Interactive Tools: Making UIMS Usable
Roger W. Ehrich
Deborah Hix
H. Rex Hartson

TR 86-30

INTERACTIVE TOOLS: Making UIMS Usable
Roger W. Ehrich, Deborah Hix, and H. Rex Hartson*

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 240861

Abstract

The earliest UIMS provided primarily run-time facilities for interface management
and a set of programming tools for the development of application interfaces. Aside
from the implementation requirements with which many tool designers have approached
UIMS design, there are also methodological requirements that have been seriously ne-
glected. One reason is that interface design methodology is poorly understood and
rarely axiomatic. Nevertheless, it is important that we formulate methodoclogical theo-
ries and provide UIMS with tools that support them. This paper proposes a storyboard
metaphor for the conceptual design of humarn-computer interfaces.

Introduction

There are two major metaphors for the nature of human-computer interaction,
a conversation metaphor and a model world metaphor. In a system built on the con-
versation metaphor, the interface is a language medium in which the user and system
have a conversation about an assumed, but not explicitly represented world. In this
case, the interface is an implied intermediary between the user and the worid about
which things are said. In a system built on the model world metaphor, the interface
18 1tself a world where the user can act, and that changes state in response to user
actions. The world of interest is explicitly represented and there is no intermediary
between user and world (Hutchins, Hollan, and Norman, pp. 93-94, 1986).

The Seeheim model of user interface management systems {Pfaff, 1985) is a well
known structural model that describes the relationship of the end-user to the applica-
tion system that the interface is to support. Of the three components of this model
—— presentation, dialogue control, and application interface model — the dialogue con-
trol component has been most thoroughly investigated. Green (1985) and others have
recognized the importance of the role of human factors in the design of these three
comporents and in the evahiation of descriptions of these components, but despite
much debate, there have been no significant advances toward making UIMS useble in
the conceptual design phase. Indeed, the implementation issues for wide classes of in-
terfaces are themselves extremely complicated, and discussion of these has dominated
over the discussion of methodological and representational issues.

- Many approaches to interface design and specification have borrowed from related
technologies elsewhere in the computer science field. For example, there have been
numerous attempis to use BNF, state transition diagrams, and ATNs for specifica-
tion of dialogue control, and their respective strengths and weaknesses have been well
documented (Jacob, 1086). Many tools have been corstructed to assist in generating
interface specifications and in generating working interfaces from those specifications.

*The authors gratefully acknowledge the support of IBM, the Virginia Center for Innova-
tive Technology, and the National Science Foundation under Grant IST 8310414.

These have largely been textual, as in the case of BNF specifications, and graphical,
as in the case of state transition diagrams or ATNs. However, most of the notations
themselves tend to describe the interfaces rather than to show directly how they would
actually behave. Consequently even interactive graphical tools for constructing ATNs
have the characteristic that the interface designer (whom we will call the dialogue
author) is rather isolated or detached from the actual behavior or appearance of the
interface being designed, and the best alternative is frequently to wait to try out the
interface implementation and see what happens. But how, then, does the dialogue
author actually compare interface behavior with requirements and make the necessary
changes? And what cognitive support is available to help the dialogue author relate
the notation to actual performance as the interface is being designed?

Let us further consider the nature of the tools used by the dialogue author to de-
sign interfaces. Hutchins, Hollan, and Norman, (1986) have used the term directness,
to characterize an impression or feeling that the dialogue author would have about
the designer’s interface under the assumption that “directness results from the com-
mitment of fewer cognitive resources” in the use of the interface, Direct manipulation
(Shneiderman, 1983) is one of the most important technigues for providing directness
since it has the characteristic that one is working not with descriptions of the tar-
get interface but rather with the interface objects themselves. For this same reason
we have assumed for years that direct manipulation tools would be the most effective
in building interface objects and have vigorously pursued their construction in AIDE
(Hartson, Johnson, and Ehrick, 1984, and Ehrich and Williges, 1986). Unfortunately
there are many situations in which direct manipulation is inadequate. For example, in
cases where interface objects have parameters or contain information that cannot be
bound until run-time, it is possible to deal directly only with examples of the interface
objects at design-time. However, these are still tremendously useful fo the dialogue
author. In the following, interface objects that can be bound at design-time are called
static objects, and those whose binding must be deferred until run-time are referred to
as dynamic objects. '

Cognitive Directress for the Dialogne Author

The dialogue author has at least four cognitive requirements during the design pro-
cess that can be supported by UIMS tools. These are visualizatior of time sequencing,
visual design, levels of abstraction, and cognitive directness of these three.

Time Sequence:. Dealing with time sequence in the design of interfaces is a
funidamental aspect of ‘interface design because end-user actions are time-ordered:” This
is, for the most part, the responsibility of the dialogue control component of the Seeheim
model. Jacob (1986) points out that BNF is inadequate for visualizing time sequencing
since that information is only implicitly encoded, but state transition diagrams, ATNs,
and supervised flow diagrams {(or SFDs) {Yunten and Hartson, 1985) do a very credible
job in helping the dialogue author visualize time sequencing of interface events.

There are several resolution levels at which time sequencing needs to be visu-
alized, and these are seen in the transaction model of Hartson, Johnson, and Ehrich
(1984). The transaction model describes 2 hierarchy of components that every exchange
between human and computer must have, and it forms the basis of the Dialogue Man-
agement System. The largest identifiable dialogue entity is called a fransaction. This

transmits either a complete unit of validated information such as ar entire command
from the end-user to the application system, or possibly a unit of information from
the application system to the end-user. Dialogue trapsactions must be sequenced with
one another and with the computational procedures of an application system. Each
input transaction consists of a sequence of interactions whose purpose is to obtain from
the user one [possibly empty| token of information. Each interaction consists of three
components — a prompt, an input, and a confirmation, any part of which can be null.
Finally, each input consists of a sequence of lezemes, whether generated by keystrokes
or by more general user actions.

At the global control level, the dialogue author is concerned about the way in
which the dialogue exchanges relate to the computational algorithms of an application.
At an intermediate level, the dialogue author is concerned about how a time sequence
of tokens forms 2 sentence of the end-user’s interaction language and about how the
arrival of those tokens is related to the prompts, echos, and confirmations seen by the
end-user. Finally, at the lowest level the dialogue author is concerned about the user
actions and their time sequence as the language tokens are produced from those actions.

Visual Design.:. Descriptions of visual designs such as screens and prompis
are usually part of the presentational component. Green has pointed out that since
visual designs are graphic, it makes little sense to describe them textually with a
programming language (Green, 1985}, and that is a fundamental point. Wherever
possible, direct manipulation tools must be provided by means of which graphical
objects can be generated. We will return to this point shortly.

Levels of Abstraction:. One of the major problems faced by the dialogue author -
attempting to create the interface for a large application system is that of being able
‘to understand the behavior of the system at all resolution levels. For example, the
dialogue author might need to achieve a global understanding of the relationships at
the highest levels between computational and dialogue entities. At 2 lower level, the
dialogue author might need to know the names of the commands avallable in a sysfem
or the qualifiers permissible for a particular command. State transition diagrams and
ATNs permit hierarchical structuring, but unlike supervised flow diagrams there is no
associated methodology that provides organizational rules for forming the hierarchy.
In the case of SFDs, the dialogue transaction model is the basis for the hierarchical
decomposition of the interface. While there is much variability in SFDs across appli--

- cation systems, the dialogue SFDs all.confain an identifiable hierarchy of levels that

correspond to the structure levels within the transaction model. :

Cognitive Directness:. Last but far from least is the requirement that the amount
of cognitive processing on the part of the dialogue author be minimized. This is impor-
tant whether dialogue objects are generated by direct manipulation or through the use
of an intermediate notational stage. This is not necessarily a new concept; although
he has omitted SFDs from his discussion, Jacob (1986) has done an excellent job of '
comparing various BNF and transition system notations from the point of view of the
directness of their descriptive power. What is new is the recognition of the importance
of direciness and new attempts to take the issue further into account in the design of

UIMS and their design interfaces. This requirement has a number of special manifesta-
tions. For example, it allows interfaces to be visualized first in specific detail and then
generalized from examples or storyboards into notations that describe the full range of
possibilities for an interface, since that is a natural way for humans to approach design.
We see no reason why adaptations of storyboards cannot also be found for describing
languages in much the same way as they are used to describe graphic displays and
screen layouts. Cognitive directness also implies that direct manipulation should be
employed wherever possible in the design process. One of the obvious places to employ
direct manipulation is in the preparation of the storyboards.

An Interface Example

In order to clarify the issues discussed above, an interface example is given next
and it will be shown how ATNs and supervised flow diagrams (through AIDE) might
handle the specification of the interface example. The example is a fictitions Employee
Leave System with a menu that is used to select one of two forms, vacation or sick
leave. Selections are made from the menu either by typing an item number, typing
a prefix of an item name, or picking an item with a mouse click. On the vacation
form, both the current date and the employee name are supplied automatically by the
system. However, the date is not editable, whereas the employee name s, and the

blank fields are shown in reverse video. The exit and file and exit control functions
are activated from this form whenever there is a corresponding mouse click. '

Employee Leave Vacation

1. Vacation Employee [:R:W..Ehrich =

2. Sick leave Vacation Dates B

3. EXIT

Supervisor e

FILE and EXIT

. Figure 1. Employee leave menu and vac_afion form.

A possible ATN for a high level description of the Employee Leave System is given
in Figure 2. The transition arcs all have the form, input : action, where the input
may be a simple Jexeme or a complicated input recognized by sub-ATNs. The semantic
actions to the right of the colons may be primitives such as coded procedures, or they
may refer to transition networks or other descriptions of the actions that are to take
place. These actions are labeled A0 through A8 and are specified below the ATN itself.

- The ATN in Figure 2 has the following interpretation. The arc into node 2 calls
a procedure to display the employee leave menu, and three sub-ATNs are initiated io
detect and identify a selection from that menu. I the vacation form is selected, the form

employee_leave:

AC: Act: menu (“VACATION”,“SICK LEAVE” ,“EXIT")
Al: Act: exit () _

A2: Act: form (vacation)

A3: Act: form (sick leave)

A4: Act: date (date_field)

A5: Act: name (employee_field)

A6: Act: change field ()

AT: Act: edit_field ()

AB: Act: file.and.exit ()

Figure 2. ATN for Employec Leave System.

ie dispiayed. On this particular form, the date and name fields are treated differently
irom the others, and it was decided to show the invocation of semantic actions explicitly
on the main ATN to bring these actions to the designer’s attention. However, the time
sequencing implied by doing so is irrelevant. Finally, the arcs from node 7 show form
navigation inputs, field editing inputs, and form termination inputs.

The dlalogue author might have a graphical tool for generating the ATNs and
znother for automatically generating a run-time system from the graphical aescrlptlon
This would then be linked with the appropriate semantic action routines and executed
by the end-user. Typically these semantic action routines would be coded with the aid
of programming tools such as language-sensitive environments and graphics packages.
In terms of the Seeheim model, the ATN describes the dialogue control component, the
application interface model consists of the description of the exit and file and exit
procedures, and the presentatmn compornent is described by the graphics system code
and perhaps by the user’s manual that describes what it does.

_ F;g‘ure 3 shows the supervised flow diagram for the Employee Leave Svstem. In
SFDs the dialogue components are described by circles, computational components are
described by squares, and further decomposable nodes are shown by squares with in-
scribed circles. Each circle corresponds o a dialogue transaction, and the arcs between
nodes are labeled with predicates that are evaluated when the predecessor node is ex-
ited. The supervisory call to the file system supervisor is both a square and a circle
because, although the node is primarily computational, there are dialogue subcompo-
nents that describe the handling of file system error messages. Expansion of the file
and exit node would reveal this structure. This upperlevel SFD reveals the sequencing
of the transactions relative to one another and to the file and exit supervisor.

/ eupiores
/@v& \

<TRANS = VACN>

<TRANS = EXIT>

<TRANS = SL=

SICK LEAVE
INFO

Figure 3. SFD for Employee Leave System.

Aside from major organizational differences, there are more subtle differences be-
tween the ATN notation and the SFD notation. For example, the predicates state
the explicit conditions for arc transitions in the SFDs, whereas the same conditions
are implicit in the ATNs. Furthermore, the nodes of SFDs correspond to dialogue
or computational procedures that return a value fo be used in the evaluation of the
arc predicates, whereas in AT Ns the states are associated only with a particular set of
semantics, with no clear methodological delineation between dialogue and computation.

Toole and Storyboards

To provide cognitive support at design-time it is necessary to provide tools for pro-
ducing dialogue objects and systems that far surpass the programming and notational
systems that have been in common use. We have attempted to provide some of these
for DMS, although there seems to be no reason why they cannot be provided for other
gystems as well. The following summarizes the direction of DMS development.

Using a graphical programming language (GPL), the dialogue author can help
with top down development to the dialogue transaction level {circles in the SFDs).
When the dialogue author picks a circle, AIDE provides an interactive environment for
the development of dialogue objects such as displays, forms, languages, and prompts.
AIDE contains specific tools for the development of dialogue objects, and these gener-
ate descriptions in base programming language, or just BPL, which is later compiled or
interpreted by the run-time system. This BPL is actually a graphical larguage for pro-
ducing the dialogue SFDs, which are the expansions of the circle nodes corresponding
to dialogue transactions. These tool outputs ¢cap be edited by the GPL editor in the
same way as the upper level SFDs.

‘As dialogue objects are selected for expansion usmg the AIDE tools, the first task
of the dialogue author is to create storyboards by using correspondmg AIDE tools.
Figure 1 shows two of the storyboards for the Employee Leave System; it is siriking to
realize how much more understandable they are than the representations in Figures 2 or
3, no matter how much detail is given. That is the reason for using storyboards. Thus,

while the global system structure often undergoes top down development, much of the
dialogue can be generated by bottom up development, allowing the dialogue author to
begin in a natural way with concrete examples and end with the most general system
specification. In fact, the entire system, including control and functional software, can
be built upon sequences of storyboards. An operational information system has been
constructed in just this manner by the DMS group.

If the dialogue objects are static, that is, completely definable at design-time, then
the tools generate the final SFDs, written in BPL, for those objects. In the case of
dynamic objects, there are so many different manifestations of dynamics that tools will
frequently be inadequate. In such situations the interface can be writted directly in
BPL, or, if the dialogue object is slightly different from that which an existing tool is
capable of producing, the BPL SFDs generated by that tool can be edited to provide the
desired features. This provides DMS with extensibility. Finally, the tools themselves
are constructed in BPL, and the entire system can be used to generate new tools if the
objects they produce are needed with sufficient frequency.

Several issues raised here are consequences of the concept of using interactive tools
to define dialogue objects. For example, the distinction between static and dynamic
objects first becomes important when using non-programming interactive tools because

“there will never be enough tools to cover the full spectrum of dynamics, In the same
way, extensibility becomes an important issue so that tools can be constructed easily
by tool designers to produce specific classes of interface objects. It is hoped that the
approaches presented in this paper can lead to making UIMS more usable and more
effective in an expanded role of facilitating the design process.

References

Ehrich, R. W. and Williges, R. C. (BEds.). (1986). Advances in human facto?a/ergonomics,
" volume 2: Human-computer dislogue design. New York: Elsevier.
Green, M. (1985). Report on dialogue specifications. In Q. B Plaff (Ed.), User snterface
management systems (pp. 9-20). New York: Springer.
Hartson, H. R., Johnson, D. Hix, and Ebrich, R. W, (1984). A human-computer Dialogue

Management System. In Proceedings of INTERACT ‘84, 1 (pp. 57-61). London, England:
IFIP. _ '
Hutchins, E. L., Hollan, J. D., and Norman, D. A. (1986). Direct manipulation interfaces.
. In Donald A. Norman and Stephen W. Draper (Eds.), User centered system design (pp.

* 87-124). Hillsdale, NJ: Lawrence Erlbaum Associates.

Jacob, R. J. K. (1986). Survey and ezamples of specification techniques for user-computer
inierfaces (Tech. Report 8948). Washington, DC: Naval Research Laboratory, Computer
Science and Systems Branch, Information Technology Division. '

Pfaff, G. E. (1985). User interface management systems. New York: Springer,

Shueiderman, B. (1983). Direct manipulation: a step beyond programming languages. Com-
puter, 16 {(8), 57-69.

Yuuten, T., and Hartson, H. R. (1985). A SUPERvisory Methodology And Notation (SUPER-
MAN) for buman-computer system development. In H. R. Hartson (Ed.}, Advances in
human-computer interaction (pp. 243-281). Norwood, NJ: Ablex.

