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ABSTRACT

A review of software specification techniques and specification languages is described.
Special emphasis is given to simulation model specification and the degree to which general
software techniques are applicable in the modeling domain. The role of specification is
examined in terms of existing techniques as well as abstraction permitting the identification
of desirable properties unrelated to existing tools. A categorization of specification
languages assists in wunderstanding the similarities and differences among current
approaches. Important conclusions are that: (1) specification methodologies are highly
dependent on the phase of the software life cycle, (2) both the general software and
simulation communities lack a clear perception of the role of specification, and (3) tools and
environments tend to lack an underlying methodological foundation.

CR Categories and Subject Descriptors: D.3.1 [Programming Languages]
Formal definitions and Theory; 1.6.2 [Simulation and Modeling] Simulation Languages

Keywords: simulation model specification, model documentation, language categories,
model development environments




1. SIMULATION MODEL DEVELOPMENT

When simulation programming languages (SPLs) first appeared, little guidance in HOW to
develop a simulation model was available. The only sources of assistance were books and
manuals describing the simulation programming languages. With the development of
automatic program generators, the modeler received slightly more guidance, but.the target
SPL remains as a'constraining force on the model representation produced by the generator.
Currently, developing a general theory of simulation, which is independent of any SPL, is
viewed as one path toward extending the capabilities for dealing with Iarge,. complex
discrete eveﬁt simulation models. This report describes the several components that could

. i
prove important in charting this path.

A motivation is the research reported herein is the investigation of the comparative roies
of specification in two domains: discrete event simulation and embedded systems software
development. While the effort does not provide conclusive findings, some preliminary

indications are perceived, and several conclusions are stated in the final section.
1.1 Simulation Programming Languages

A simulation programming language offers a conceptual framework for model development
which is based on the world v nguage. The advantage of using a. particular

world view is that one begins with a preconceived notion of how to decompose 2 model into

its essential parts.

Three world views have been identified [KIVIP69], and each world view produces a very
different model representation of the same model [.OVERMSQ, ZEIGB84b]. The event world

view emphasizes a decomposition based on when actions occur in the model (time emphasis).



The activity world view yields a decomposition based on conditions in the model (state
emphasis). The process world view stresses what happens to a particular object in the
model {object emphasis). Thus, the modeler can choose to decompose based upon time,

state, or object, and the choice reflects a locality of descriptive emphasis [OVERMS86].

The use of a SPL for model development is not without problems. Since a SPL is a
prégramming language, it contains many features that are fundamental in programming a
simulation (executing the model) that are unnecessary, perhaps even inhibitive, during
model decomposition and description. The modeler is unable to separate these features, and
thus becomeé concerned with programming details too early in the development process
[BALCO86al. Also the diverse views taken by the various SPLs make it difficult for the
modeler to conceptualize any basic principles of model development. This problem is
compounded by each world view using a different definition of the terms event, activity,
and process [NANCRS81b|. A more serious problem arises when the modeler becomes too
accustomed to one world view embedded in a particular SPL and slavishly decomposes
every model according to that SPLs conceptual framework [OVERMS82]. The modeler may
overlook important details because those details do not conform to the selected world view.
Ever important conceptual characteristics may be subjugated by the inability of the world
view to provide a natural representation [HENRJ83]. The resulting model may prove biased
and have little direct correspondence to the actual system being modeled. Even if the
model is valid, the imposed conceptual framework could §rove costly in'the experimentat-iqn

and maintenance phases of the mode! life cycle [BALCO86a].

In conclusion, an SPL is lacking in the support of model development due to the lack of

generality [SUBRESI],' the overemphasis on programming details, and a general lack of



expressive power for describing system characteristics that tend to be incongruous with the

embedded world view,

1.2 Program Generators

A program generator takes as input a model description in a specific format and
automatically generates syntactically correct code in some simulation programming
language [NANCR81a, ZEIGB84b, DAVIN79]. The model description is often obtained
interactively via questionnairé. The questionnaire solicits from the modeler relevant model

properties without concerning the modeler about implementation details.

The goal of automatic code generation limits the class of models that can be addressed.
These models must have well defined structural properties [ZEIGB84b, DAVIN7YS,
MATHSSAI], and the properties stressed are influenced by the world view of the target
language. Models successfully treated by the .appIication of program .generators are
typically simple queueing models [DAVIN7S, SUBRES1] and related models that can be

described by an entity-cycle diagram [MATHS?7, MATHSS4].

Mathewson’s [MATHS77, MATHS84] DRAFT system represents some of the most
extensive work on program generators, DRAFT is a collection of generators which produce
programs based on the entity-cycle diagram in one of five target languages. Davies’
[DAVIN79] MISDESM system, based on queueing models, features different interactive
questioﬁnaires for each world view. The modeler selects the questionnaire most .appropriate
for his conceptual framework. Systems theory [ZEIGB84a] serves as the foundation for

Subrahmanian’s [SUBRES1| program generator. This generator is applicable only to simple

gueueing models using a next-event representation, but the work is of interest because it




represents one of the first attempts to base a generator on a theory.

A program generator can be a useful tool for simulation model development because it
assists the modeler in translating his conceptual model into an executable language
[NANCR77|. However, its usefulness is affected by several factors. Firstly, the accuracy
and completeness of the generated product often depends on a modeler’s knowledge of the
generator. A modeler with limited knowledge tends to utilize the generator only to produce.
a skeleton program to which additional code must be supplied. On the other hand, a
modeler with intimate knowledge of a generator creates a program requiring few, if any,
enhancemenf;s, Secondly, the target SPL influences the information extracted from the
modeler during the generative inquiry. The final restriction stems from the programming
perspective inherent to the entity-cycle diagram and othef forms of generative discourse. A

program generator deals with model development from a programming point of view.
1.3 Towards a General Theory of Simulztion

Simulation programming languages and program generators focus on the simulation
program NOT the simulation model. To develop a general theory of simulation,
attention must be concentrated on the model. A general structure for a simulation
model, consistent definitions to describe a model, and a general developmental framework
need to be identified [NANCR81a, NANCRS84]. Research in the area includes Lackner’s
Calculus of Change, Zeigler’s System Theoretic Appreoach, and Nance’s Conieal

Methodology.

Lackner {LACKMS62, LACKMM} proposed the Calculus of Change in the early 1960’s

during the period that SPLs were first coming into use. The Calculus of Change advocates



a general model structure when others were just beginning to discover special purpose
languages for simulation. The general model structure is based on model state changes;

however, no insight 1s provided in how to identify these state changes.

Zeigler’s [ZEIGB84b] system theoretic approach represents some of the most
extensive work towards developing a gemeral theory of simulation. He proposes system
theory as a developmental framework, and he offers some insight into the general structural

properties of simulation models.

Zeigler vi_ews a model as a system which can be described statically and dynamically. A
description of the static structure includes identification of subsystems, their variabies,
system inputs and outputs, and system states. The dynamic deseription consists of
identifying variables, defined in the static description, which affect system state and
specifying state transition functions. These descriptions are expressed in a formal language
derived from set theory and logie. Essentially, 2 system and 2 model of that system can be

I3

characterized through identical formalisms.

Nance’s [NANCR81a] Conical Methodology provides the modeler with a set of
definitions, a model structure, and s developmental framework based on the object oriented
paradigm (see [FAUGWS0]). Lacking the rigorous but rigid representation of general
systems theory, the Conical Metho.dology prescribes an instructive approach to model
specification. A Model Development. Environment based on the precepts.of the methodology

seeks to accomplish the following objectives: [NANCRS1a, p. 22]

o Guide the modeler in structuring and organizing the model.

+ Utilize an unrestrictive system to impose the axiomatic development process.
» Diagnose problems in the model early in its development.

Produce documentation as a result of the process.

Assist in the organization of the experimental model.




The Conical Methodology instructs the modeler to perceive a model as a collection of
objeets which interact through their respective attributes. A two-phase development
framework of Top-Down Definition and Bottom-Up Specification is employed in _the

development process.

The Top-Down Definition phase involves the modeler's decomposing the model into
its subordinate objects, then in turn decomposing these objects into their subordinates, and
so on, until a point is reached where no more decomposition is frvarranted. As the modeler
is performing this decomposition, each model object is described by a set of attributes. The
Conical Metilodoiogy provides a group of definitions which enable the modeler to classify
each attribute. This classification scheme gives information about the role an attribute

plays in the model.

At the conclusion of the defimition phase, a static model description exists and structural
relationships among cbjects have been established. But for this deseription to be complete,
it must include model dynamics. The dynamics are defined in the Bottom-Up
Specification phase. The methodology suggests that the modeler select an iject at the
base level {a leaf of the decomposition tree), and using the object’s attributes, describe
HOW the object interacts with other model objects. This process is repeated until all

mode] objects have been specified.

The Conical. Methodology seeks to impose this model development discipline-without
restricting the modeler. Thus, the modeler may shift between definition and specification as
the need arises. The influenice of the methodology is evident in all the tools of the Modél
Development Environment described by Balei [BALCOS86a]. A prototype of one tool, the

Model Generator [HANSRS84], conveys the concepts quite clearly.




In summary, the works of Nance, Zeigler, and Lackner share a common goal of
separating model development from programming. To accomplish this goal, they have
identified general modeling characteristics and proposed some developmental methods. Of

the three approaches, only the Conical Methodology has been embedded in an environment.
1.4 Model Development Life Cycle

An eésential step in the creation of a model development discipline is the idéntiﬁcation of
major developmental phases. The Model Life Cycle, as defined by Nance [NANCRS812] and
Balci [BALCO86a, BALCOS86b] in Figure 1, depicts these phases. An oval circle represents
a phase, and a dashed line represents a process causing transition to the next phase. The
diagram implies that development is a sequential .procedure when in actuality it is an

iterative procedure with the return to previous developmental phases expected [BALCOS86b].

The Model Development Life Cycle is embodied within 2 more comprehensive life cycle
model. The Model Life Cycle begins with System and Objectives Definition and ends

i FS

with Model Results. The definition of the system and objectives represents the mode!
requirements analogous to software requirements The Conceptual Mo.del is the mental
model the modeler‘ has of the system. This mental mode! must be communicated to others
in some ftype of representational form (see [BALCO86b, p. 8] for examples of
.representational forms). After the Communicative Model is verified to be an accurate
reflection of the requirements, it is translated, either automatically or by a programmer,
into an executable Programmed Model. Conditions for testing the mode! are added to the

Programmed Model to form the Experimental Meodel, which is executed to produce Model

Results.
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The Model Generator, mentioned above, assists in the transition from the Conceptual
Model to the Communicative Model. The Communicative Model represents a probilem-
oriented model description with an emphasis on WHAT rather than HOW. Software
specification languages serve a similar role in the development of software systems, and it is

this similarity that motivates the examination of specification languages.

2. AN EXAMINATION OF SPECIFICATION LANGUAGES

Specification is the process of describing system behavior so as to assist the system designer
in clarifying his conceptual view of the system. The purpose of specification in the
development of software is to separate WHAT the system is to do from HOW it is to be

done [BALZR79]. Just as with simulation models, many ways exist to describe the same

software system. A specification language offers guidance In perceiving a system by

characterizing and ecategorizing the most relevant behavior; but, more importantly, a

specification language is the medium of communication for expressing this behavior.

~ - P IR, | i 1 . T
¢ ioung tarpugnout the nferature. In an

ot

A variety of specification lamguages can |
altempt to organize this material into a coherent body, the. language discussion is structured

as follows:

1. Identification of specification properties,
2. Definition of software development life cycles, and
3. Classification of specification languages.

The classification scheme is based upon the software development life cycle, and the
specification properties are used to determine the relative strengths and weaknesses of each

language class.



2.1 Specification Properties

Table 1 summarizes the properties of a good specification and a good specification language.
See [STOEJ84] for a more complete discussion of specification properties and [BALZR79] for
a discussion of how the desired properties of a specification influence the design of a

specification language.
2.2 Software Development Life Cycles

A specification language can be categorized according to the phase of the software
development. life cycle it supports. Each phase of the life cycle is responsible for collecting
certain information [FREEP83] about the proposed system, and a specification language for
that phase is constructed to encourage the expression of this information. Table 2 lists and

defines each phase of the traditional software development life cycle [BERZV85, WASSAS3].

An alternate view of the life cycle is proposed by Balzer [BALZRS83] and Zave
[ZAVEP84a} called the Operational Approach, This approach replaces functional
specification, architectural design, and detailed design by an operational specification phase.
An operational specification serves as an executable prototype which through a series of
transformations finally becomes the implementation. The advantage of this approach is the
client can experiment with the proposed system much more guickly than in the traditional
life cycle [BALZRS83]. The operational approach is relatively new, but a few operational
specification languages héve been developed such as GIST [BALZR82, GOLDNS0], IORL

[SIEVGS5], and PAISLey [ZAVEPS1, ZAVEP84b].



TABLE 1. Specification Properties

Properties of a "good" specification

Understandable

Appropriate for many audiences

Presentable in varying levels of detail

Different views of same system can be presented
Separates implementation and description details
Includes description of environment

Information is localized

Easily modifiable

Analyzable

Properties of a "good" specification language

Encourages modularization

Encourages hierarchical descriptions

Allows use of terminology of current application
Mixture of formal and informal constructs
Encourages use of a developmental method
Produces documentation as a by-product

Easy to use and learn

Stmple, precise, unambiguous syntax and semantics
Full range of acceptable system behavior can be described
Ability to describe variety of systems

Provides ability to access specification completeness
Nonprocedural

Properties of a "good" simulation specification language

. Independent of simulation programming languages

. Allows expression of static and dynamic model properties
. Facilitates model validation and verification.
REFERENCES

BALZR79, BERZV85, HANDP80, MARTJ85b, NANCR?77, RIDDW?79, STOEJ84

2.3 A Classification of Specification Languages

As mentioned earlier, a specification language can be classified according to the life cycle

phase it best supports. The requirements definition languages, such as the diagrammatic




TABLE 2. Traditional Software Development Lifecycle

REQUIREMENTS DEFINITION

. Description of problem to be solved

FUNCTIONAL SPECIFICATION

Description of behavior of a system that solves problem
Emphasis on "WHAT" system does - system is a black box
Expression of specifier’s conceptual model of system

No algorithms or data structures given

Important communication link among designers, implementers,
and customers

ARCHITECTURAL DESIGN

Identify modules to perform desired system behavior

Describe module effects and interfaces — module is 2 black box
Definition of internal system structure

Design emphasis shifts to "HOW"

DETAILED DESIGN

e Describe algorithms and data structures needed to achieve
desired behavior of each moduie
e Specific instructions on :hpl.how:ehpl. to code the system

- s LN

TMPLEMENTATION

. Translation of detailed design into an executable program
® Testing program to see if it solves requirements
REFERENCES

BERZVS5, FREEPS83, STOEJ84, WASSA83, YEHRTS4, ZAVEPS84b]

language of SADT [ROSSD77, ROSSDS5], focus on expressing information needed for

problem definition. These languages are of little interest for simulation model development

because problem definition oceurs in the model life cycle prior to the initiation of the model

development phase [BALCOB86a]. The detailed design languages, with their emphasis on

HOW, produce a specification from which an executable program is derivable. Thus, the
b r r =]



resulting specification may not clearly separate implementation and description details.
Detailed design languages include ADA [PRIVJ83, BOOCGS3], ANNA [LUCKDSs|, FLEX
[SUTTS81], GYPSY [AMBLA77], MODEL [PRYWN79, PRYWNS83, CHENTS84], PDL
[CAINS83], and SPECLE [BIGGT79]. Several of these languages (ADA, FLEX, and

GYPSY) are also implementation languages.

Table 3 lists languages for functional specification, architectural design, and operational
specification. For the evaluation of these languages, an additional classification scheme is
needed. This scheme is based upon the point of view that the language gently imposes on
the specifier .111 guid’mg the description of the system. The point of view is also referred to
as the language's basic unit of description. In Table 3 three points of view are identified:

fﬁnct}ibn, object, and process. Each of these is briefly discussed.

281 Function Orientation. Specification languages that are function-oriented require that
a system be defined as a series of functions which map inputs onto outputs. These
languages enforce certain 'mathematical axioms thereby producing a prowvably correct
specification [MARTJ85b]. However, Ithe mathematical basis of these languages creates

several problems:

« The resulting specification is often unreadable and difficult to understand [DAVIAS2].

« The languages are hard to learn and to use for people without strong mathematical
backgrounds [GEHANS2].

« The languages are applicable only for specifying small systems [WASSA83]. (AXES.
of Higher Order Software is an exception.) '

2.8.2 Object Orientation. The object-oriented specification languages yield a model
representation composed of object deseriptions where each description contains the
behavioral rules and characteristics for that object [FAUGWS0]. Some examples of object-

oriented specification languages are listed in Table 3. Each of these languages assists in the

- )



TABLE 3. The Categorization of Specification Languages

BASIC
DESCRIPTION
UNIT

LANGUAGE

LIFE
CYCLE
PHASE

UNDERLYING
MODEL

REFERENCES

FUNCTION

Algebraic Spec

Mathematical

|GEHANg2]
ILISKBT75]

AXES

FAD

Mathematical

HAMIMT8]
HAMIMS3|
MART 1854
MARTI85b]

- Special

Mathematical

SILVBS1]
STOEJ84]

OBJECT

DDN

Message passing

IRIDDW78a]
[RIDDW78b)|
[RIDDW79]
[RIDDWSO]

MSG.84

Message passing

[BERZVES5]

PSL/PSA

ERA

ISTOEJ84]

[TEICDT7|
[TEICDS0]
[WINTE79!

L 3

AD

[HEACH?9!
|STOEJ84]

[BORGAS5]
[OBRIPE3]

TAXIS

AD

|BORGAZS)
[OBRIPS3)

PROCESS

GIST

Stimulus response

ERA

BAT.ZR80]
BALZR&2]
FEATMS&3]
GOLDN80|
LONDP8&Z)

PAISLey

Stimulus response

YEHRTS4]
ZAVEP79]
ZAVEP82]
ZAVEP84a)
ZAVEP84b]

RSL

F.0O

Stimulus response

[ALFOM77)
[ALFOMS5]
[BELLT?77]
IDAVICT?]
[SCHEPS5]

14

{STOEJ84]




production of object descriptions, but the exact form of the object description varies with
the underlying model of the language. Two models commonly employed are the Entity-

Relation-Attribute (ERA) model and the message-passing model.

The ERA model [STOEJ84] views a system as being composed of entities (objects),
entity attributes, and relationships among entities. ERA-based languages are widely used
for applications where static descriptions are necessary (such as databases), but they have
limited applicability in cases where d&namic descriptions are required. They emphasize the

flow of data through system objects rather than the interactions among these objects.

Languages using a message-passing model [ROBSD81a, ROBSDS81b, MCARD&84|, unlike
the ERA-based languages, are able to express system dynamics through a series of message
communications. Iﬁ this model, each object is defined by its atiributes and the operations it
can perform. Thus, for object A to interact with object B, object A SENDS object B a
message requesting that object B perform an oper'a,ti_on. Object B RECEIVES the message
and performs the requested operation, which may include sending a message to another
object or back to object A. This SEND and RECEIVE format of object interaction has
potential for allowing description of some of the concepts needed in simulation models such

as timing constraints, concurrency, synchronization, and environmental interaction.

The choice between an ERA-based or a message-based language is very dependent on
the type of system_to be_specified. Both models encapsulate system behavior according te
objects thereby easily localizing specification information. Bub the major advantage of
using the object-oriented approach is that.the resulting specification corresponds directly

and naturally to the real system [BORGASS3, p. 85].




2.8.83 Process Orientation. In a process-oriented specification language, a system is
decomposed into its processes where a process may represent an object or an activity. Both
static and dynamic descriptions of the system are possible. The static properties of each
process are defined by enumerating its possible states, inputs, and outputs [YEHRTS4,
ALFOMS85]. The dynamics of each process are described as a series of state transitions with
each state transition producing certain responses and yielding a new process state. The
resulting specification shows both data flow and control flow [ZAVEPS82] as well as the
relationship of each process to its environment. Each process is assumed to operate in

parallel with and asynchronous to the other processes [ZAVEP84b].

The origins of mémy process-oriented specification languages can be traced back to the
need to specify operating systems. Thus, these languages are well suited for applications
involving complex controls and embedded systems [ZAVEPS82]. Also the underlying
stimulus-response model is actually a modified finite state machine thereby making it
possible to use results from finite automata theory In analyzing the specification
[ALFOMSS].

The process-oriented languages listed in Table 3 have several weaknesses:

s They employ excessive formal notation that is difficult to understand and learn.

e They may be difficult to apply to systems other than the types mentioned in the
previous paragraph.

» The resulting specification may be neither naturally hierarchical nor very modular
[ALFOMS85, ZAVEPS82].

» The languages, with the exception.of RSL, are still in the development stages.

In conclusion, a review of the literature on software specification languages reveals a
variety of approaches to specification and numerous formalisms. Several desirable

properties of a specification and a specification language have been identified as well as the



relationship of particular languages to phases of the software development lifecycle. Most of
the languages reviewed are developed for use in certain application domains; thus, they
prové easier to use and produce a better specification when applied to problems in these
domains [ZAVEP84b]. This fact suggests that a more narrow examination of simulation

model specification languages is necessary.

3. SIMULATION MODEL SPECIFICATION AND DOCUMENTATION LANGUAGES

As the focus in simulation model development has shifted to the model and away from the
program [NANCRS4, ZEIGBS84c|, perception of the need for simulation mode] specification
~and documentation languages (SMSDLs) has emerged. Nance [NANCR77] gives the

following reasons why a SMSDL is needed:

« Mode!l documentation must be an inseparable part of model development, and during
the early stages of model deveiopment, model specification and model documentation
are identical. A SMSDL can encourage model documentation. :

¢ A SMSDL can help bridge the communication gap between the model developer and
the customer.

¢« A SMSDL can provide a set of terms which leads to precise model description,
while enabling sufiicient generality, and preducing a hierarchical specification which

is independent of current SPLs.

Even though these SMSDLs are domain dependent, the properties listed in Table 1-are
sti_ll very applicable to them. The biggest challenge in the design of any SMSDL is HOW to
express modei dynamics [NANCR77] because it is the dynamic dependencies in a simulation
model which make it inherently complex [NANCR84]. Some examples of SMSDLs are
DELTA, GEST, ROSS, a SIMULA derived SMSDL proposed by Frankowski and Frania,

and the Condition Specifications. Fach of these is briefiy discussed.




3.1 DELTA

The DELTA language [HOLBE77, HANDPS80| represents one of the most extensive SMSDL
efforts, and it can be characterized as an object-oriented specification language for
describing complex systems. The language uses a mixture of formal and informal constructs
to describe a system as a series of objects, their attributes, their states, and the actions each
object performs. The language encourages the production of a specification which is
appropriate for communicating details of system behavior to an audience with diverse
backgrounds. lts SIMULA-like constructs enable the expression of simulation model
dynamics. ’Speciﬁcally, one can describe time, events, time-consuming actions,
instantaneous actions, parallel actions, state changes, and activity interruptions. However,
the literature suggests that DELTA has not actually been applied to simulation
development [NANCRS81a] nor is it part of an automated system. In fact, the literature
provides little information about DELTA, and its current state is unknown.

Initially, the developers of DELTA had planned to design three languages:

e 5 geneTal 'systems*deécription language, DELTA
s a high level programming language, BETA
s and a systems programming language, GAMMA.

As of 1980, only DELTA exists, and no mention is made of GAMMA. The developers

o translate the
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plan to vse DELTA as the overall syste

DELTA system specification into the executable programming language BETA.
3.2 GEST

GEST [ORENT79, ORENTS4|, based on the principles of system theory, provides a
conceptual framework for specifying discrete, continuous, and memoryless models. The

static model structure consists of the definition of input, output, and state variables; the



dynamic model structure is described via a series of state transition functions. A GEST
speciﬁcaﬁion also incorporates Zeigler’s [ZEIGBS84c| experimental frame concept. An
experimental frame is the speciﬁcétion of the data a simﬁlation model is expected to
produce in order to answer the questions posed in the study objectives [ZEIGB84c, p. 22].
Information specified in a GEST experimental frame includes such items as the basic unit of
time, simulation termination conditions, state variable initializations, and data collection
details [ORENTS4, p 318]. Future plans are for GEST to be integrated into a computer-

assisted modeling system |[ORENTS84].
3.3 ROSS

ROSS - [KLAHP80, FAUGWSO, MCARDS81, MCARDS4], developed by the RAND
Corporation, rep;"esents one of the first attempts to combine artificial intéil’igence and
simulation. It is designed for developing interéctive knowledge-based event-driven
simulators for particular applications. Currenily, two combat-oriented simulators (SWIRL
[KLAHP82] and TWIRL [KLAFP84]) have been developed. ROSS is not a speciﬁcation.
language, but rather it is a LISP-based system which supports the development of the above
mentioned simulators. It is of interest because 1t is a good example of of the use of the
object-oriented méssage-passing paradigm, demonstrating how concepts from artificial

intelligence and simulation can be combined.
3.4 SMEDL — Frankowski and Franta

Frankowski and Franta [FRANES80] propose a process-oriented simulation model
~ specification and documentation language for specifying diserete-event simulations. In this

SMSDL, the model element (or object) is the primary unit of speciﬁcation. Each element is




described by attributes, axioms, and a scenario. Of these three, the scenario is of most

interest because it contains the details of an element’s behavior throughout the life of the

model.

The scenario describes the changes of state in the model which trigger each element’s
behavior. These changes of state may be invoked by the element itself or other model
elements. The SMSDL does not differentiate between whether a behavior is dependent on a
change in state or a change in time. Time is simply viewed as an attribute which may
produce a state change. The behaviors that are specified in a scenario are referred to as
actions. Cdnstructs are avallable ﬁﬂ the SMSDL for expression of interruptible and
noninterruptible actions, actions that have duration, concurrent actions, and actions that

occur in a predefined order.

These constructs, as well as the constructs for expressing conditions, reflect the influence
of the language SIMULA on the design. This SIMULA influence is a disadvantage for the
SMSDL by its advocacy of a particular world view. In fact, Frankowski and Franta suggest
that the transition 'betw«eeg specification and program can be eased if the program is coded

in a language akin to SIMULA [FRANESQ, p. 725].

Although the SMSDL suffers from a world view influence, it represents an attempt to
produce a readable, English-like specification which is suitable for communicating with a
diverse audience. But more importantly,.the SMSDL addresses some-of the diffculties in

expressing model dynamics and offers some possible soiutions.
3.5 Condition Specifications

Another SMSDL has been Sﬁggested by Overstreet [OVERMS82, OVERMSS5] called the



Condition Specifications (CS). The CS overcomes a major shortcoming of the previously
mentioned SMSDL which is the inability to produce a world view independent specification.
In addition to the property of world view independence, a CS has the following properties:

[OVERMS2, p. 5]

Independence from implementation languages

Creates an analyzable specification

Assists in detecting errors in the specification

Permits translation to a specification in any of the three traditional world views
Enables any discrete-event simulation model to be completely described

Encourages successive refinement and elaboration of the specification

Produces a specification in which the model elements have direct correspondence to
the elements of the modeled system.

A Condition Specification consists of three components [OVERMS5, p. 196]. The

[ ]

wnterface specification identifies the input and output attributes of the model, and it is
through .these attributes that the model communicates with its environment. The report
specification describes the data that is to be produced as a result of an execution of the
simuiém’ion. The specification of model dynamics is the most important CS component.
This component includes a set of object specifications for describing the static model
structure and 2 set of transition specifications for describing the dynamic mode! structurs.
An object specification exists for each object in the model. This specification names the
object and defines all the attributes associated with thai; object; The transition
specifications describe the changes-that oceur in the model 35 3 series of Condition Action
Pairs (CA_PS) A CAP is simply a rule composed of a boolean condition and an action to be
performed whenever the condition is true.r A boolean condition may be based upon time,
state, or both. An action represents an object’s response to the boolean condition and may

include such responses as changing the value of an object attribute, scheduling another

action to occur in the future, or terminating the simulation. The specific notation for




expressing a CAP is described in [OVERM85].

The Condition Specifications provide guidance on how to build a model and how to
describe the dynamic relationships in a model [OVERMS85] by using an object-oriented
rule-based approach. They represent a precise statement of the time and state relationships
[NANCRS1b]. However, the CS formalism is very similar to a programming language
[HANSRS84]; thus, it may be difficult for a modeler with a limited computer science
background to use. For this reason, a modeler is not intended to directly specify a model in
the CS notation. Rather, the modeler is to interact with a tool, a model generator, which

will automatically produce a model specification in the CS formalism JOVERMS84].

4. SUMMARY AND CONCLUSIONS

This comprehensive review of the literature presents the breadth and diversity of views of
spectfication held by researchers in simulation modeling and the software engineering
community. While the indication that the former group is saware of the activities and
coptributions of the latter, the reverse is not apparent. Consequently, both .simﬁiaﬁc-n
modeling and the domain of embedded, real-time software development continues to

struggle with only partial understanding of the difficulties in specifying dynamic behavior

and providing. precise capabilities for specifying chjest interactions.

Based on the review presented above, several conclusions with respect to the role of

system specification techniques are warranted:

s The function of a methodology in the specification process is highly dependent on the
phase of the software life cycle being addressed.

e No clear perception of the role of specification appears in either the software or
simulation communities, but the object oriented paradigm clearly dominates the
latter.



» With a few exceptions, development environments and the tools that comprise them
are rarely tied to an undergirding methodology; rather they appear to be limited to
application domains and evince a degree of ad hoc design.
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