Simulation Model Development Environments:
A Research Prototype

Osman Balci
Richard E. Nance

TR 86-20

e i

Technical Report SRC-86-0047

SIMULATION
MODEL DEVELOPMENT ENVIRONMENTS:
A RESEARCH PROTOTYPE]

Osman Balel
Richard E. Nance

Systems Research Center and
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061, U.S.A.

20 August 1986

t Also cross referenced as TR-86-20, Department of Computer Science.

+ Submitted to the Journal of the Operational Rescarch Society (published in England} for
publication. Spelling conforms with British English. .

ABSTRACT

The needs for automated assistance in the simulation task are undeniable. The size and
complexity of current modelling efforts far exceed the bounds considered challenging only a
decade ago. A research prototype of a simulation model development environment (SMDE)
has been developed to provide an integrated and comprehensive collection of computer-
based tools to (1) offer cost-effective, integrated, and automated support of model develop-
ment throughout its entire life cycle, (2) improve the model quality by effectively assisting
in the quality assurance of the model, (3) significantly increase the efficiency and produc-
tivity of the project team, and (4) substantially decrease the model development time. The
prototype SMDE is composed of four layers: (0) hardware and operating system, (1} kernel
SMDE, (2} minimal SMDE, and (3) SMDEs. Currently, a SUN 3/160 colour computer
workstation and the UNIX operating system constitute layer O upon which an advanced
prototype SMDE is being developed. The objectives of this paper are to: (1)} describe the
current state of research on simulation support environments, (2) use the SMDE research
prototype as an example for describing concepts and principles employed, experiences
gained, and guidelines (potential principles) derived in the design and creation of the proto-
type, and (3) identify and speculate on future research directions.

Key words: computer systems, modelling, simulation

- -

INTRODUCTION

The advent of digital computers has made simulation a powerful problem-solving technique
in many disciplines. Advancements in computing technology (both hardware and software)
_ have played an important role in advancing the state-of-the-art of simulation. A meaning-
ful chronology of simulation software' traces the evolution through five periods: {1) the
early era of custom programs — 1955-60, (2) the period of emergence of simulation pro-
gramming languages (SPLs) — 1960-65, (3) the second generation of SPLs — 1966-70, (4)
the era of extended features — 1971-78, and (5) the current period.

Progress in software support for a simulation study has unfortunately. not kept up
with the incredible pace in computing technology. Despite phenomenal advances in com-
puter hardware and software over recent years, simulation still remains a labour intensive,
error prone, and costly technique especially for large complex simulation studies.
Automated support of a simulation study throughout its entire life cycle is undeniably
needed to confront the current modelling problems identified by Balci.” The automated sup-
port for modelling and simulation is characterised in the form of a simulation model
development environment (SMDE).

The life cycle of a simulation stuciy3"1 is characterised in terms of 10 phases, 10
processes, aqzd 13 credibility assessment stages (CASs). The work described herein focuses on
automated support over the phases, processes, and CASs of the life ¢vele corresponding to
model development. Automated support for the remaining portions is related to a simula-
tion management sysﬂl:ems’6 which is envisioned to cover the entire life cycle.

The remainder of this paper is organised to meet the following objectives: {1} to
describe the current state of research on simulation support environments, (2) to use the
SMDE research prototype as an example for describing concepts and principles employed,

experiences gained, and guidelines (potential principles) derived in the design and creation

-1-

of the prototype, and (3) to speculate on future research directions.

REVIEW OF RELATED WORK

Currently, simulation software development is in a significant transition period. While
several factors characterise the transition, Nance' points out the following three as most
obvious: (1) a shift from the program to the model view of the simulation process, {2)
interest in and commitment to the development of support tools, and (3) the legacy of a
concept/language impedance from the insularity promoted by SPLs. Several current
research projects represent differing perceptions of the goal terminating this transition
period or varying paths toward a similar goal.

The Computer Aided Simulation Modelling (CASM) project at the London School of
Economics is investigating ways of making the process of simulation modelling more effi-
cient. Balmer and Paul’ provide an overview of the CASM environment in which the prob-
lem formulator, interactive simulation program generator (iSPG), and output analyser are
the essential components. The CASM relationship with artificial intelligence (AI) and some
work on the output analyser are described by Balmer.® Doukidis and Paul® and Paul and
Doukidis™ report on early and more recent attempts at aﬁtomating simulation problem for-
muiation using expert systems and natural language understanding systems. An ISPG called
LANGEN has been developed based on the extended Lancaster Simulation Environment™
and is described by Chew et al.*®

Reddy et al.'® describe a Knowledge-Based Simulation system (KBS) which provides
facilities for interactive model creation and alteration, simulation monitoring and control,
graphics display, and selective instrumentation. KBS wuses a schema representation

1anguage14 — an Al-based knowledge representation system for modelling — and combined

object- and rule-based programming to represent simulation knowledge and behaviour.

Baskaran and Reddy'® present an introspective environment for knowledge based simulation
to learn/understand the dynamics and the underlying causality of the system being
modelled so that the information gained can be used in automatic model verification and
post analysis.

Mc)-‘xr‘thur ei al.Yﬁ preéent an overview of the Rand Object-oriented Simulation System
(ROSS) which provides a programming environment in which users can design, test, and
modify large knowledge-based simulations of complex mechanisms. ROSS is an English-
like, interactive, object-oriented language implemented in Lisp. A simulation in ROSS can
be interrupted while it is running, the state can be queried or the code modified, and the
simulation can then be resumed. Simulating Warfare In the ROSS Language17 (SWIRL)
and Tactical Warfare In the ROSS Language' (TWIRL) are the two major applications of
ROSS. |

Unger et al.”® describe a distributed software prototyping and simulation environment
called JADE. JADE is structured in four levels: hardware, kernel, programming, and proto-
typing. It provides tools for the design, implementation, debugging, testing, maintenance,
and performance analysis of distributed, concurrent programs.

Birtwistle et al.” describe an animated discrete event simulation environment called
ANDES. ANDES is being constructed as a part of JADE. Tt provides animated pictures of
the state of a simulation, a wide spectrum of perspectives ranging from gross model logic to.
views of individual processes, and assistance in establishing model credibility.

Standridge et al.>' present an overview of The Extended Simulation System (TESS)
which integrates simulation, data management and graphics capabilities. TESS has evolved
through the integration and enhancement of, and providing a common interface for, fo.ur
previously developed packages: SLAM II — a Simulation Language for Alternative Model-

ling; SDL — Simulation Data Language; AID for iﬁput data analysis; and SIMCHART for

-3-

output analysis.

Reese and Sheppard?“1 give an overview of a simulation software development environ-
ment (SSDE) which is composed of a series of data bases and a language. SSDE’s framework
provides the means of hiding the file system and development support tools and automating

.the transition between the .different phaétes of development. The protots-rpe SSDE includes
several tools developed specifically to support simulation programming.

Zeigler and De Wael™ describe the current state of a project to implement a support
environment for the multifaceted modelling methodology. Objects and relations defined in
the methodology are represented by a knowledge base to guide the modeller in the use of
tools to manipulate and validate models, store and retrieve them from model bases.

Oren and Ayta,(;24 describe the architecture of a knowledge-based modelling and simu-
lation system called MAGEST.

Robertson reports on the design of an intelligent, rule based simulation environment
which consists of an inference engine, simulation knowledge base, simulated world state
database, knowledge editor, simulation toolbox, simulation browser, and graphical
presenter. A number of sources, although not as comprehensive as the above, describe
related topics. Wales and Luker™, following the paradigm of program generators, use Ada-
implemented tools to produce simulation programs from activity-like diagrams. Lebmann et
al.”’ propose a general approach to a multi-stage, hierarchical modelling concept. Henrik-
sen”® speculates that the simulation practitioners of T;he future will work in an environment
comprised of well-integrated software tools. Ruiz-Mier et al.”’ speculate on the use of a net-

work simulation language in an Al-based programming environment.

SMDE RESEARCH PRO TOTYPE

Since June 1983 the MDE project has addressed g complex research problem: proto-
typing of a discrete event SMDE to provide an integrated and comprehensive collection of
computer-based tools to (1) offer cost-effeptive, integratéd, and automated support of model
development throughout the model life cycle, (2) improve the mode] quality by effectively
assisting in the quality assurance of the model, (3) significantly increase the efficiency and
productivity of the project team, and {4) substantially decrease the model development
time. Guided by the fundamental requirements identified by Balei®, the Conieal Methodol-
ogy* (CM) has furnished the architectural underpinnings of the SMDE research prototype,
Prototypes of SMDE tools have been developed using the rapid prototyping technique.
Conzcal Methodology

The CM, developed specifically for simulation modelling tasks, prescribes a top-down
model definition followed by a bottom-up model specification. The model definition phase
- requires the modeler to perform an object decomposition, assigning attributes to objects
based on the system being deseribed and the objectives of the simulation study. Attributes
are strongly typed, and the CM advocates extraction of the maximum information from the
modeler during the definition phase, e.g., attribute dimensions and value range definition in
addition to the attribute typing.

The model specification phase utilises the basically static representation generated in
the definition phase to produce a dynamic representation. Information extracted from the
modeler is used to construet s bottom-up specification of the changes in attribute values
(and, consequently, object states). The intent of the methodology is to structure an iterative
construction process that admits diagnosis of model representations early in the model
development life cyele.®® The advantages of early error detection and correction, prior to the

implementation in a SPL, are obvious.

Documentation occupies a central role in the CM. The iterative representational ver-
sions of the model form increasingly more procedural and less abstract descriptions of the
target of the modelling team. Hierarchical decomposition encourages, even forces, a stratifi-
cation of object descriptions that address the differing informational concerns of project
inanager, simulation analyst, and programmer (see reference 6). |
Rapid Prototyping |

Rapid prototyping is a technique for rapid construction of comparatively inexpensive
and incomplete experimental versions of a target system. Lessons learned from a predecessor
prototype enable improvements in the successors.”” Brooks® originated the idea and advo-
cated to “plan to throw one away; you will, anyhow.” When ideas 01; requirements cannot be
specified completely and accurately, a prototype is developed rapidly and cheaply (without
much attention to efficiency or polish) for the purpose of testing the ideas or requirements
and accelerating the learning process. In light of the knowledge gained, the prototype may
be thrown-away or refined. (Even if the product is discarded, the knowledge retained ié the
actual benefit.) Based on this knowledge, a new prototype is constructed and experimented
with, and compared against target specifications. The process is repeated until a satisfactory
prototype is obtained.

The prototype SMDE is architectured in four layers as depicted in Figure 1: hardware
and operating system, kernel SMDE, minimal SMDE, and SMDEs. Each layer is desecribed

in some detail below.

Layer 0: Hardware and Operating System

A SUN-3/1601 colour computer workstation running under MC68020 CPU with 4

megabytes of main memory, 380 megabytes of disk subsystem, a 1/4-inch cartridge tape

t SUN-3/160 is a trademark of Sun Microsystems, Inc.

R -

Model
Analyser

Maodel

Model
Generator

Translator

Command
Language
Interpreter

Model
Verifier

Kernel SMDE
Funetions

Assistance
Manager

Ssurce
Code
Manager

Hardware and
Operating System

Premodels
Manager

Electronic
Mail
System

Project
Manager

Minimal

SMDE SMDEs

Fig. 1. The architecture of the SMDE research prototype.

drive, and a 19-inch monitor with 1152X900 pixel resolution constitute the hardware of the .

prototype SMDE. A laser printer and a line printer over the Ethernet local area network

serve the SMDE for producing high quality documents and hard copies of SUN screens and

files,

v

The UNIX} 4.2BSD operaling system and utilities, multiwindow display manager

(SunW’indows), device independent graphies library (SunCore), computer graphics interface

(SunCGI), visual integrated environment (SunView), Sun programming environment {Sun-

Pro), and INGRES relational database management system (SunINGRES) constitute the

1 UNIX s 4 trademark of AT&T Bell Laboratories.

software environment upon which the SMDE is built. Nance et al. have evaluated the capa-

bilities of UNIX for hosting an earlier prototype SMDE, noting major and minor deficien-

. 33

cies.
The current prototype, based on the SUN workstation, eliminates certain deficiencies

in the earlier version and reduces the negative effects of others. Figure 2 provides a “fla-

vour” of the supporting technology introduced by the SUN workstation.

Layer 1. Kernel Simulation Model Development Environment

Primarily, this layer integrates all SMDE tools into the software environment
described above. It provides SunINGRES databases, communication and run-time support
functions, and a kernel interface. There are three SunINGRES databases at this layer
labeled project, premodels, and assistance, each administered by a corresponding manager
in Layer 2. All SMDE tools are required to communicate through the kernel interface.
Direct communication between two tools is prevented to make the SMDE easy to maintain
and expand. The kernel interface provides a standard communication protocol and a uni-
form set of interface definitions. Security protection is imposed by the kernel interface to

prevent any unauthorised use of tools or data.

Layer 2: Minamal Stmulation Model Development Environment

"~ This layer provides a “comprehensive” set of tools which are “minimal” for the
development and execution of & model. “Comprehensive” implies that the toolset is suppor-
tive of all model development phases, processes, and CASs. “Minimal” implies that the tool-
set is basic and general. It is basic in the sense that this set of tools enables modelers to
work within the bounds of the minimal SMDE without significant inconvenience. It is gen-
eral in the sense that the toolset is generically appiicable to various simulation modeiling

I~

apu %z* unsep

3 8900 maga e abew} "uazA | sue Tap

8402 maya uos|-ap B To

4d-abewy a8y 41 u8a apw a2'ap elziT

mu.wmme;gmhm*Lm>|mus apuy 9I5iF

Ln‘wmma+|gnam_mcmgwlmvs safiew) HiEan

Le3" adew| “une | sues) "apu 8403 FINE
40 efiews "y5afcud "apuy ' ydesByjeo

48} LiBA
(3pay

RIELYEV N
Lapoy

lazh|euy
Lepoy

J03edsuay
Lapoy

Jabeuey
8aue}s|ssy

Jaffeuey
S| epaws.ad

Jafeuey
108[ouy

Mg aanansg Ity

INOEINONIS
HOAVIS e

AUN

AREN

basg winy

baig

A6

Y 138{044 yaseasay (o]
P 5O ST00} SUY 39 swo 57 37 <

Cumotuny i uauwbyssy anjep go S, LVT

CUMoLURS anjes aingpaiiy jo U0¢)eu LIl sq

<UMOLLN

TanLeA AINGLAIY LB pup

FanLEA BINGLIIIY JO upewog

CUmGLLINy

idd 40 snivis

© UE T9POM ® Fo wopyentrroeds e #esan

wmov 100} S4T300d4Ul W ST ANIYNTIES TaagH o

“{4AW) Pusuospauy yusadororsg epoy

19P0% saTiedpomauos ayy) suossed Jayyo

FANLEA BINGLaIY Jo 3pup
‘anjep ainglaily Jo ad&kp
‘uagydyaasaq PaLtelaq

v
tuogidiaasag Jarag

Cra)

&'z |00[Uol1e3) 4 0adg angLay

isywob eauyy

HOTLATNISAG °3

0} pajey
SaDUBIO Io
baeIeY Butyaaauos
uoTydiasssg
Aeuung

HOLV¥AND T3Q0K FHX

128 8s g

841 1B Jagunu Jsjdeys 83 J4ajua
"AQW 03 uoL3anposgur ayy Ul aiqe|jeae ase yojym
sua3deys | (e 1o sawey SU3 IS4 L1}m uogng Siyy Bupyoe)eg

SINIINDD 40 3799L 13437 dOy

‘mylaq ydwaad
‘Bupmaja Joy dajdeya e

_ _ I
301 01 U0y 3onpOJgUT

=
O
D
——
<
&
s
2
O
e
o
P
=
2
&
<
L&}
=
[
=
[

Fig. 2.

tasks.

Minimal SMDE tools are classified into two categories. The first category contains
tools specific to simulation modelling: Project Manager, Premodels Manager, Assistance
Manager, Command Language Interpretér, Model Generator, Model Analyser, Model Trans-
lator, and Model Verifier. The second category tools (also called assumed tools or library
tools) are expected to be provided by the software environment of Layer 0: Source Code
Manager, Electronic Mail System, and Text Editor.

Project Manager is a tool which (1) administers the storage and retrieval of items in
the project database, (2) keeps a recorded history of the progress of the project, (3) triggers
messages and reminders (especially about due dates), and (4) responds to queries in a
presc_ribed form concerning project status.

Premodels Manager is a tool which (1) implements a query language, (2) administers
the premodels database, (8) provides information on previous modelling projects, and (4)
provides a stratified desecription and several representational forms of models or model com-
ponents developed in the past.

The current research prototype of the Assistance Manager administers the Sun-
INGRES assistance database and possesses user and programmer interfaces. The user inter-
face provides: {1) information on how to use a SMDE tool, (2) a glossary of technical terms,
(3) introductory information about the SMDE, and (4) tutorial assistance for SMDE tools
and methodologies, techniques, and procedures used within the SMDE. The user interface
provides “help” in two modes: local (programmer-activated) and global (user-activated).
The programmer interface is intended for tool developers for the storage and retrieval of
assistance-related information in the database. The Assistance Manager also provides the
capability for automatic hardecopy generation.

- Command Languagé Interpreter (CL1) is the language through which a user invokes a

EFal

SMDE tool. Early in our project, the CLI was prototyped based on the proposal of Moose®
and was fully described by Humphrey.® Later, after the acquisition of the SUN workstation,
the CLI was replaced by SUN’s window management system.

Model Generator (the simulation model specification and documentation generator) is
2 tool which a.ssmt; the modeler in: (1) creating a model specification in a predetermined
form which lends itself for formal analysis, (2) creating multi-leve] (stratified) model docu-
mentation, and (3) model qualification. The Model Generator is intended to support the
model formulation and model representation processes, beginning with a conceptual mode)
from the system and objectives definition and extending through several communicative
models evolving from a conceptual mode). Therefore, it is the most important and the most
complex tool of the SMDE.

Two research prototypes of the Mode] Generator have been developed under the gui-
dance of the CM.* The first produces 2 primitive model specification®™ that is general but
very difﬁcult to fully translate into an executable code. Hansen® provides a deseription of

an early version. The second produces a specification which is less general but which lends

itself to full translation.

effectively assists the modeler in communicative model verification. The first prototype is
described by Moose and Nance.* The current research prototype implements s control and
transformation metric for measuring model con?q:»lexity40 and provides diagnostic assistance
using digraph representations of discrete event simulation model specifications.*

Model Tmnslator translates the model specification into an executable code after the
quahty of the specification is assur ed by the Model Analyser.

Model Verifier is intended for the programmed mode] verification. Applied to the exe-

cutable representations, it provides: (1) assistance in incorporating diagnostic measures

-11-

within the source program, (2) a cross-reference map to identify where a particular variable
is referenced and where its value is changed, (3) 2 chart of the programmed model control
topology to indicate subprogram invocation relationships, and (4} dynamic analysis pro-
cedures for snapshots, traces, breaks, statement execution monitoring, and timing analyses.

Source Code]\/_faﬁager is a tool which configures the run-time system for execution of
the programmed model, providing the requisite input and output devices, files, and utilities.

Electronic Mail System lacilitates the necessary communication among people involved
in the project. Primarily, it performs the task of sending and receiving of mall through
(local or large) computer networks. The SUN workstation’s MailTool (icon shown in the
upper right of Figure 2) is used to communicate with _other nodes in our local area network
from which large computer networks (e.g., ARPANET, CSNET, BITNET, etc.) can be
accessed.

Tezt Editing is provided by the VI editor and the SUN workstation’s TextEditor. Both
of these tools are used for preparing technical reports, user manuals, system documentation,

correspondence, and personal documents.

Layer 3: Simulation Model Development Environments

This is the highest layer of the environment, expanding on a defined minimal SMDE.
In addition to the toolset of the minimal SMDE, it incorporates tools that support specific
applications and needed either within a particular project or by an individual modeler. If no
other tools were added to a minimal SMDE toolset, a minimal SMDE would be a SMDE.

The SMDE tools at layer 3 are also classified into two categories. The first category
tools include those specific to a particular area of application. These tools might require
further customising for a specific project, or additional tools may be needed to meet special
requirements. The second category tools (also called assumed tools or library tools) are those

e

expected to Be available due to their availability and use in severs] other areas of applica-
tion. A too] for statistical analysis of simulation output data, a tool for designing simula-
tion experiments, a graphics tool, a tool {or animation, and a tool for input data, modelling
are some example tools of layer 3.

A SMDE tool at; layer 3 is integrated Wit.h other SMDE tools and with the softwére
environment of layer ¢ through the kernel interface. The provision for this integration is

indicated in Figure 1 by the opening between Project Manager and Text Editor.

CONCEPTS AND PRINCIPLES EMPLOYED

All too often in software-intensive projects, the perceived need for a specific tool leads

after observing a support utility in use by another project, the motivation arises to add
tools a,nd expand programming support. At this point the serious implications of ad hoe,
independent development begome apparent. After all, tool development is still software
development, and incompatibilities are even more likely to abound because of the more inti-
matbe association with the host operating system.

The SMDE prototype has benefited froﬁ the clear, overriding presence of the CM,
which provides the underlying philosophical guidance necessary to achieve an integrated
suite of tools. The concepts and principles advocated by the CM are identified below and
related to similar principles in software development, engineering design, and systems
analysis. These concepts and principles have been utilised during the design and creation of

the SMDE research prototype.

-13-

Dwwnision of concerns

Related to the “separation of concerns” generally attributed to Dijkstra®, the division
of concerns is enforced by a partitioning of the model development task into a model defini-
tion phase followed by a model specification phase. The modeler must define an object
before undertaking the specification. The definition phase focuses on the characterisation of
an object through the identification and typing of attributes. In essence, the definition
phase produces a static model description, which serves as input to the specification phase
that produces a dynamic description. The separation of model development from model exe-
cution and the insistence on a representation devoid of specific SPL terminology is indica-

tive of the division of concerns also.

Hierarchical decomposition

Also referred to as top-down decomposition, the principle of hierarchical decomposi-
tion imposes a stratification during the model definition phase. At the model stratum,
modelling objectives, assumptions, terminology, and the initialisation and termination
requirements are of interest in describing the “model object.” Attributes of the "model
object” are defined, and the decomposition into subobjects proceeds with the association of
attributes describing them. Any form of decomposition supports the modularity principle of

software design; thus, modularity is achieved in the model representation.

FProgressive elaboration

No distinetion is made in the software development literature between progressive ela-
boration and iterative refinement. Both principles are included in the latter term. However,
progressive elaboration is a principle more supportive of the rapid prototyping paradigm.

The difference between the two principles is illustrated in Figure 3. In Figure 3, iterative

I I

Fig. 3. Progressive elaboration and iterative refinement.

refinement is observed ip the expansion of description {more detail) of object 2. Progressive
elaboration is illustrated in the addition of an object (perhaps increasing the functional

description) under object 4.

Iterative refinement

Essentially, the principle of iterative refinement assures the continuing capability for
expanding the levels of hierarchical decomposition by the creation of objects. Progressive

elaboration assures the addition of objects to an existing level (no addition of levels).

Documentation through specification

The principle of inseparability of documentation from specification is akin to the prin-
ciple of concurrent documentation described by Tausworthe.** The intent is to incorporate
the facilities for producing model documentation within the specification task so that docu-

mentation loses the onerous characterisation of “after the fact” and remains more current

- 15 -

and aceurate.

Information hiding

Parnas®™ enunciated the principle of information hiding for software as a means to
reduce the “ri;.)pie effect,” where a change in one code component leads to “fixes” in many
other components. The CM utilises this principle in the admonition to the modeler: push
details to the lowest possible level. Following this principle minimises the interdependenctes

among modules.

Life cycle verification

The early use of diagnosis techniques and the application of verification procedures to
communicative models is a cornerstone of the CM. Identical to the life cyecle verification
principle of software engineering, the purpose is to expose modelling errors as soon as possi-

ble and not delay all error detection/correction until execution.

EXPERIENCES GAINED AND GUIDELINES DERIVED

Early prototypes in the MDE research project relied on a VAX 11/7857 running EUN-
ICE (an emulation of UNIX under the VAX/VMS operating system) to provide layer 0 of
the SMDE. Using this system through “dumb” terminals revealed inherent limitations for
the prototyping efforts. The lack of a window management system restricted the effective-
ness of multitasking in UNIX and the development of an acceptable modeler-computer
interface. Our experience shoﬁvs that the state-of-the-art computing technology as provided
by the SUN workstation is crucial for rapidly prototyping & SMDE.

The appropriateness of the rapid prototyping technigque has been justified. However,

1 VAX 11/785 is a trademark of Digital Equipment Corporation.

emphasis should be given to knowledge production in contrast with software production as
the goal of rapid prototyping. Although a prototype may be thrown-away, the knowledge
gained from making it is retained. We share the caution expressed by Taylor and Standish®
that “it is often sociologically disastrous to the morale of the designers and implementers

.tho are forced to discard their previous work and are made to fee] that their accomplish-
ments may have little permanent value.” Project participants must understand the utility of
rapid prototyping. In addition, the knowledge gained from a prototype and the essentiaf
versions of a prototype must be fully documented so that later participants can continue the
work with minimal difficulty.

Our experience with rapid prototyplng reveals that modifiability is the most impor-
tant quahty characteristic of a rapid prototype. Customarily, a program 1s developed to be
efficient and concise; however, in rapid prototyping one shouid relegate efficiency and con-
ciseness to subordinate objectives. A rapid prototype should: (1) lend itself to easy modifi-
cation, (2} be a working tool that can be experimented with, {8) be reiatively cheap to

develop, (4) be developed relatively quickly, and (5) provide only the relevant functionality

and ignore unnecessary details.

FUTURE RESEARCH DIRECTIONS

An advanced prototype of a discrete event SMDE is the end-product of the current
research. This prototype is expected to provide significant experience, serving as the basis
for the next phase of the ongoing research, Construction of an experimental installation pro-
totype SMDE forms the next step, involving (1) the analysis of the tradeoffs among design
alternatives based on the evaluation of the advanced prototype, (2) design and implementa-
tion of the installation prototype SMDE, and (3) human engineering of the installation pro- |

totype SMDE.

- 17 -

Al techniques are used in the existing prototypes, particularly in the diagnostic pro-
cedures employed in the Model Puw,}yser.30"14 Expert systems applications are anticipated in
future prototypes of other tools, with the result being more intelligent simulation
environments/systems. Shannon® points out that “it is strongly believed that such [intelli-
gent Simuiation]. systems will be domain specific (i.e., manufacturing, telecommunications,
computer networks, ete.) as opposed to generic or general.” Our experience affirms this view
in part, for certain tools must rely on two forms of expert knowledge: (1) the application
specific and (2) the knowledge of simulation analysis, which is domain independent.

The major objective éf the MDE project is to design a SMDE which is general or gen-
eric, applicable to many domains yet permitting customised applications. The complete set
of requirements for developing such an environment poses a significant challenge to SMDE
designers and implementers. Nevertheless, we are confident that the challenge can be met
by way of an evolutionary development of SMDE prototypes.

Extending further on the research horizon is the development of a simulation manage-
ment systerr_15’6 which embodies the SMDE for providing automated support throughout the

entire life cycle of a simulation study.

CONCLUSIONS

Simulation software development is currently in a period of significant transition.
Several recent research projects are investigating ways of providing an integrated and cost-
effective simulation environment/system to support simulation throughout the model life
cycle. Such environments/systems are likely to employ rapid prototyping, inciude more
“intelligence,” and exhibit much improved human interfaces. The MDE project experiénce
suggests that an underlying methodology is essential to achieving an integrated suite of sup-
port tools. The concepts and principles employed, experiences gained, and guidelines’

T

derived in the design and creation of the SMDE research prototype, reported herein, hope-

full

¥ are helpful to both simulation researchers and practitioners struggling with increas-

ingly more challenging modelling tasks.

ACKNOWLEDGEMENTS

This research was sponsored in part by the Naval Sea Systems Command and the

Office of Naval Research under contract N60921-83-G-A165 through the Systems Research

Center at VPI&SU.

10,

11.

REFERENCES

R.E. Nance (1983) A tutorial view of simulation mode] development. In Proceedings of
the 1982 Winter Stmulation Conference, Arlington, Va., December 1983, pp. 325-331.

O. Balci (1986) Requirements for model development environments. Comput. & Ops,
Res 13,1 (Jan.-Feb.), 53-67.

O. Balci (1986) Guidelines for successful simulation studies. Technical Report TR-85-2,
Department of Computer Science, Virginia Tech, Blacksburg, Va., May

R.E. Nance (1981) Model representation in discrete event simulation: the conical
methodology. Technical Report CS81003-R, Department of Computer Science, Vir-
ginia Tech, Blacksburg, Va., Mar.

R.E. Nance and O, Balei (1986) The objectives and requirements of mode] manage-
ment. In Systems and Control Eneyclopedia: Theory, Technology, and Applications (M.
Singh, Ed.), Pergamon Press, Oxford. In press.

R.E. Nance, A.L. Mezaache and C.M. Overstreet (1981) Simulation model manage-
ment: resolving the technological gaps. In Proceedings of the 1981 Winter Simulation
Conference, Atlanta, Ga., December 1981, pp. 173-179.

D.W. Balmer and R.J. Pay] (1986) CASM — the right environment for simulation. J.
Opl. Res. Soc. 37, 5 (May), 443-452.

D.W. Balmer (1985) An ‘intelligent’ environment for simulation. Paper presented at

the 7th European Congress On O.R. Bologna, Ttaly, June 1985.

G.I. Doukidis and R.J. Paul (1985) Research Into expert systems to ald simulation
model formulation. J Opl Res. Soc. 36, 4 (Apr.), 319-325.

R.J. Paul and G.I. Doukidis (1986) Further developments in the use of artificial intelli-
gence techniques to formulate simulation problems, J Opl Res. Soc. In press.

J.G. Crookes, D.W. Balmer, S.T. Chew and R.J. Paul (1986) A three-phase simulation

- 19 -

13.

14,

15.

16.

17.

18,

19.

21.

24.

| o]
o

system written in Pascal. J. Opl Res. Soc. 37, 6 (June), 603-618.

S.T. Chew, R.J. Paul and D.W. Balmer (1985) Three phase simulation modeiling using
an interactive simulation program generator. CASM Report, Department of Statisti-
cal and Mathematical Sciences, London School of Economics and Political Science.

Y.V. Reddy, M.S. Fox, N. Husain and M. McRoberts (1986) The knowledge-based
simulation system. IEEE Software 3, 2 (Mar.), 26-37.

Y.V. Reddy and M.S. Fox (1982) KBS: an artificial intelligence approach to flexible

simulation. Technical Report CMU-RI-TR-82-1, Carnegie-Mellon University, Pitts-
burgh, Penn., Sept. :

V. Baskaran and Y.V. Reddy (1984) An introspective environment for knowledge
hased simulation. In Proceedings of the 1984 Winter Simulation Conference, Dallas,
Tex., November 1984, pp. 645-651.

D.J. McArthur, P. Klahr and S. Narain (1986) ROSS: an object-oriented language for
constructing simulations. In Ezpert Systems: Techniques, Tools and Applications, (P.
Klahr and D.A. Waterman, Eds.), pp. 70-91. Addison-Wesley, Reading, Mass.

P. Kiahr, D.J. McArthur, S. Narain and E. Best (1982) SWIRL: simulating warfare in
the ROSS language. Technical Report N-1885-AF, The Rand Corporation, Santa Mon-
ica, Calif., Sept.

P. Klahr, J.W. Ellis, W.D. Giarla, S. Narain, EM. Cesar and S.R. Turner {1986)
TWIRL: tactical warfare in the ROSS language. In Ezpert Systems: Techniques, Tools
and Applications, (P. Klahr and D.A. Waterman, Eds.), pp. 224-268. Addison-Wesley,
Reading, Mass.

B. Unger, A. Dewar, J. Cleary and G. Birtwistle (1986} A distributed software proto-
typing and simulation environment: jade. In Proceedings of the Conference on Intelli-
gent Simulation Environments, San Diego, Calif., January 1986, pp. 63-71. (Published
as Simulation Series 17(1) on Jan. 1986 by SCS, San Diego, Calif.)

J. Joyce, G. Birtwistle and B.L.M. Wyvill (1984) ANDES: an environment for
animated discrete event simulation. United Kingdom Simulation Conference, Bath,

| September 1984.

C.R. Standridge, D.K. Vaughan and M.L. Sale (1985) A tutorial on TESS: the
extended simulation system. In Proceedings of the 1985 Winter Simulation Conference,
San Francisco, Calif., December 1985, pp. 73-79.

R. Reese and S. Sheppard (1983) A software development environment for simulation
programming. In Proceedings of the 1983 Winter Simulation Conference, Arlington,
Va., December 1983, pp. 419-426.

B.P. Zeigler and L. De Wael (1985) Towards a knowledge-based implementation of
multifaceted modelling methodology. In Proceedings of the European Conference on
AT Applied to Simulation, Ghent, Belgium, February 1985, pp. 42-51. (Published as
Simulation Series 18(1) on Feb. 1986 by SCS, San Diego, Calif.)

T.L Oren and K.Z. Aytac (1985) Architecture of MAGEST: a knowledge-based model-
ling and simulation system. In Simulation in Research and Development (A. Javor,
Ed.}, pp. 99-108. North-Holland, Amsterdam.

P. Robertson (1986) A rule based expert simulation environment. In Proceedings of the

_aOny .

927,

29.

30.

31.

33.

34.

36.
37.

38.

39.

Conference on Intelligent Simulation Environments, San Diego, Calif., January 1986,
pp. 9-15. (Published as Simulation Series 17(1) on Jan. 1986 by SCS, San Diego,
Calif.)

F.J. Wales and P.A. Luker (1986) An environment for discrete event simulation. In
Proceedings of the Conference on Intelligent Simulation Environments, San Diego,
Calif., January 1986, pp. 58-62. (Published as Simulation Series 17(1) on Jan. 1986
by SCS, San Diego, Calif.)

A. Lehmann, B. Knédler, E. Kwee and H. Szczerbicka (1985) Dialog-oriented and
knowledge-based modelling in g typical PC environment. In Proceedings of the Euro-
pean Conference on AJ Applied to Stmaulation, Ghent, Belgium, February 1985, pp.
91-96. (Published as Simulation Series 18(1) on Feb. 1986 by SCS, San Diego, Calif.}

J.O. Henriksen (1983) The integrated simulation environment (Simulation software of
the 1990s). Opns. Res. 31, 6 (Nov.-Dec.}, 1053-1073.

S. Ruiz-Mier, J. Talavage and D. Ben-Arieh (1985) Towards a knowledge-based net-
work simulation environment,. In Proceedings of the 1985 Winter Simulation Confer-
ence, San Francisco, Calif., December 1985, pp. 232-236.

R.E. Nance and Q.M. Overstreet, (1986) Diagnostic assistance using digraph represen-
tations of discrete event simulation model specifications. Technical Report TR-86-8,
Department, of Computer Science, Virginia Tech, Blacksburg, Va., Mar.

T. Taylor and T.A. Standish (1982) Initial thoughts on rapid prototyping techniques.
ACM SIGSOFT Software Engineering Notes 7, 5 (Dec.), 160-166.

F.P. Brooks (1975) The Mythical Man-Month — Essays on Software Engineering.
Addison-Wesiey, Reading, Mass.

R.E. Nance, O. Balci and R.L. Moose (1984) Evaluation of the UNIX host for a model
development environment, In Proceedings of the 1984 Winter Simulation Conference,
Dallas, Tex., December 1984, pp. 577-584.

R.L. Moose (1983) Proposal for a mode] development environment command language
interpreter. Technical Report CS83032-R, Department of Computer Science, Virginia,
Tech, Blacksburg, Va., Dec.

M.C. Humphrey (1985) The command language interpreter for the model development
environment: design and implementation. Technical Report TR-85-17, Department of
Computer Science, Virginia Tech, Blacksburg, Va., Mar.

C.M. Overstreet (1982) Model specification and analysis for discrete event simulation.

. Ph.D. Dissertation, Virginia Tech, Blacksburg, Va., Dec."

C.M. Overstreet and R.E. Nance (1985) A specification language to assist in analysis of
discrete event simulation models, Commun. ACM 28, 2 (Feb.), 190-201.

R.H. Hansen (1984) The model generator: a crucial element of the mode] development
environment. Technical Report CS84008-R, Department of Computer Science, Virginia
Tech, Blacksburg, Va., Aug.

R.L. Moose and R.E. Nance (1985) Model analysis in a model development environ-
ment. Technical Report TR-85-27, Department of Computer Science, Virginia Tech,
Blacksburg, Va.

- 21 -

40.

41.

43.

44.

45.

1.C. Wallace and R.E. Nance (1985) The control and transformation metrie: a basis
for measuring model complexity. Technical Report TR-85-15, Department of Com-
puter Science, Virginia Tech, Blacksburg, Va., Mar.

E.W. Dijkstra (1976) A Discipline of Programming. Prentice-Hall, Englewood Cliifs,
N.J. (pp. 202-203)

R.C. Tausworthe (1977) Standardized Development of Computer Software, Prentice-
Hall, Englewood Cliffs, N.J.

D.L. Parnas (1972) Information distribution aspects of design methodology. In
Proceedings of IFIP Congress 71, North Holland Publishing Co., Amsterdam, TA-3,
pp. 26-30. ‘

C.M. Overstreet and R.E. Nance (1986) Discrete event simulation world views: charac-
terization, transformation and analysis. In Proceedings of ihe Workshop on
Knowledge-Based Modelling and Simulation, Wageningen, the Netherlands, North-
Holland, Amsterdam. In press.

R.E. Shannon (1986) Intelligent simulation environments. In Proceedings of the
Conference on Intelligent Simulation Environments, San Diego, Calif., January 1986,
pp. 150-156. (Published as Simulation Series 17(1) on Jan. 1986 by SCS, San Diego,
Calif.)

LNCLASSTIFIED

SECURITY CLASSIFICATION OF THIS PAGE rWhen Dats Entersd)

| READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPDRT HUMBER 2. GOVT ACCESSION MO 3. RECIFIENT'S CATALDG NUMBER
SRC-86~004 / TR-86- 20 Dept. CS
4. TITLE fend Subritle) 5 TYPE OF REFOHT & PERIOD COVERED
Interim Report:
Simulation Model Development Environments: 16 March 86 - 15 August 86
A Research Prototype & PERFORMING ORG. REPGRT NUNBER
SRC-86-004 / 3 TR-86-20
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s}
Osman Balci and Richard E. Nance N60921-83-G-A165 B001-2
5. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

. AREA & WORK UNIT NUMBERS
Department of Computer Science and Systems

Research Center
Virginia Tech, Blacksburg, VA 24061

. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Sea Systems Command
25 Aupust 10986
SEAGIE 13, MUMBER OF PAGES

Washington, D.C. 20362

t4. MONITORING AGENCY NAME & ADDRESS(Lf ditierent froe Controlling Oflfice) 15. SECURITY CL ASS, {of this report)

Naval Surface Weapons Center

Dahlgren, VA 22448 Unclassified

15a. DECL ASS!IFICATION/ DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT fof this Report)

Distributed to scientists and engineers at the Naval Surface Weapons
Center and is made available on request to cother Navy scientists. A
limited number of copies is distributed for peer review.

7. DISTRIBUTION STATEMENT (of the absrract enterad in Block 20, If difierent trom Report)

To Navy research and development centers and university-based laboratories.

1B. SUPPLEMENTARY NOTES

18. KEY WORDS (Continue on reverse aide If neceasary and identify by biock number)

computer systems, modelling, simulation

20. ABSTRACT {Continue on reveras wide if necersary and identity by block humber) i
The needs for automated assistance in the sipulation task are undeniable. :
The size and complexity of current modelling efforts far exceed the bounds
considered challenging only a decade ago. A research prototype of a simula-
tion model development environment (SMDE) has been developed to provide

an integrated and comprehensive collection of computer-based tools to

{1) offer cost—effective, integrated, and automated support of model develop-
ment throughout its entire life cycle, (2) improve the model quality by
effectivelv assisting in the gquality assurance of the model, (3) signifi-

- o
DD 5oy 1473 ecimion o 1 wov ss s OBSOLEYE

UNCLASSIFIED

S/N D s LF .
102- LF- 614- 8601 SECURITY CLASSIFICATION OF TRIS FAGE (Whan Dara Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

cantly increase the efficiency and productivity of the project team, and

(4) substantially decrease the model development time. The prototype

SMDE is composed of four layers: (0) hardware and operating system, (1)
kernel SMDE, (2) minimal SMDE, and (3) SMDEs. Currently, a SUN 3/160
colour computer workstation and the UNIX operating system constitute layer
0 upon which an advanced prototype SMDE is being developed. The objectives
of this paper are to: (1) describe the current state of research on simula-
tion support environments, (2) use the SMDE research prototype as an example
for describing concepts and principles employed, experiences gained, and
guidelines (potential principlies) derived in the design and creation of

the prototype, and {3) identify and speculate on future research directions.

S/N 0102- LF- D14- 6601
UNCLASSTIFIED

SECURITY CLASSIFICATION OF THI5 PAGE(When Dats Entsred)

