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Abstract. This paper studies the effects of an axial magoetic field on the fiow and best transier
about 8 porous rotating disk. Using moderd quasi—NeWton and globally copvergent homotopy meth-
ods, pumerical solutions aTe obtained for 2 wide range of magnetic field gstrengtis and injection and
suction velocities. Results. are presented graphically in terms of three nondimensional parameters.

There 1s excellent agreement with previons work and a.si;mptotic {ormulias.

1. INTRODUCTION

Von Karmal {1] first poted that the Navier-Stokes equaiions gOVErning tpe Bow past-@ rotating
disk reduced 1O el similar form. Iie also obtained a0 approximate solution for that pro‘olem. Later,
Gochran 12} obtained & MOTE accurate solution to the ame probiem The efiects of an axial magnetc
feld on the fiow and heat cransier about 2 rotating disk were studied OF Sparrow and Cess j31. The
pioneer'lng work of Prandtl m 1004 on the mass addition ©F removal 2t 8 bounding suriace starie

continued ipterest due 1o ite wide Tenge of applicat'lons. Scome examples are: houndary layer control,

cooting of surbine blades, and coobng the skmns of high gpeed areraft. Considerable work bas beel

done recently ©n the effects of upiform guction OF jpjection 9L the flow feld induced by @ rotating
disk. Stuart 14 obtained 2 series solution for strong suction ab the suriace of a rotating disk. Sparrow
and Grege 15) developed numgrica‘; solutions for the yotating disk problem with suction OF ipjection
at the disk suriace. Kuiken 6] examined the €25€ of strong ipjection at the disk surface: Ackroyd \T)
- obtained gniformly valid series solutions foT suction velocities and low values of ipjection velocities.

Ip this paper ¥© describe the efects of a8 axial magnetic feld and cuction {oF ipjection) oL the flow

. N -

and heat transier abovt 2 cotating Gisk- Pande {8] obtained @ Sere€S solution 10T +his problem™ when

there 1s STTORE guction and @ weak magnetic feld. We will present results on the Bow and best

tvansier for @ wider range of imjection velocities and suction velocities combined with & wige range

of magnetic field strengths.

¥ Research Of This paper Was Compieted white Dre. atson was Of cabpatical
at the Univeristy of Michigan. Dr. Watson is currently on the faculty of
the Computer Science Department'at yirginia Tech.
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2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Sparrow and Cess [3] discussed, 10 detail, the assumptions leading to the governing equations
of this problem. Therefore, we will not repeat these details. The geometry of the problem being
studied is shown in Figure 1. Here (r,0,z) are cyl’xndrical coordinates, Bo is the externally applied
magnetic fieldin the z direction, w is the angular velocity of the disk, T 15 the uniform temperature
at the disk surface and Teo is the ambient fuid temperature.

1o cylindrical coordinates {r,6,5), assuming angular symmetry, the equations of motion are [3]

g @8 v? op 2 u 2
p{( 8r+w32)u’ r‘l—’—-arﬂp(vu_ﬁ)*”u};u’ )

and the continuity equation 18

d )
2 ra) 5 g tre) =0 @

where u, v and w are the velocity components in the r.0.2 directions respectively, £ is the density of
the fimd, p 18 the coefficient of viscosity, p 18 the pressure, 0 is the electrical conductivity and

2 18 0

V2= — + 50T 52"
fr? T ar e
The energy equation 13
d d 2
(\uar—’rwaz).’( ov*T, {5)

in which T' 18 the static temperature and o is the thermal diffusivity. The boundary conditions of

the problem are

u=20
: u—0
v = rw
at z=0, v— 0 a8 z — 0%, (6}
w=—Hs F T
N >4

where Hy > 0 corresponds to suction and Hu < 0 corresponds t0 injection.

3. REDUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

Following Von Karman (1], we introduce the following relations

weroF(n),  v=TeGm): v = ()2 Hn),
ol | )
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Also, from equation (4) we have

Flin)=-"4" (8)
Substituting equations (7) and (8) inte equations (1)-(5), we obtan
Hi 2
g — g — L 2) +mH +26%, (9a)
" = HG' - H'G +mG, {9h)
e" = PrHE', {10),

where prime denotes differentiation with respect to . The Prandtl mumber Pr and the magnetic

parameter m are given by
o B2

’ m = ____Q,, {11)
pw

Pr=

RIw

where v = p/p is the kinematic coefficient of viscosity. In terms of the new va.riableé defined {7),

~ the new boundary conditions from {6) are

H =

' H —0
=—A

G at =0, G -0} asn— o0 (12}
- 80

=1

where A is the nondimensional velocity normal to the disk surface. A > 0 represents suction while
A < 0 represents injection. Observe that {10} decoupies from (9a) and (9b), and that once H{n)
has been determined, ©(n) can be computed by solving a relatively easy one-dimensional two-point
boundary value problem.

4. NUMERICAL METHOD

Following the format in Heruska {9], define
_(H"(0)
- (20 -
Let H(mX), G(n; X) be the solution of the initial value prdbiem givén by (9) with the initial

conditions {12} and (13). The original two point boundary value problem described by equations
(9} and (12) is pumerically equivalent to solving the nonlinear system of equations

Fix) = (fg((:;f:)) I % (8

where 7 is chosen large enough so that \H{n) — H(r)| < € and |G(n) - Glr)j<eforr<n < and
a given € > 0. Equation {14) s derived from the boundary conditions (12). Algorithms for solving
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non linear systems like (14) typically require partial derivatives such as dH' /8 Xk. We can write
the functions needed as

9H(n) 0H'(n) OH"(n) 8G(n) a(;'(n))

for k=1or k=2 Now H'{m;: X), G(n; X) and their partial derivatives can be calculated from the
first order system

Y! =Ya
Y) = Ys

Y2
Y =YYs~ -2l +mYy + 27

Yi=Ys
Yy = ¥Y1¥s — Y,Y, +mYs
Yo =Y7 (15¢)
Vi =Ys
Y) =Y1Ys + Yol¥s — YoYy + 4YoYy + mY7
Ys: = Yo
Y!, = Y1¥10 + Ye¥s — Y4Ys — Yo¥2 + mYs
¥(0) = (~A,0, X1, 1, X2,0,0, 612,0, 621) (15)

where 83 1s the Kronecker delta. By solving this system twice, for E=1and k=2, the ] acobian
matrix DF(X) of F{X) can be calculated.

Two methods were utilized to solve this problem, a quasi-Newton method and a globally con-
vergent homotopy method. The quasi-Newton method used was HYBRJ from the MINPACK sub-
routine package by Argonne National Laboratory [10}. These quasi-Newton routines are robust and
quite efficient. However, they fail at times by converging to local minima.

The other method, a globally convergent homotopy method developed by Watson 111}, does not
suffer from the comvergence problems of the quasi-Newton method. However, this method requires
considerably more computation time. Details about the algorithm and some of its applications can
be found in [11, 12, 13, 14). '

The strategy for these problems was to try to solve them first using the inexpensive guasi-Newton
method. J that fails, then use the expensive, but guaranteed convergent, homotopy algorithm.

As previously mentioned, these methods use some partial derivatives with respect to the initial
conditions. For some values of m and A, these partials increase drastically as 1 increases. This
problem was worse in cases where m was large and/or there was large injection velocity. Large
values of suction velocity tended to make the problem better conditioned. Therefore, results with
large m and/or large injection velocities are not as accurate as other results. This also limited the
range of injection velocities and m values for which solutions could be computed. Such instability 1s
an inherent problem with shooting methods, the type used. Other methods, such as finite difference,
collocation, and finite element, will be considered in future work.
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5. DISCUSSION

The flow depends on two parameters, A and m, while the temperature depends on Pr, A and
m. Graphs are presented to gain some insight into the effects of these parameters. For m = 0 we
have the case of a rotating disk in the absence of a magnetic field while A = 0 corresponds to the
case of an impermeable rotating disk. The effects of A and m on radial velocity (F(n)) are shown
in Figures 2 and 3. From these figures, we see that the radial velocity increases monotonically with
increased r, until a maximum is reached, and then decreases monotounically to 0 as p — ©0. For
an imposed magnetic field, as the value of suction decreases (Figure 2), the maximum for radial
velocity moves away from the disk and the magnitude of the radial velocity increases. Increasing the
value for injection moves the maximum away from the disk and increases the maximum away from
the disk and increases the maximum radial velocity. For an imposed suction value, as the strength
of the magnetic field increases (Figure 3), the maximum radial velocity moves towards the disk and
the magnitude of this maximum decreases. From these two figures, it can be inferred that for large
values of m, there 15 a considerable reduction in the three dimensional character of radial velocity
(i.e., the flow becomes twoO dimensional).

Figures 4, 5 and 6 show the behavior of the tangential velocity (G{n)) for various values of A
and m. For an imposed magnetic field, as auction increases (Figure 4), the boundary layer thickness
increases, whereas an opposite effect is observed for increasing injection values. Figures 5 and 6
show the effects of various magnetic fields on the tangential velocity for A = 1.0 and —1.0. In both
cases the increase in magnetic field has the same effect as that of suction, namely thinning of the
boundary layer.

Figure 7 shows that with an imposed magnetic field, for higher values of suction the axial
velocity is almost constant with respect to 7. When A is —1.0, there is still some inflow in the axial
direction at infinity. But, as the injection values increase {-2, -3}, there is no inflow as all. We can
understand this better by referring to Table 1. For m = 0.1 there is inflow towards the disk in the
axial direction from infinity (H{oo) is negative) for all values of injection. For m = 0.5 there is 0o
inflow from infinity (H(oo) is positive) when the injection value bas a larger magnitude than -2.0.
The effect of m on H can be seen from Figure 8 and Table 1. For small values of suction, as the
strength of the magnetic geld increases, the axial flow sowards the disk decreases. For larger values
of suction (A > 2.0), the increase in magnetic field has less effect on H(co). For small injection
values (4 = —0.1), H{oo) becomes positive when m = 4.0; for A = —0.5 onwards, H{oo) becomes
positive for smaller values of m.

The torque (M) required to overcome the shear on one side of the disk 1s given by

M o

rrgp(uwe’)lfz = ~G'(0), (16)
where ro is the radius of the disk. The effect of m and 4 on G'(0} can be observed from Table 1.
The torque on the disk increases with m for all values of A. However, when suction is small, say
A = 0.1, G'(0) increases by nearly 192% as m increases from 0.1 to 4.0 . Contrast this with the case
A = 5.0, where the increase 18 only 13.5% as m increases from 0.1 to 4.0 . This shows that while
the effect: of m on torque is large when suction is small, the effect is reduced as suction increases.
Table 1 also shows that as the values for injection increase in magnitude, the effect of m on torgue
becomes increasingly dominant.
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6. DISPLACEMENT THICKNESS AND MOMENTUM THICKNESS

For the tangential direction, define the displacement thickness 6" as

AR ot : .

§ (-) = / G(n)dn. a7
o ,

The momentum thickness for the flow about a rotating disk as defined by Stuart [4] is

[

1/2 oo
5 (2)" = [ etm - nyin (18)
The values obtained for §* and 6} are shown in Table 1 as functions of m and A. The displacement
thickness decreases for increased suction and increases for increased injection. The displacement
thickness is greatly affected by increasing m when the suction value is small, whereas the displace-
ment thickness changes only slightly with increases in m when the suction values get larger. However,
for all values of injection, displacement thickness decreases significantly with increased m. Similar
trends are observed for momentum thickness.

7. HEAT TRANFER
From Fourier’s Law, the heat transfer from the disk to the fluid in transformed variables is

w

1= —x(Tu - T=) (2) 0'0) (19)

where & is the thermal conductivity. The Nusselt number is given by

_ _qlvjw)’”
Nu = T “Toin (20)
From (19) and (20)
: Nu = —6'{0). {21)

An expression for —8'(0) is obtained by integrating equation {10) subject to the boundary conditions

(12) resulting in:
i

exp {Pr/f H(n}drg} dE_.

-6'(0) = (22)

Jo

Some values of —©'(0) obtained from the above integration are shown in Tables 2 and 3. We can see
that the Nusselt number {—©'{0)) increases as suction increases but decreases as injection increases.
For a given 4, Nu increases as Pr increases. From Table 3, we can see that for A = 1.0, an increase
‘0 m from O to 4.0 decreases Nu by less than 19% for Pr=0.01 and by less than 0.4% for Pr=10.0 .

Values could not be obtained for Nu with A and m parameters that result in a H(co} value
greater than 0. Such values cause the integration in the —©'(0) equation to diverge.

Tables 4 and 5 show good agreement of our results with the analytical solution obtained by
Pandef8] for large A and small m and the aumerical results of Sparrow and Greggl[s] for m = 0.
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8. ASYMPTOTIC COMPARISONS

Applying standard perturbation techniques to the equations in (9} for small A and large m
gives the asymptotic formulas

2 1 1
= —mn __ Z—2/mn _ 2| .
H 2372 |© 7 2] A, (23)
. :
—H(oo) = Y + A. {24)

From Table 6, we see that the asymptotic formula for H{co) is fairly accurate for m values as
low as 2. Also, as A increases, the percent difference decreases even though the absolute difference
increases. However, negative values of A have a larger difference as well as a larger percent difference
as the magnitude increases. The asymptotic formula does not have as much accuracy with injection
values as it does for suction.



A m H"{0) G0} H{co) &* (wfv)i/? 83 {w/v)/?

0.1 0.1 -.949706031 -0.70556753 -0.80728 1.1888 0.56923
0.1 0.5 -.76941834 -0.89547865 -0.51409 1.0308 0.50523
0.1 1.0 -.61001359 -1.1179265 -0.330156 0.86351 0.42797
0.1 2.0 -.45588843 -1.4921873 -(0.20045 (.66254 (.33033
0.1 4.0 -.32862435 -2.0606763 -0.13849 (0.48375 0.24168
0.5 0.1 -.87549736 -0.90682387 -0.95198 1.0012 0.48878
0.5 0.5 -.69933108 -1.1086137 -0.76389 - 0.86247 (1.42644
0.5 1.0 -.56725454 -1.3356967 -0.65346 0.73259 0.36456
0.5 2.0 -.43130013 ~1.7095775 -0.57285 (.58047 0.28968
0.5 4.0 -.31608844 -2.2746559 -(.53043 0.43859 0.21917
1.0 0.1 -.73348580 -1.2306623 -1.2269 0.78192 0.38723
1.0 0.5 -.60106000 -1.4357645 -1.1410 0.68282 0.33973
1.0 1.0 -.50208794 -1.6570758 -1.0898 0.59708 0.29775
1.0 2.0 -.39513646 -2.0184735 -1.0481 $.49318 0.24631
1.0 4.0 -.20803228 -2.5693250 -1.0225 0.38858 0.19421
2.0 0.1 -.46957149 -2.0834812 -2.0536 G.47727 (.23830
2.0 0.5 -.42074136 -2.2490111 -2.0413 0.44289 0.22123
2.0 1.0 -.37743805 -2.4313615 -2.0318 (.41017 0.20454
2.0 2.0 -.32102279 -2.7423451 -2.0213 0.36407 0.18197
2.0 4.0 -.26887694 -3.2413392 -2.0123 (.30828 0.1541!
3.0 0.1 -.32592346 -5.0445028 -3.017% 0.32804 (.16397
3.0 0.5 -.30740555 -3.1678635 -3.0163 0.31534 0.15763
3.0 1.0 -.28844315 -3.3105664 -3.0131 0.30180 0.15087
3.0 2.0 -.25964084 -3.5671320 -3.0102 0.28017 (0.14006
3.0 4.0 ~.22194538 -4.0034081 -3.0069 0.24970 0.12484
4.0 0.1 -. 24719169 -4.0298749 -4.0076 0.24804 0.12401
4.0 0.5 -.23870361 -4.1258146 -4.0070 0.24229 0.12113
4.0 1.0 -.22632612 -4.2400206 -4.0064 0.23577 0.11788
4.0 2.0 -.21370296 ~4.4526459 -4.0054 0.22452 0.11226
4.0 4.0 -.19061247 -4.8306252 -4.0041 0.20658 0.10348
5.0 0.1 -.19864430 -5.0225310 -5.603% 0.19967 0.099530
5.0 0.5 -.15413486 -5.1006006 -5.0037 0.19603 0.098010
5.0 i.0 -.18804688 -5.1948049 -5.0035 0.19247 0.096232
5.0 2.0 -.17980709 -5.3741780 -5.0031 0.18605 0.093023
5.0 4.0 -.16516062 -5.7030098 . -5.0025 0.17533 0.087663
0.0 0.1 -.960960432 -0.66211964 -0.77929 1.2383 D.58847
0.0 0.5 -. 77026519 -0.84872385 -(0.45888 1.0755 0.52667
0.0 1.0 -.61851596 -1.0690534 -0.25331 0.89896 0.44505
0.0 2.0 -.46111824 -1.4420940 -0.19858 0.68477 0.34131
0.0 4.0 -.33140610 -2.0102667 -0.040775 0.49577 0.24767




A m H"(0) G'(0) H{oo) 5 {wfv)/? 51 {w/v)i/?
-0.1 0.1 -06927842 | -0.62109785 -0.75394 1.2839 0.60729
-0.1 0.5 -.77923730 -0.80441572 -0.40639 1.1210 0.54628
-0.1 1.0 -.62598320 -1.0223583 -0.17809 0.93547 0.46256
-0.1 2.0 -.46591593 -1.3937003 -0.017229 0.70768 0.35262
-0.1 4.0 -.33402817 -1.9610945 0.056832 0.50807 0.25381
0.5 0.1 -.97523069 -0.47860730 -0.67365 1.4764 0.67862
-0.5 0.5 -.79618949 -0.64963677 -0.22074 1.3106 0.62967
-0.5 1.0 -.64470132 -0.85634630 0.10702 1.0012 0.53644
-0.5 2.0 | -.48031949 -1.2168142 0.34294 0.80587 0.40007
-0.5 4.0 -.34276608 -1.7766978 0.44613 0.56019 0.27976
-1.0 0.1 -.93342121 -0.34145130 -0.60563 1.7252 0.76046
-1.0 0.5 -.77949348 -0.49935791 -0.032133 1.5623 0.73459
-1.0 1.0 -.64332440 -0.69066292 0.43166 1.3048 0.63569
-1.0 2.0 -.40244571 -1.3204110 0.78156 0.04240 0.46784
-1.0 4.0 -.34935008 -1.5731223 0.93015 0.63162 0.31531
-2.0 0.1 .76986157 | -0.17012160 -0.52194 2.2707 0.91238
20 | 05 .67355551 | -0.30469715 0.25947 2.1129 0.94692
-2.0 1.0 -.58206165 -0.46571471 1.0075 1.7822 0.85028
-2.0 2.0 -.46608986 -0.75841319 1.6265 1.2534 0.618G9
-2.0 4.0 -.34797800 -1.2471552 1.8900 0.79339 0.39564
-3.0 0.1 -.60318822 -0.08888757 -0.46554 2.8897 1.0652
-3.0 0.5 -.54997174 -0.20059342 0.49926 2.7237 1.1693
-3.0 1.0 -.49679764 -0.33393640 1.5417 2.3084 1.0790
-3.0 2.0 -.42062178 -0.58053840 2.4462 1.5974 0.78175
-3.0 4.0 -.33145553 -1.0093864 2.8415 0.97518 0.48542
-4.0 0.1 -.47811827 -0.05236093 -0.41853 3.5666 1.2289
-4.0 0.5 -.44015707 -0.14412499 0.74209 3.3743 1.3951
-4.0 1.0 -.41848145 -0.25452370 2.1621 2.7973 1.2495
-4.0 2.0 -.37057638 -0.46234304 3.2866 1.9269 0.91705
-4.0 4.0 -.30710176 -0.83580028 3.7894 1.1667 0.57715

Table 1 Effect of A and m on Torque {G'(0)); axial velocity at infinity {H({co)}; displacement
thickness (6*) and momentum thickness (57 ).

Table 2. Effect of Prandtl number (Pr) and A on Nusselt number Nu = —@'(0) when m = 5.

A\Pr 0.01 (.10 1.0 10.0
4.0 "0.040069 0.4006001 4.002305 40.00112
3.0 0.030151 0.3013329 2.005322 30.00255
2.0 0.024076 0.2036261 2.015051 20.00770
1.0 0.011394 0.1126061 1.059119 10.03991
0.0 0.004556 0.0428310 0.2826559 9515366

-1.0 0.000318 0.0031799 0.0034330




m\Pr 0.01 0.10 1.0 10.0
0.0 0.012566 0.1225589 1.0925388 10.054518
0.5 0.011394 0.1126061 1.0591194 10.039911
1.0 0.010889 0.1081711 1.0418339 10.031811
2.0 0.010477 0.1044617 1.0254037 10.023168
3.0 0.010311 0.1029297 1.0177857 10.018525
4.0 0.010224 0.1021232 1.0134742 10.015565

Table 3. Effect of m and Pr on Nu when 4 = 1.0.

| A | — H{oo)" — H{oo)™*
2. 2.0533 2.0536

3. 3.0175 3.0175

4. 4.0076 4.0076

B 5.0039 5.0039

Table 4. Comparison of the analytic solution of Pande [8] (* column% and the present numerical
results (** column; comparison valid only for large suction (A) and small m). m = 1.

A _HH(O)- -'H"(O)" _G!(O)* _Gl(o)-ur
4.0 (.2495 0.249475 4.005 4.00518
2.0 0.4848 0.484832 ' 2.039 2.03853
0.0 1.020 1.02047 : 0.6159 0.615922
-1.0 0.9790 0.978962 G.3022 0.302173
-5.0 0.39% (1.395131 0.0155 0.015471

Table 5. Comparison of the numerical solutions from Sparrow and Gregg [5] (* column) and
the present numerical results (** column).
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A m — H{oo}ope — H(00) sy {dif! % |dif]
0.0 1.0 D.25331 0.33333 0.08002 24.0
0.0 2.0 0.10858 0.11785 0.00927 7.8
0.0 40 0.04078 0.04172 0.00004 2.3
1.0 1.0 1.0898 1.3333 (.2435 18.3
1.0 2.0 1.0481 1.1178 0.0697 6.2
1.0 40 1.0225 1.0417 0.0102 1.8
2.0 1.0 2.0318 7.3333 0.3015 12.9
2.0 2.0 2.0213 2.1178 (.0965 4.6
2.0 4.0 2.0123 2.0417 0.0294 1.4
30 1.0 3.0131 3.3333 0.3202 9.6
3.0 2.0 3.0102 3.1178 0.1076 3.5
3.0 4.0 3.0069 3.0417 0.0348 1.1
1.0 1.0 -0.43166 20.6667 0.23504 353
1.0 2.0 -0.78157 -0.8822 0.10063 11.4
-1.0 4.0 -0.93015 -0.9583 0.02815 2.9
2.0 1.0 ~1.0070 -1.6667 0.6597 39.6
-2.0 2.0 -1.6265 -1.8822 0.2557 13.6
2.0 40 -1.8900 -1.9583 0.0683 3.5
30 1.0 -1.5417 -2.6667 1.1250 422
-3.0 2.0 -2.4462 -2.8822 0.4360 15.1
-3.0 4.0 -2.8415 -2.9583 0.1168 3.9

Table 6 . Comparison of obtained values with asymptotic formula values.
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Figure Captions

Figure 1. Coordinate system:.
Figure 2. Effect of A on radial velocity F. 4 =-3.0,-2.0, -1.0, 0.0, 1.0, 2.0, 2.0, 4.0 (top to bottom),

m =".0.

Figure 3. Effect of m on radial velocity F. m = 0.0, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0 (top to bottom),
A=10.

Figure 4. Effect of A on tangential velocity G. A = -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0 (top to
bottom}, m = .5.

Figure 5. Effect of m on tangential velocity  for impbsed suction. m = 0.0, 0.1, 0.5, 1.0, 2.0, 3.0,
4.0 (top to bottom), A = 1.0.

Figure 6. Effect of M on tangential velocity & for imposed injection. m = 0.0, 0.1, 0.5, 1.0, 2.0, 3.0
{top to bottom). A= -1.0.

Figure 7. Effect of A on axial velocity H. A = -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0 {top to bottom),
m = 0.5.

Figure 8. Effect of m on axial velocity H. m = 4.0, 3.0, 2.0, 1.0, 0.5, 0.1, 0.0 {top to bottom),
A=1.0.
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