Message Length Effects for Solving
Polynomial Systems on a
Hypercube

Wolfgang Pelz
Layne T. Watson

TR 86-26

Message Length Effects For Solving Polynomial Systems on a Hypercube

Wolfgang Pelzt and Layne T. Watsont

Abstract.

Comparisons between problems solved on uniprocessor systems and those solved on distributed
computing systems generally ignore the overhead associated with information transfer from one
processor to another. This paper considers the solution of polynomial systems of equations via
a globally convergent homotopy algorithm on a hypercube and some timing results for different

gituations.

1. Introduction.

Supercomputing capability can be achieved in several different ways: sheer hardware speed,
algorithmic efficiency, pipelines and vector processors, or multiprocessor systems. Many (perhaps
too many) different computer architectures have already been realized, and computational experience
on these machines is accumulating. The reality is that very fast hardware is very expensive, and is
likely to remain so, and access to huge vector computers like CRAY-2’s is and will remain limited
for some time to come. Many supercomputer systems developed at universities have both severely
limited access and formidable programming problems. Despite federal initiatives and satellite links,
using national supercomputer centers s awkward at best, and has the flavor of monolithic university
central computer centers, only on a national scale. '

The hypercube concept, that of cheap, independent processors connected in a reasopably ef-
ficient yet still manageable topology, seems to offer an opportunity for “supercomputing for the
masses” [25]. A hypercube computer consists of 2" processors {nodes}, each with memory, floating-
point hardware, and (possibly) communication hardware. The nodes are independent and asyn-
chronous, and connected to each other like the corners of an n-dimensional cube.

At first glance it appears that the time needed to solve a problem on one processor is reduced
by a factor of 2% for a bypercube with that number of processors. Of course this reduction 1s
only theoretical since it assumes that the computations are equally -divided among the nodes and
it ignores the time associated with communication among nodes. Typically the overhead for this
communication is considered to be small relative to the time used for computational 'purp'oses.'

For the purpose of discussion here, there are three classes of nonlinear systems of equations: (1)
large systems with sparse Jacobian matrices, (2) small transcendental (nonpolynomial) systems with
dense Jacobian matrices, and {3) small polynomial systems with dense J acobian matrices. Sparsity
for small problems is not significant, and large systems with dense Jacobian matrices are intractable,
so these two classes are not counted. Of course medium sized problems are also of practical interest,
and the boundaries between small, medium, and large change with computer hardware technology
and algorithmic development. Depending on algorithmic efficiency, hardware capability, and the

{ Department of Mathematical Sciences, University of Akron, Akron, OH 44325.
t Departments of Electrical Engineering and Computer Science, Industrial and Operations En-

gineering, and Mathematics, The University of Michigan, Ann Arbor, Ml 48109. Current address:
Department of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg,
VA 24061. The work of both authors was supported in part by AFOSR Grant 85-0250.

1

significance of sparsity, a medium sized problem is treated like it belongs to one of the above three
classes anyway, so there is no need for a “medium” class.

Large sparse nonlinear systems of equations, such as equilibrium equations in structural me-
chanics, have two aspects: highly nonlinear and recursive scalar computations, and large matrix,
vector operations. There is a great amount of parallelism in both aspects, but the nature of the
parallelism is very different (or so it seems). Small dense transcendental systems of equations pose
a major challenge, since they involve recursive, scalar intensive computation with a small amount of
linear algebra. It has been argued that the communication overhead of hypercube machines makes
them unsuited for such problems, but the issue is still open and algorithmic breakthroughs are yet
possible. Polynomial systems are unigue in that they have many solutions, of which several may
be physically meaningful, and that there exist algorithms guaranteed to find all these meaningful
solutions. The very special nature of polynomial systems is not fully appreciated, especially by those
who are unfamiliar with probability-one homotopy methods. .

Algorithms for solving nonlinear systems of equations can be broadly classified as (1) locally
convergent or (2) globally convergent. The former inchudes Newton’s methed, various quasi-Newton
methods, and inexact Newton methods. The latter includes continuation, simplicial methods, and
probability-one homotopy methods. These algorithms are qualitatively significantly different, and
their performance on parallel systems may very well be the reverse of their performance on serial
processors. The overall purpose of this research is to study how nonlinear systems of equations
might be solved on a hypercube.

Much work has been done on solving linear systems of equations on paralle] computers, mostly
~ on vector machines {4-7, 9-11, 13-15, 17, 20, 21}. Some work Las been done on nonlinear equa-
tions and Newton’s method [27, 24], and on finding the roots of a single polynomial equation (8,
23). Parallel algorithms for polynomial systems have not been studied, nor have parallel homotopy
algorithms for nonlinear systems of equations.

"The present article explores the magnitude of the communication overhead for a class of non-
linear systems involving only polynomials whose solutions are obtained using homotopy algorithms.
Section 2 presents the mathematics behind the homotopy algorithm, and sketches a computer im-
plementatibn based on ODE techniques. Section 3 briefly describes the “hypercube” computer ar-
chitecture. Section 4 discusses the special case of polynomial systems in some detail., Computational
results on an Intel iPSC-32 are presented and discussed in Section 5.

2. Homotopy algorithm.

Let EP denote p-dimensional real Euclidear space, and let F': EP — EP be a C? (twice contin-
wously differentiable) function. The general problem is to solve the nonlinear system of equations

-

F(z) = 0.

The fundamenta! mathematical result bekind the homotopy algorithm is
Proposition 1. Let F: EF — EP be a C? map and p: E™ x[0,1) x EP — EP a C? map such that
1) the Jacobian matrix Dp has full rank on p7*(0}; '
and for fixed ¢ € E™
2) p(a,0,z) =0 has a unique solution W € E¥;
3) pla,1,z) = F(z);
4) the set of zeros of p,(A, z) = pla, A, z) is bounded.

2

Then for almost ali ¢ € E™ there is a zero curve 7 of
pa(X, z) = pla, A, 2),

along which the Jacobian matrix Dpa(4, z) has full rank, emanating from (0, W) and reaching a zero
7 of F at A = 1. Furthermore, 7 has finite arc length if DF (Z} is nonsingular.

The general idea of the algorithm is apparent from the proposition: just follow the zero curve
~ of p, emanating from (0, W) until a zero z of F(z) is reached (at A =1). Of course it is nontrivial
to develop a viable numerical algorithm based on that idea, but at least conceptually, the algorithm
for solving the nonlinear system of equations F(xz) =0 is clear and simple. A typical form for the

homotopy map is
(1) pw (X, z) = A F(z) + (1 - A)(z - W),

which has the same form as a standard continuation or embedding mapping. However, there are two
crucial differences. In standard continuation, the embedding parameter A increases monotomically
from O to 1 as the trivial problem z— W = 0 is continuously deformed to the problem F(z) =0. The -
present homotopy method permits A to both increase and decrease along 7 with no adverse effect;
that is, turning points present no special difficulty. The second important difference is that there are
never any “singular points” which afflict standard continuation methods. The way in which the zero
curve 7y of p, is followed and the full rank of Dp, along 7 guarantee this. Observe that Proposition
1 guarantees that - cannot just “stop” at an interior point of [0,1) x EP.

The zero curve 7 of the homotopy map ga{},z} (of which pw (A, z) in (1) is a special case) can
be tracked by many different techniques; refer to the excellent survey {1} and recent work [30], [31].
The numerical results here were obtained with preliminary versions of HOMPACK [30], a software
package currently under development at Sandia National Laboratories, General Motors Research
Laboratories, Virginia Polytechnic Institute and State University, and The University of Michigan.
There are three primary algorithmic approaches to tracking 7 : 1} an ODE-based algorithm, 2) -
a predictor-corrector algorithm whose corrector follows the flow normal to the Davidenko flow (a
“normal flow” algorithm); 3) a version of Rheinboldt’s linear predictor, quasi-Newton corrector
algorithm {22] (an “augmented Jacobian matrix” method).

Only the ODE-based algorithm will be discussed here. Alternatives 2) and 3) are described in
detail in [31] and [2], respectively. Assuming that F(z] is C? and o is such that Proposition 1 holds,
the zero curve 7 is C! and can be parametrized by arc length s, Thus A = Ms), z = z(s) along v,
and

(2) pa(r(s),z(s8)) = O

identically in &. Therefore

(3) L pu(3), 2(0) = Dre(Ao);2(6) j_* —0,
dz
%

(24, -
(4) ds’ ds /i, -
With the initial conditions

(5) ' o A(0) =0, z(0)=W

the zero curve 4 is the trajectory of the initial value problem {3-5). When A(#) = 1, the corresponding
() is a zero of F(z). Thus all the sophisticated ODE techniques currently available can be brought
to bear on the problem of tracking - {26], [29].

Typical ODE software requires (dA/ds, dz/ds) explicitly, and (3), (4) only implicitly define the
derivative (dA/ds,dz/ds). (It might be possible to use an implicit ODE technique for (3-4}, but
that seems less efficient than the method proposed here.} The derivative (dA/ds, dz/de), which is a
unit tangent vector to the zero curve 7, can be calculated by finding the one—dxmensmnal kernel of
the p % {p + 1) Jacobian matrix

Dpa(A(s), z(s)),

which has full rank by Proposition 1. It is here that a substantial amount of computation is incurred,
and it is imperative that the number of derivative evaluations be kept small. Once the kernel has been
calculated, the derivative (d)/ds,dz/ds) is uniquely determined by (4) and contimuity. Complete
details for solving the initial value problem (3-5) and obtaining z(#) are in [28] and [29]. A discussion
of the kernel computation follows.

The Jacobian matrix Dp, is p x (p+1) with (theoret:cal) rank p. The crucial observation is that
the last p columns of Dp,, correspondmg to D, p,, may not have rank p, and even if they do, some
other p columns may be better conditioned. The objective iz to avoid choosing p “distinguished”
columns, rather to treat all columns the same (not possible for sparse matrices). ‘There are kernel
finding algorithms based on Gaussian elimination and p distinguished columns [16]. Choosing and
gwitching these p columns is tricky, and based on ad hoc parameters. Also, computational experience
has shown that accurate tangent vectors (dA/ds,dz/ds) are essential, and the accuracy of Gaussian
~ elimination may not be good enough. A conceptually elegant, as well as accurate, algorithm is to
compute the QR factorization with column interchanges [3] of Dp,,

X oeee %k ¥
Q Dp, PPz = oo Pe=0,

0 %

where Q is a product of Householder reflections and P is a permutation matrix, and then obtain a
vector z € ker Dp, by back substitution. Setting (Pz)p4+1 = 1 1s a convenient choice. This scheme
provides high accuracy, numerical stability, and a uniform treatment of all p + 1 columns. Finally,

d) dz z
hatlot i R S
(ds ’ dS) lzll2’

where the sign is chosen to maintain an acute angle with the previous taugent vector on ~ . There
is a rigorous mathematical criterion, based on a (p+ 1) x {p + 1) determinant, for choosing the sign,
but there is no reason to believe that would be more robust than the angle criterion.

4

Several features which are a combination of common sense and computational experience should
be incorporated into the algorithm. Since most ordinary differential equation solvers only control
the local error, the longer the arc length of the zero curve v gets, the farther away the computed
points may be from the true curve 7. Therefore when the arc length gets too long, the last computed
point (A, Z) is used to calculate a new parameter vector & such that

(6} Pa(xs i) =0

exactly, and the zero curve of p5(A, z) is followed starting from (X, %). A rigorous justification for
this strategy was given in {29]. If p, has the special form in (1}, then trivially

a=(AF(z)+(1-X)z)/(1~-]).

For more general homotopy maps g, this computation of @ may be complicated. _
Remember that tracking v was merely a means to an end, namely a zero Z of F(z). Since v
itself is of no interest (usually), one should not waste computational effort following it too closely.
However, since = is the only sure way to Z, losing v can be disastrous. The tradeofl between
computational efficiency and reliability is very delicate, and a fool-proof strategy appears difficult to
achieve. None of the three primary algorithms alone is superior overall, and each of the three beats
the other two (sometimes by an order of magnitude) on particular problems. Since the algorithms’
philosophies are significantly different, a hybrid will be hard to develop.
In summary, the algorithm 1s:
1. Set : =0, y : = (G, W), ypold : = yp : = (1,0,...,0), restart : = false, error : = initial error
tolerance for the ODE solver.
2. If y; < O then go to 23.
3. If s > some constant then
4. s:=0. _
5. Compute a new vector o satisfying (6). If

lnew a — old af} > 1+ constant * [jold al],

then go to 23.
ode error 1 = error. _
If |jyp — ypold]|co > (last arc length step) # constant, then ode error : = tolerance < error.
ypold : = yp.
Take a step along the trajectory of (3-5) with the ODE solver. yp = y'(s) is computed for the
ODE solver by 10-12:
10. Find a vector z in the kernel of Dp,{y) using Householder reflections.
11. If ' ypold < 0, then z: = —z.
12, yp - = 2/])2].
13. If the ODE solver returns an error code, then go to 23.
14. ¥ y1 < 0.99, then go to 2. '
15. H restart = true, then go to 20.
16. restart : = true.
17. error : = final accuracy desired.
18. If y; 2 1, then set {s,y) back to the previous point (where y; < 1).
19. Go to 4.
20. If y; < 1 then go to 2.
21. Obtain the zero (at y; = 1) by interpolating mesh points used by the ODE solver.
22. Normal return.
23. Error return.

W

0011 011 1011 1
0001 1001t
H g 1101
S T 13
2, 0
5110 1010
6 - 1110
1
0000 ot
0 4 1000 1100
5 . 12

Figure 1. 4-cube structure and node labelling.

3. The hypercube.
The word “bypercube” refers to an n-dimensional cube. Think of & cube in n dimensions as
sitting in the positive orthant, with vertices at the points

(viy..-y0a), v €{0,1}, i=1,...,n

There are thus 2" vertices, and two vertices v and w are “adjacent”, i.e., connected by an edge, if
and only if v; = w; for all £ except one. The associated graph, also sometimes referred to.as an.
“n-cube”, has 2" vertices {which can be labelled as above with binary n-tuples} and edges between
vertices whose labels differ in exactly one coordinate (see Figure 1)..

A “hypercube computer architecture” is a computer system with 2" (node).processors, corre-
sponding to the 2" vertices (nodes), and a communication link corresponding to each edge of the
n-cube. Thus each processor has a direct communication link to exactly n other processors. The
distance between any two of the P = 2" processors is at most n = log, P = log2(2*‘), considered an
ideal compromise between total connectivity (distance = 1} and ring conmectivity (distance = P/2).
Figure 1 shows how a 4-cube is built up from two 3-cubes.

Typically the node label (vy,...,v,) is viewed as a binary number v;v; ... vy, and in this view
two nodes are adjacent if and only if their binary representations differ in exactly one bit. Typically
node addresses are computed in programs by a gray code, a bijective function

g:{0,...,2" -1} = {0,...,2" - 1}

6

such that the binary representations of g{(k (mod 2")) and g(k + 1 (mod 27)) differ in exactly
one bit for all k {cf. [12]).

Realizations of this abstract architecture have one additional feature: a “host” processor with
communication links to all the node processors. This host typically loads programs into the nodes,
starts and stops processes executing in the nodes, and interchanges data with the nodes. In current
hardware implementations only the host has external I/O and peripheral storage; the nodes consist
of memory, a CPU, and possibly communication and floating-point hardware.

The Intel iPSC has 32, 64, or 128 nodes. BEach node is an 80286/80287 with 512K bytes of
memory. The host is also an 80286/80287, but with 4 MB of memory, a floppy disk drive, a hard
disk, an Ethernet connection, and Xenix. The nodes have only a minimal monitor for communication
and process management.

The NCUBE has up to 1024 nodes in multiples of 64, each with 128K of memory and commu-
nication and floating-point hardware. The host is an 80286, running NCUBE’s operating system,
a primitive version of UNIX. The node chip is NCUBE’s own design, with a unique feature being
communication hardware. :

4, Polynomial gystems.
Suppose that the components of the nonlinear function F(z) have the form

(7) Za.ksz"” i=1 _,...,n._

J=1

The ith component F;(z) has n; terms, the a; are the (real) coefficients, and the degrees di;x are
ponnegative integers. The total degree of F; is

d; = made.,k
=1

For technical reasons it is necessary to consider F{z) as a map F : C™ - C”, where C” 1s n-
dimensional complex Euclidean space. A system of n polynomial equations in n unknowns, F(z) = 0,
may have many solutions. It is possible to define a homotopy so that all geometrically isolated
solutions of (7} have at least one associated homotopy path. Generally, (7) will have solutions at
infinity, which forces some of the homotopy paths to diverge to infinity as A approaches 1. However,
(7) can be transformed into a new system which, under reasonable hypotheses, can be proven to have
no solutions at infinity-and thus bounded homotopy paths. Because scaling can be critical to the
success of the method, a general scaling algorithm is apphed to scale the coefficients and variables
in {7) before anything else is done.

Since the homotopy map defined below is complex analytic, the homotopy parameter A is
monotonically increasing as a function of arc length [19]. The existence of an infinite pumber of
solutions or an infinite number of solutions at infinity does not destabilize the method. Some paths
will converge to the higher dimensional solution components, and these paths will behave the way
paths converging to any singular solution behave. Practical applications usually seek a subset of
the solutions, rather than all solutions {18, 18]. However, the sort of generic homotopy algorithm
considered here must find all solutions and cannot be limited without, in essense, changing it into a
heuristic. :

Define G : ™ — C™ by
(8) Gilz) = t‘)jz‘,'d" -a;, j=1,...,n,

where a; and bj are nonzero complex numbers and d; is the (total) degree of Fi(z),forj=1,...,n.

Define the homotopy map

(9) pe(d, z) = (1 — X) G(z) + A F(z),

where ¢ = (a,b}, a = _(al,...,an) €Ctand b= (b,...,bn} € C". Let d = dy---d, be the total
degree of the system. :
Theorem. For almost all choices of a and b in C™, p;"1(0) consists of d smooth paths emanating
from {0} x C*, which either diverge to infinity as A approaches 1 or converge to solutions to F(z) =0
as A approaches 1. Each geometrically isolated solution of F(z) = 0 has a path converging to it.

A number of distinct homotopies have been proposed for solving polynomial systems. The
homotopy map in (9) is from [19]. As with all such homotopies, there will be paths diverging
to infinity if F(2z) = 0 has solutions at infinity. These divergent paths are (at least) a ruisance,
since they require arbitrary stopping criteria. Solutions at infinity can be avoided via the following
projective transformation.

Define F'(y) to be the homogenization of F{z):

(10) Fi(y) = Y1 Fi(y1/¥nt1,-- s ¥nf¥nt1), T=1L...,n

Note that, if F'{y®) = 0, then F'(ay®} = 0 for any complex scalar a. Therefore, “solutions” of

F'(y) = 0 are {complex) lines through the origin in C™*!. The set of all lines through the origin
in O™ is called complex projective n-space, denoted CP", and is a smooth compact (complex)
n-dimensional manifold. The solutions of F'(y) = 0 in CP™ are identified with the solutions and
solutions at infinity of F(z) = 0 as follows. If L € CP™ is a solution to F'(y) = 0 with y =
(Y1,92, -, ¥nt1) € L and yn41 # 0, then = = (y1/¥n+1.¥2/¥n+1:-- -, ¥n/tin+1) € C™ is 2 solution
to F{z) = 0. On the other hand, if z € C™ is a solution to F{z) = 0, then the line through y = {z, 1)
is a solution to F'{y) = 0 with yn4; = 1 # 0. The most mathematically satisfying definition of
solutions to F(z) = 0 at infinsty is simply eolutions to F'(y) = 0 (in CP™) generated by y with
Yn+1 = 0.

A basic result on the structure of the solution set of a polynomial system 1s the following classical

theorem of Bezout: : _
Theorem. There are no more than d isolated solutions to F/(y} = 0in CP". If F'(y) = 0 has only
a finite number of solutions in CP", it has exactly d solutions, counting multiplicities,
Recall that a solution is isolated if there is a neighborhood containing that solution and no other
solution. The multiplicity of an isolated solution is defined to be the number of solutions that
appear in the isolating neighborhood under an arbitrarily small random perturbation of the system
coefficients. If the solution is nonsingular (i.e., the system Jacobian matrix is nonsingular at the
solution), then it has multiplicity one. Otherwise it has multiplicity greater than one.

Define a linear function

Uy, ¥nt1) =Gy + fave + o+ Lt ¥ngr

8

where £1,...,nts are nonzero complex numbers, and define F** : ¢7+: — C»+1 by

Flly)=Fiy), 7=1....m

(1) _ F::-;-:(U) = u(y) — 1.

So F"(y) = 0 is a system of n + 1 equations in n + 1 unknowns, referred to as the projective

transformation of F(x) = 0. Since u(y) is linear, it is easy in practice to replace F"(y) = 0 by an

equivalent system of n equations in n unknowns. The significance of F"'(y) is given by

Theorem. If F/(y) = 0 has only a finite number of solutions in CP", then F"(y) = 0 has exactly
d solutions (counting multiplicities) in C™*! and no solutions at infinity, for almost all { € crti,

Under the hypothesis of the theorem, all the solutions of F'(y) = O can be obtained as lines
through the solutions to F"'{y) = 0. Thus all the solutions to F(z) = 0 can be obtained easily from
the solutions to F"(y) = 0, which lie on bounded homotopy paths (since F”{y} = 0 has nc solutions
at infinity). :

The projective transformation functions essentially as a scaling transformation. Its effect is to
shorten arc lengths and bring solutions closer to the unit sphere. The coefficient and variable scaling
is different, in that it directly addresses extreme values in the system ccefficients. The two scaling

schemes work well together.

7 X

‘/\

v >

\..-/ 1

_/' o
Figure 2. The set g }(0) for a polynomial system.

Figure 2 shows the nature of the zerc curves for a polynomial system. There are d (the total
degree of F} of them, they are monotone iz A, and have finite arc length.

g

5. Computational results.

Polynomial systems arise in such diverse arcas as solid modelling, robotics, chemical engineering,
mechanical engineering, and computer vision. A small problem has total degree d < 100 and a large
problem bas d > 1000. Given that d homotopy paths are to be tracked, one method of solution is
to assign one path to each node processor, with the host controlling the assignment of paths to the
nodes, keeping as many nodes busy as possible, and post-processing the answers computed by the

nodes. ,
This particular allocation scheme was implemented using the following pseudo-code:

For the host:
1) initialize data space and caleulate a starting point for each path,
2) while (a path to be followed is unassigned) and (another node is availabie) do
transmit initializations and starting point to a node,
3) while (an answer is still expected) do
receive answer from a node and process it,
if {a path to be followed exists} then assign it to the node that has _]ust transmitted a
solution,
4) stop.
For each node:
1) receive initializations and starting point,
2) track the path associated with the starting point,
3) at the end of the path, transmit the answer to the host,
4) go to step 1.

Note that there i3 cons:dera.ble detaﬂ not evident in the pseudo-code given above. Consider
that the nodes are operating asynchronously and may wish to transmit solutions to the host at the
same time. Also the transmission of the solution may require multiple messages so that the solution
from one node may not be received by the host in consecutive messages.

By reducing the amount of information that is to be transmitted to an absolute minimum (and
still be able to solve the problem!), the number of messages and/or the lengths of these messages
can be reduced. Thus the time spent on waiting for permission to transmit as well as the time
actually spent on transmission can be reduced. In addition the host may not ha.ve to wait as long
for a solution to be received from a node before continuing processing.

Table 1 contains the results of a study designed to examine these effects on an Intel iPSC-32.
The problems are all real engineering problems that have arisen at GM and elsewhere. The problem
pumber refers to an internal numbering scheme used at General Motors Research Laboratories;
problem data is available on request. Total degree refers to the number of paths to be followed.
The next three columns show the number of bytes transmitted (per path), the total number of
messages, and the execution time for each problem when the full data arrays are transmitted. The
last three columns give the same information for the case in which only the essential information is
transmitted. _

The problems given in the above table require different times for the computations needed to
obtain the solutions irrespective of any message passing time, so direct comparisons among problems
are meaningless. However a comparison of execution times within a particular problem is meaningful
since the difference in times is independent of the calculation times and is a function of the difference
in the number of messages, the difference in the number of bytes transmitted, and the total degree

10

Table 1. Comparisen of Runs for Full and Reduced Arrays
Problem | total {number | number (execution |pumber | number |execution
number |degree | bytes |messages | time(sec) | bytes |messages | time(sec)
102 256 4536 1536 G45 1080 1536 400
103 625 7536 3750 1616 1080 3750 867

402 4 5232 24 54 888 24 o4
403 4 5232 24 19 888 24 19
405 64 5232 384 335 888 384 329
601 60| 12144 360 257 1400 360 247
602 60 13152 360 2795 1472 360 2788
603 12 4704 T2 243 848 72 244
803 256 | 106648 2560 11527 7256 1536 11436
1702 16 | 12432 96 163 1416 96 151
1703 16 | 12432 96 162 1416 96 151
1704 16 | 14064 96 108 1528 96 101
1705 81| 14064 486 378 1528 486 349
5001 576 | 61104 4608 11786 4440 3456 11610

(the number of paths) in the problem. A model was constructed using multiple regression, resulting

in the equation
y=-210+42.28xzy ~ 0.11xo + 1.8923

where y = difference in execution times, z; = difference in number of messages, z, = difference in
number of bytes transmitted, and z; = total degree. The value of the multiple correlation coefficient
for this model is R? = .98, indicating that 98% of the variation in the data is explainable by the
above model. Note that this interpretation only gives an indication of the appropriateness of the
model; it does not speak to the question of the true physical model which causes the observed effects.
Figure 3 is the scatter diagram with the variable y on the vertical axis and the variable z3 on the
horizontal axis.

The fit is not perfect for a number of reasons related to the hardware and software of the system
in addition to the possibility that the wrong model is being fit. The messages are transmitted
asynchronously in real time, and the temporal order of events may depend on such things as buffer
status, free space list size, timer interrupts, and even random (corrected) hardware errors. The state
of the node operating systems and disk file fragmentation on the host can affect durations and the
temporal order of events, sometimes by as much as 10%. Obtaining performance data is difficuit,
and for complex, realistic codes, replicating performarnice results may be impossible.

Another study using only the problem set 402 addressed the issue of the effect on execution
times as the number of messages increased while keeping both calculation times and the number of
transmitted bytes constant. The Hypercube allows a maximum of 16K bytes to be transmitted in
any single message. By artificially restricting the channel bandwidth to values smaller than 16K, the
resulting execution times can be related to the number of messages since an decrease in bandwidth
per message forces an increase in the number of messages. Figure 4 shows that execution time
(vertical axis) is a function of reciprocal bandwidth {horizontal axis). Figure 5 shows that execution
~ time (vertical axis) increases nonlinearly as the mumber of messages (horizontal axis) increases.

il

in Execution Times

Difference

— o e e +m—

S
|

750 + o +
| |

] | {

I ! f

P f

! i
500 ¢ *
[[

, I }

. I

P |

| !
250 | + o +
b o |

] I

| o |

! |

‘ ! oo 00 }

0 .t o0 +
L - + —t e ——————————

5 210 420 625 N

Total Degree

Figure 3. Difference in execution times versus total degree.

The scatter diagrams show that the execution time is inversely proportional to bandwidth and
a function of the number of messages raised to the 3/2 power. A number of models were examined
with the most reasonable model being :

y = 66.12 + 0.00222(z;)/?

where y = execution time and z; = number of messages. The resultant R? iz 0.99+, indicating an
excellent fit to the data. Since the number of messages and the bandwidth are highly correlated, no.
additional benefit (¢.¢., gain in information) is obtained by including the latter in the model.

It is tempting to use the coefficients of these regression equations to predict changes in execution
times for changes in one of the variables while keeping the other variables fixed. Suck a practice
violates two of the constraints of multiple regression by making predictions outside the region of the
data and not accounting for the serial correlation between the independent variables.

6. References.

[1] E. ALLGOWER AND K. GEORG, Simplicial and continuation methods for approzimating ﬁzed
points, SIAM Rev., 22 (1980}, pp. 28-85.

[2] S. C. BILLUPS, An augmented Jacobien matriz algorithm for tmcking homotopy zero curves,
M.S. Thesis, Dept. of Computer Sci., VPI & SU, Blacksburg, VA, Sept., 1985.

(3] P. BUSINGER AND G. H. GOLUB, Linear least squares solutions by Householder transforma-
tions, Numer, Math., 7 (1965}, pp. 269-276.

i2

—_—— -

o e o e e o

_——

*omn o e e o e e e
=]
(=]
Q
[=]
o
o

D .

* o e - + - — =
[a=] o fe)

w [=)] ™

(A1 -~ —

(*29s) awL] uorjnsexy

— e o -

40

100

70

10

8 bytes)

one word

Bandwidth {(words

Figure 4. Execution time versus bandwidth.

e e e e e e e —————————— e

250

e e O e e e s

——— —

-+
50

= o e e

650

1850

1250

Number of Messages

Figure 5. Execution time versus number of messages.

13

4] A. C. CHEN AND C. L. WU, Optimum solution to dense linear systems of equations, Proc.
1984 Internat. Conf. on Parallel Processing, August 21-24, 1984, pp. 417-425.

[5] M. Y. CHERN AND T. MURATA, Fast algorithm for concurrent LU decomposition and matriz
inversion, Proc. Internat. Conf. on Parallel Processing, Computer Society Press, Los Alamitos,
CA, 1983, pp. 79-86.

[6] E. CLOETE AND G. R. JOUBERT, Direct methods for solving systems of linear equations on a
parallel processor, Proc. 8th South African Symp. on Numerical Mathematics, Durban, South

. Africa, July 19-21, 1982,

[7] M. COSNARD, Y. ROBERT, AND D. TRYSTRAN, Comparison of pamue! diagonalization
methods for solving dense linear systema, Sessions of the French Acad. of Sci. on Math., Nov.,
1985, p. 781fL.

8] G. H. ELLIS AND L. T. WATSON, A parallel algorithm for simple roote of polynomials,
Comput. Math. Appl., 10 (1984}, pp. 107-121.

9] D. D. GAISKI, A. H. SAMEH, AND J. A. WISNIEWSKI, lterative algorithms for tridiagonal
matrices on a WSI-multiprocessor, Proc. Internat. Conf. Parallel Processing, Bellaire, MI,
Aug. 24-27, pp. 82-89, 1582.

[10] W. GENTZSCH AND G. SCHAFER, Soiution of large linear systems on vector computers,
Paralle] Computing 83, North Hollaud, Amsterdam, 1984, pp. 159-166.

(11} D. HELLER, A survey of parallel algorithms in numerical linear algebra, SIAM Rev., 20 {1978),
pp. T40-777.

[12] INTEL CORPORATION, iPSC Users’' Manual, 1985,

[13] Y. KANEDA AND M. KOHATA, Highly parallel computing of linear equations on the matriz-
broadcast-memory connected array processor system, 10th IMACS World Congress, Vols. 1-5,
pp. 320-322, 1982.

[14] J. S. KOWALIK, Parallel computation of linear recurrences and tridiagonal equations, Proc.
IEEE 1982 Internat. Conf. on Cybernetics and Society, 1982, pp. 580-584.

[15] J. 8. KOWALIK AND S. P. KUMAR, An efficient parallel block conjugate gradient method
for linear equations, Proc. Internat. Counf. Parallel Processing, Bellaire, MI, Aug. 24-27, pp.
47-52, 1982. .

[16] M. KUBICEK, Dependence of solutions of nonlinear systems on a parameter, ACM Trans. Math.
Software, 2 (1976}, pp. 98-107.

{17] S. LAKSHMIVARAHAN AND S. K. DEHALL, Parallel algorithms for solving certain classes
of linear recurrences, Foundations of Software Technology and Theoretical Computer Science,
Lecture Notes in Computer Science, Vol. 206, Springer-Verlag, Berlin, 1985, pp. 457—477.

(18] A. P. MORGAN, A transformation to avoid solutions at infinity for polynomial systems, Appl.
Math. Comput., 18 (1986), pp. 77-86. _

[19] —, A homotopy for solving polynomial systems, Appl. Math. Comput., 18 {1986}, pp. 87-92.

[20] D. PARKINSON, The solution of N lincar equations using P processors, Paralle] Computing 83,
North Holland, Amsterdam, 1984, pp. 81-87.

[21] D. A. REED AND M. L. PATRICK, A model of asynchronous sterative algor:f.nms jor soiving
large sparse linear systems, Proc, 1984 Internat. Conf. on Parallel Processing, August 21-24,
1984, pp. 402-410.

(22] W. C. RHEINBOLDT AND J. V. BURKARDT, Algorithm 596: A program for a locally
parameterized continuation process, ACM Trans. Math. Software, ¢ (1983), pp. 236-241.

[23] T. A. RICE AND L. J. SIBGEL, A parallel algorithm for finding the roots of a polynomial,
Proc. Internat. Conf. Parallel Processing, Bellaire, MI, Aug. 24-27, pp. 57-61, 1982.

14

[24] H. SCEWANDT, Newton-kke interval methods for large nonlinear systems of equations on vector
“computers, Computer Phys. Comm., 37 {1985), pp. 223-232.

[25] C. L. SEITZ, The cosmic cube, Commun. ACM, 28 (1985), pp. 22-33.

[26] L. F. SHAMPINE AND M. K. GORDON, Computer Solution of Ordinary Differential Equa-
tions: The Initial Value Problem, W. H. Freeman, San Francisco, 1975.

[27] H. J. SIPS, A parallel processor for nonlinear recurrence systems, Proc. st Internat. Conf. on
Supercomputing Systems, IEEE Computer Society Press, Los Alamitos, CA, 1984, pp. 660-671.

[28] L. T. WATSON AND D. FENNER, Chow-Yorke algorithm for fized points or zeros of C% maps,
ACM Trans. Math. Software, 6 (1980}, pp. 252-260.

[20] L. T. WATSON, A globally convergent algorithm for computing fized points of 2 maps, Appl.
Math. Comput., 5 (1979}, pp. 297-311.

[30) L. T. WATSON, S. C. BILLUPS, AND A. P. MORGAN, HOMPACK: A suite of codes for
globally convergent homotopy algorithms, Tech. Rep. 85-34, Dept. of Industrial and Operations
Eng., Univ. of Michigan, Ann Arbor, MI, 1985.

[31] L. T. WATSON, Numerical linear algebra aspects of globally convergent homotopy methods,
Tech. Report TR-85-14, Dept. of Computer Sci., VPI&SU, Blacksburg, VA, 1985.

