Two Point Constraint Approximation in
Structural Optimization
Raphael T. Haftka
Joel A. Nachlas
Layne T. Watson
Thomas Rizzo
Rajendra Desai
TR 86-21



TWO roint Constraint Approximation _
rural Optimizaticn %;
=

in Struec

nael T Haftka

nap
A. Nachlas

Joel

Layne T.
Thomas Ri

Rajendra D

220
esal
e University

yirginia Polytechnic Tpstitute and Statb
Blacksburs: yirglnla 1061
abstract

primary meand

se of constraint approximab
ing computational efficie agion. Existing
pon rne valu

g are pased v

tural optimiz

The U
straint fun

ncy in struc
e of the con

ction

of achieV
rhe use

mation method
aper explores

The present D
nt and its de

d and tested

approxi

1e point.
rivatiVE

yes at @ sing
the constrai

are suggeste
veral of the

ts-derivati
s based upon

candidate ap

and 1
the Vvalué of

proximation
proximations

cf ap

Several
ctions.

ay WO points.

¥ generate

nstraint fun

d rational ce
point appr

for randoml
oximatiocs.

ations prove T

o De superior to the single

approxim



INTRODUCTION

one of the major obstacles to the widespread use of automated
structur‘al design (struotural optimization) procedures is tne need for large
oomput’ational pasources to perform repeated analyses of the structure
throughout the design pi‘ocess. In the midrseventies senmit and coworKers
{Refs. 1, 2) proposed the use of appr'oximate analysis techniques as a way of
overcoming this obstacle. Over the past few years the use of approximations
in structural optimization has become more and more COmMmON-. The popuiar’ity
of the idea was under'scor'ed in & recent international symposium_on
structural optimization (Ref. 3) where a large number of papers (e.g. Refs.
5-10) employed appr'oximation techniques.

Some approximation techniques are global in nature. They seek LO
appr'oximate structural pehavior in the entire design space or a large part
of it. This is done DY employing simplified structur’al models {e.g._ Ref.
11) by employing reduced pasis trechniques (e.g..Ref. 12) or DY sampling the
design space and using multiple regression rechniques o curve=fit these
po.ints with 2 simple functional r‘epr‘esentation (e.g8. Ref. 137, HoWever.,
more popular are 1ocal approximation rechnigues which rely ©on the
derivatives of the respoOIse function at a design point to obtaln an
approximation which 18 yalid in the neighborhood of that design point. One
reason for' the popular‘ity of such techniques is that the derivatives of the
response are usually requir'ed for the direction seeking procedure in the
optimization algorithm. Thug, the appr‘oximations pan be obtained for a very
little extra oomputational cost by using thesé derivatives.

One obvious local appr-oximation based on ripst order derivatives is a
first order Taylor series {i.e. a linear appr'oximation}. However, often the

aceuracy of such an appr'oximation is acceptable only for relatively small



changes 1in the design parameters. In most structural design problems 2
better appr‘oximation may be obtained by using a linear expansion in the
reciprocals of the variables (e.g8. Refs. 14=16) and this approximation'is
now widely used. Other appr-oximations which are in use are rational
fynetion approximations (Refs. 175 18) and a conveX necanservative"
approximation (Refs. 19, 20) which is a hybrid linear/reoipr‘ocal
approximation that is biased to overestiméte the criticality of constfaint
functions. Most of these appr‘oximations utilize only first derivatives,
however some work (e.g. Ref. 21) has been done with second derivatives.

A11 of the above techniques use approximations based on a single design
point. As.the structure iz being resized new approximations are constructed
at new design points. This practice isAwasteful hecause thé information
from previous design poiots is discarded and is not used to improve later
appr’oximations. One reason for the current practice of using only single
point'approximations is the large number of 'var'iables. There 1s very little

theoretical work on approximating a function of many variables to fit data

at a small number of points. In fact, most of the work is on approximating

a function of a small number of variables pased on data at a large number of
peints. The present work ccnsiders approximations to a function of many

variables based on the value of the function and its derivatives at two

pecints. - Several candidate approximations are explored and the results for

the more successful candidates are pr‘esen-ted.

APPROXIMATION METHODS

Several two-point approximation methods were developed and compared

against the two most oomonly used one~point approximations. Additionally.,

two three-point methods were gerived and compared with the two-point
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approximations. These one- and multi-point approximations are described

below. The polnts where the data is given are denoted X1, X2 and X3 with

components Xy XZi’ X3i’ i=1,...,n. The function to be approximated is

g(X), and the one-point approximations use its value and its derivatives at

X The two-point approximations use the value of the function and 1ts

2"
derivatives at two points, anc the three-point approximations use the data

at three points.

1. Linear approximatiocn
This is the first-order Taylor series expansion:
n 3g
gi(x) = g(Xz) + L (xi - Xzi) e (Xz) (1)

i=1 o%y

2, Reciprocal approximation

This approximation is the first order Taylor series expansion in the

reciprocals of the variables Yi = 1/xi, i=1,...,n. Written in terms of the
origingl variables, Xi’

n

- - g
gr(x) = g(Xz) + §=1(Xi x2i)(x21/xi) axi {XZ) (2}

3. Modified reciprocal approximation

The modified reciprocal approximation (Ref. 17) is

n {x . + Xzi)

_ - mi g '
g, (K) = 8(Xp) + I (xy = ¥p0) Ty S 5y, K (3)
i=1 mi i i
Note that for x_. = 0 we get the reciprocal approximation, and for Xp T®

mi
we get the linear approximation. Thne values of Xmi are assumed to be

selected on the basis of experience in Ref. 17, but now they can be selected
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to match the derivatives at X1 (noté that the value of the function and its

derivatives at X, are matched by g for any values of Xmi)' That is

9g X . 0+ X..
Tm _ 38 _f Tmi 2i\* o¢ u
X, (X1) T 8X, (XT) - (x .+ X .) 9%, (XE) (4)
i i mi 1i i
or
X.. = n.X,.
X . o= =i 1 (5)
mi (n, = 1)
i
where

(67

og .ag
n 2 e (Y = (¥
( 1) / aXi (

i ax. 2)
i

When the ratio of the derivatives is negative, it is an indication that the

derivatives at X1 cannot be matched. In %that case Xmi is set to a very

large number, so that the linear approximation is used for the i-th

variable.

L. Quasi-Newton approximation

The quasi-Newton approximation is written &s

n
. - a_g.....
gq(X) = g(Xk) + §=1(xi “ki) B (Xk)

n
§ a, . .(x, =x i)(xj - X, .} (7)

where for a two-point approximation k=2 and for a three-pcint approximation

k=3. The matrix A is the quasi~Newton approximation to the Hessian matrix

k

of g. Three popular update formulae for Ak were tried.
(1)  Inverse Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

T T
AP P TA T X
A - - Kkk 'k kK k (8)

K+1 ko T

T
P APy T P
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= VgiX ) = Vg(Xk)

k+1

A =0 ' (9
o] .

Note that unlike usage in optimization there is no need for a positive

definite A, and AO = 0 is a logical choice in the absence of additional

knowledge.

(ii) BFGS update

) A (I~ Tp )+ T (?0)

(iii} Dpavidon-Fletcher-Powell (DFP) update

T
(Y ~ AP Y = AP)
h -k kK kKK, (1)

k+1 T k
. (Yk - AkPk) Pk

Onily the DFP update gave reasonable results.

5. Two-point projection method.
The method is based on a projection of the pcint X on the line

connecting X, and X, (see Fig. 1). The function g(X) is first approximated

1
by a cubic Hermite polynomial at the projection point, P, and then linearly

extrapolated to X. The projection point P is given as

P =X +e(X, = X)) C(12)

1 1

where

T
£= (X -X) (>c2~-:>c1}/||><2vx1|j2 (13)

The quality of the approximation was found to be good only for interpolaticn

(that is 0 £ £ € 1) so that if g from Eq. (13) was larger than one or



smaller than zero it was set to the respective limit ¢f zero or one. The

approximaticn at P is then written as

n

- - ry 38 g -
gp(X) = gp(P) + }3_3:1[(1 g) axi (X1) + axi ()cz)](xi pi) (74)
where
gp(P) = N1(E)g(X1) + Nz(E}dE + NB{E)g{XZ) + Nu(z)d2 (15)

the Ni(g} are the Hermite interpolation polynomials

N (g) = 1~ 387 + 2g°

Nz(E) =&~ 2E% + 7

N3(E) = 38% - 2¢g°

Ny(E) = =52 + g | (16)

and

"

1,2 (17

T
di = (X2 - XT) Vg(Xi)

-
6. Three-point projection method

The method is based on a projection of the point X onto the plane
containing the points XT’ XZ and X3 wnere the data is given (see Fig. 2).
The function g(X) is first approximated by & quadratic polynomial at the
prejection point, P, and then linearly extrapolated to X. A local

coordinate system (s,t) is defined in the plane (see Fig. 2).

The computaticn begins by oalculéting two unit vector g and et in the
plane and the calculation of the derivatives 3g/9s and 3g/3t at points X1,

X2 and-XB. In the plane the function is approximated as

- ag - 98 -
gp(s,t) = g(X3) * e (s - s3} t s {t - t3)



1
(s = 3,)(t = t3) + o= 322(t - t3)2 {18)

* 12 3 >

a, . (s - 53)2 + 3

1
2 %11

and the three unknown coefficients are found from a least-square fit using

the value of the function and its derivatives at points X1 and Xg.

Once Eq. (18) is used to approximate g(P), the gradient vector Vg{(P) is

found by linear interpolation in the s,t plane using Vg(x1), Vg{Xz) and

Vg(XS). Finally, g(X) is approximated as

gp(X) = g,(P) + (X = P)'Va(P) (19)

7. Exponential approximation

The exponential approximation is based on dividing the variables into
two groups: those that have'constant sign derivatives and those that

alternate in sign. That is

s ir B8 (g5 28
J€J1 if an (X1) axj (Xz} 20

o i 38 gy 28
JEJ2 if ij (XT) Sy (X2) <0 (20)

A general function which replicates the behavior of the derivatives is
. Bj
ge(x} =cexp ~ [ a,x, Y+3% ¥Y.{(x.,-~- éj)zj {212
jsJ1 jsJ2 ’

The coefficients aj, Bj’ Yj and 5j are calculated to match the

derivatives at X1 and XE' For jaJ? we get two equations

B.<1

g _ J
ij (X1) = ajsj(x1j) g(XT)
g.~1
28 - J -
axj {Xz) ajﬁj(xzj) g(Xz) (22)

which yields



g g
ln[ax_ (X1) g(xz)/axj (Xz) g(X1)]

g, =1 + ' (23)
J . 2n(x1j/x2j)
and
B .~1
' . . 98 J .
o, = axj (X1)Bjx1j /g(X1) (24)
similarly, for jsJE, the equations
g - - -
axj (x1) = 2g(X1)Yj(X1j aj)
28 - - -
axj (xz} = 2g(X2)Yj(x2j 5j} (25)
are solved to yield
28 - 28
. x1jg(Xq) o (Xz) - x2jg(x2) P (X1J (26)
I gy 28 - o8 }
g(x1} % {xz) - g(Xz) X (x1)
o8
- = (X))
¥ 9x __ 1 (27)

3 T EX G, - 8))

. .
Finally, the constant ¢ is calculated to mateh the function value at

Xoe
e = g/g(X,) (28)
where
- Sj
g =exp -~ [T a.x,. + 3 Y. (x.. = §.)%] (29)
jed, d 2] jeg. I 2] J

1



TEST PROCEDURE

Test functions

The displacements of a linear elastic structure may be found by solving
a system of linear equations generated by a finite element model. The
elements of the matrix of the equations (the stiffness matrix) are typically
polyncemials of the design variébles. Therefore the displacemenis are
rational functions of the design variables. The test functions selected for
evaluating the varicus approximation are, therefore, chosen to be simple
rational functions with random coefficients. 1In choosing the form of the
rational function two properties of displacement functions were considered.
First, for most structural optimization problems the displacements are
finite for positive values of the design parameters. Second, when the
design parameters are cross-sectional areas of bars or thicknesses of
membrane elements, a simple scaling relétion holds. When all the design
parameters are multiplied by a factor, the resulting displacements and
stresses are reduced by the same factor.

To achieve the above characteristics the test function g(X) is chosen

to be in the form

a(X)
where
a(X) =1 s,.x% (31)
g1 133 '
and
n n~1 n
b(X) = ¢ {s,.%x,2 +s8,.X.) +¥ L W, X.X (32)
j=1 237 NN j=1 k=j+1 9K T K
The coefficients s1j, Szj’ sSj and wjk are randomly generated using a two

stage process. First, a random number is selected for each coefficient to
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determine whether it is zero or not. The probability of being nonzero is

denoted as Py p2, p3 and p12 for S1j’ S2j’ s3j and wjk’ respectlvelyf
Second, if the coefficient is to be nonzero its value is selected by a

random variable unifeormly distributed in an interval (o,di), i=1,...,4,

where i=1,2,3 correspond to Sij and i=4 to wjk' Note that for any cheice of

the random coefficients g(X) haé the desired scaling propehties.
Test points

Beside %test functions it is also necessary to select sequence of design
points.. Two procedures are used for this purpese. The first procedure is

completely random with each component xi selected as a uniformly distributed

random number in the interval {(o,d). The second procedure seeks to imitate
the sequence of points generated by an optimization procedure. It assumes
that the design proceeds in a certain direction with random c¢scillations
about that direction. This procedure follows five steps, requiring the
generation of variables. In all cases below, each random variable has a
uniform distribution in the indicé;ed interval. The steps 5f the procedure
are as follows:

?f An initial pecint X1 is selected with X1j’ j=},t.5,n a random number
in [0,1].

2. A direction veector U is chosen with each component a random number
in [0,1] and then U is normalized so that Hul] = 1.

3. A sequence of m-1 random numbers ki’ i=1,...,m~1 each in [o,d] is
generated. It is used to define m points Xpi moving along the given
direction

Y =
pl X1
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X = X

pi p(l - 1) + Al U l=2,---sm (33}

-1
y, Randem perturbations normal to the direction of motion are

generated by generating ancther random direction Vk, k=1,...,m=1 as In step

2, making it orthogonal to U and normalizing its length to 1.

5. The final design vector is obtained by adding Vk to ka as

X, = ka t oV k=2,.f.,m (34) .

where @, is a random number in [o,r].

The m test points which are generated by either procedure were used to

generate m-2 approximations. .The value of g(¥) at Xk’ k=3,...,m is

approximated by the three point approximations based on the function and its

derivatives at kai’ Xk_ and ka3. Two-point approximations used data at

2

xk*T and kaz, and single-point approximations utilized the data at Xk??.

RESULTS AND DISCUSSION

-

One~ and two-point approximations

The constants used. for the random generation of_the function and the
test points are given in Table 1. Ninety test points were generated by each
procedure aﬁd eightyveighé approximations were generated. These are
cempared on the basis of average relative érfor, maximum relative error and
the number of times {out bf 88) that a given approximation.was the best of
alli approximations.

The single and two-point approximation were first compared for the
completely random test points. Table 2 presents the results for the linear,
reciprocal, modified, quasi-Newton (DFP update) and projection

approximations as a function of the number of design variables. The
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projection 2-peint approximation had the best performance with an average
error 25-U40% lower than that of the linear approximation which was the next
best. The other approximations had very large maximum errors which
indicated that their poor performance may be due to a small number of peints
with large errors. Therefore it was decided to check how much the
performance will be affected if the permissible deviation from the linear
approximation was limited.

The approximations were limited to 30% deviation from the linear
approximation. That is

) g, (X) - g(X,)] )
OT ST, 0 - a5

1.3 (35)
where ga represents gr, gm, gq cr gp. The results with these corrected
approximations are given in Table 3. It is seen that the quasi-Newton
approximation is greaﬁly improved and has average errors which are up to 12%
lower than those of the linear approximation. The reciprocal and modified
approximations are also greatly iqProved put they remain inferior to the
iinear approximation, and the projection approximation deterliorates due to
the correction process.

Next, the single~ and two-peint approximations were compared for the
directed set of test points. Because most of the degign parameters vary
monotonically the reciprocal approximation is much better with this sequence
than the linear approximation. Therefore the projection method was modified
to use reciprocal variables and the modified and quasi~Newton approximations

were constrzined with respect to reciprocal approximation (Ea. (35) with g,

replacing gl). Table U4 shows the results obtained with the directed
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sequence of points. The reciprocal approximation was superior to all others
with the quasi-Newton method close Lo it.

The superior performance of the reciprocal approximation for this case
is not surprising in view of past studies (e.g. Refs. 14=16). Because it is
exact when all variables are scaled up or down by the same factor, 1t tends
to be accurate for this case of test points which are almost monotonically
increasing for all variables. This case méy meah that when the reciprocal
approximation is much more accurate than the linear approximation, it is
gifficult to improve upon it using two point approximations.

.The exponential épproximation and the quasi-Newton approximations with
the BFGS updates were generally inferior to the other approximations, and so

results for these approximations are not presented.

Three~point approximations

The two-point and three~point projection and gquasi-Newton methods
performed well compared to the linear approximations. Therefore three-point
versions of these methods were impl;ﬁented and compared tc the single~ and
two=point approximations. Based on previous experience only the gquasi-
Newton approximation was corrected by EQ. (35). The results for the
completely random set of test points are summarized in Table 5. The three-
point projection method was substantially better than the two~point version,
while the improvement of the quasi~-Newton method was marginal.

The results for the directed set are presented in Table 6. For this
set the three-point approximations are generally poorer than the two-point
ones. These resqlts confirm the trend observed for the two-=point
approximaticns of improvements over the single-point approximations only for

the random set.
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CONCLUDING REMARKS

Several tw0rpoint approximations have been derived for use_in
constraint function approximations. A rational function with random
coefficients displaying some of the characteristics of displacement and
stress constraint functions was used for evaluating the apbroximations.' Two
sequencesrof random test point sequences were used in the evaluation. The
first segquence was completely random and the second had random perturbation
superimposed on monotonically increasing variables. For the first sequence
the linear approximation was superior to the reciprocal approximation and a
two-point projection method was substantially better than either of these
single~point approximations. For the second (directed) sequence the
reciprocal approximation was much more accﬁrate than the linear
approximation and slightly more accurate than the two-point approximations.
To check whether the approximations can be improved by using more points,
two three-point approximations were tested. They showed improvement for the
random set of test points but not for the directed set.

The results indicate that the ;rojection method can be used to
substantially improve the accuracy of the approximation compared to linear
approximation. However, in cases where the reciprocal apprgximation is very
accurate because ofrits scaling property it is very difficult to improve

upon it.
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TABLE 1

Ranges used for random variable generation

25., 60., 20., 30. for first generation scheme

10., 10., 10., 10. for second generation scheme

P, = 0.8, i=1,2,3: P = 0.8

i2
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TABLE 2

Errors for single- and two-point approximations for random 90- point seguence
(average relative error, maximum relative error, and number of times each
approximation was the best one).

Number of .
Variables linear reciprocal modified quasi-Néwton projection
5 0.249 0.680 O.u4dy 0.559 0.183
1.863 3443 4.197 18.15 1.561
15 4 21 - 5 29
10 6.0935 2.656 G.221 0.285 0.0543
' 0.333 bh, 53 3.533 9.067 0.232
16 5 13 25 31
20 0.0465 3.121 2.574 0.118 0.0354
0.262 Th, 41 167. 1 1.980 0.0975
19 2 10 26 33
40 0.0174 1.681 0.118 0.0280 0.0123
0.0ug9 34,49 1.989 0.373 0.0665

Th 0 8 3 35
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TABLE 3

Errors for corrected single- and two-point approximations for random 90~
point sequence (average relative error, maximum relative error, and number
of times each approximation was the best one).

Number of
Variables linear reciproecal modified guasi-Newton prejection
5 0.249 0.289 g.244 0.219 G.208
1.863 2,255 1,471 1871 1.471
9 19 17 29 33
10 0.0935 0.1%17 0.0943 0.08z22 0.0726
‘ 0.333 0.425 G.272 0.323 0.254
16 9 15° 33 36
20 0.0465 0.0637 0.0546 0.0465 0.0384
0.262 0.158 0.459 0,459 0.0978
15° 11 17 _ 26 32
40 . 0.0174 0.0273 0.0193 0.0171 0.0147
0.0409 0.0518 0.0810 0.0815 0.0428
11 8§ - 19 36 31
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TABLE 4

Errors for single- and two-point approximations for directed 90-point
sequence (average relative error, maximum relative error, and number of
times each approximation was the best ocne),

Number of i
Variables linear reciprocal modified quasi-Newton projection
5 0.0139 0.00585 0.00879 0.00614 0.00748
0.741 0.143 0.375 0.233" 0.162
1 30 18" 31 8
10 0.00554 G.00119 0.00308 0.00120 G.00121
: 0.223 C.00837 0.0737 0.00837 0.00837
13 12 38 11 22
20 0.00379 0.00106 0.00123 0.00112 0.00231
00967 0.0141 0.0250 0.0141 0.0525
y 6 - 50 g - - 11
4] C. 00461 0.00232 0.00289 0.00245 0.00580
0.0860° 0.0220 0.0776 0:0234 0.269

2 18- 55- 10- 9
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TABLE 5

Errors for single-, two- and three-point approximations for random 90-point
sequence (average relative error, maximum relative error, number of times
each approximation is the best one).

Number of
Variables linear

5 0.243
0.183
9

10 0.0903
: 0.332
8

20 0.0467
0,262
15

40 0.0175
0.0499
9

2-point

projection

Q.
1.
22

0
0.
23

184
560

. 0543

231

.0356
L0974

L0124
. 0665

3-peoint
projection

0.150
1.545
37

0.0438
0.182
38 -

0.0314
0.0742
29

0.0714
C.0557
32

2-point
quasi-Newton
{corrected)

0.215
1,471
12

0.0827
£.323
6 .

0.0468
0.459
11
g.0172
0.0815
14 :

3-point
quasi-Newton
{corrected)

C.214
1.4871
16
0.0811
0.345"

0.0422
0.159
6 .

0.0180
0.0815
9 .



Errors for single-,
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TABLE b6

two- and three-point approximations for directed 90-

point sequence (average relative error, maximum relative error, number of
times each approximation 1s the best one).

Number of
Variables

5

10

20

40

reciprocal

0.00585
0.143
26 -

0.00119
0.,00837
15~

0.00106
0.014
22

0.00232
0,022
24

2-point

projection

0.00748
0:.162
g-

0.00121
0.00837
34

0.00231
0.0525°
12

0.005%90
0.269
g _

3-peoint

projection

0.0144
0.439
14

0.00521
0.102 -
31 -

¢.00285
0.0493
36

0.00283
0.0233
27"

0.
0.
39

2-point
quasi-Newton
(corrected)

00614
233

.00120
.00837

.00112
L0141

.00245
.0234

3-point
quasi-Newton
{corrected)

0.00786
0.338
30

G.00122
0.00749
19

0.00119

0.0163
25"

0.00234

0.0220
22
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Figure 1. Two-Point Projection Method
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Figure 2. Three-Point Projection Method




