Equivalence between AND/OR graphs and context-free
grammars.” Comm. of the ACM, 16 (1973), pp. 444-445.

Korf, Richard, “Toward a Model of Representation Changes,” Ar-

tificial Intelligence 14, 1980, pp. 41-78.

Korf, Richard, Learning to Solve Problems by Searching for Macro-
Operators, Pitman Publishing, 1985.

Levi, Giorgio and Franco Sirovich, “A Problem Reduction Model for
Non-Independent Subproblems.” Proc. of the Fourth International
Joint Conference on Artificial Intelligence, (LJCAI) 1975, pp. 340-
344.

43

BIBLIOGRAPHY 44

[Levi 76]

[Rescher 68]
[Roach 72]

[Roach 85a]

[Roach 85b]

[Sacerdoti 74]

~ [Sacerdoti 75]

[Sacerdoti 77]

[Sikléssy 72]

[Sikléssy 73]

[Stone 73] |
[Sussman 75]

[Tate 77

1

Levi, Giorgio and Franco Sirovich, “Generalized And/Or Graphs.”
Artificial Intelligence 7, 1976, pp. 243-259.

Rescher, N., Hypothetical Reasoning, North-Holland, 1968,

Roach, John, “The JANITOR Robot.” Internal Report, Computer
Science Department, University of Texas at Austin, 1972.

Roach, John, and Glenn Fowler, “Virginia Tech Prolog/Lisp: A
Dual Interpreter Implementation.” Technical Report TR-85-18, De-
partment of Computer Science, Virginia Tech, 1985. Also published
in Proceedings of the Esghteenth Hawais International Conference on
System Sciences, January 1975.

Roach, John, Fred Eichelman, and Doug Whitehead, “A Coherence
Logic for Counterfactual Reasoning.” Department of Computer Scj-
ence, Virginia Tech, March 1085,

Sacerdoti, E., “Planning in a Hierarchy of Abstraction Spaces.”
Artificial Intelligence 5, 1674, pp. 115-135.

Sacerdoti, E., “The Nonlinear Nature of Plans.” Proc. of the Fourth
International Joint Conference on Artificial Intelligence, (IJCAI)
1975, pp. 206-214.

Sacerdoti, E., 4 Structure for Plans and Behavior, American Else-
vier Publishing Company, 1977..

Siklossy, L., “Modeled Exploration by Robot.” Techrical Report
TR-1, Department of Computer Science, University of Texas at
Austin, April 1672,

Siklossy, L., J. Dreussi, “An Efficient Robot Planner Which Gener-
ates its Own Procedures.” Proc. of the Third International Joint
Conference on Artificial Intelligence, (IJCAI) 1973, pp. 423-430.

Stone, Harold S., Discrete Mathematical Structures and Thesr Ap-
plications, Science Research Associates, Inc., 1973,

Sussman, Gerald J -+ A Computer Model of Skill Acquisition, Amer-
ican Elsevier Publishing Company, 1975,

Tate, Austin, “Generating Project Networks.” Proc. of the Fifth
International Joint Conference on Artificial Intelligence, (IJCAD)
1977, pp. 888-893.

