Architecture of an Object-Oriented Expert System
for Composite Document Analysis,
Representation, and Retrieval

Edward A. Fox
Robert K. France

April 1986

TR-86-10

Architecture of an Object-Oriented Expert System for
Composite Document Analysis, Representation, and
Retrievalt

Edward A. Fox
Robert K. France

Department of Computer Science
Virginia Tech, Blacksburg VA 24061

ABSTRACT

The CODER project is a multi-year effort to investigate how best to apply artificial intelligence methods to
increase the effectiveness of information retrieval systems while handling collections of composite documents. In
order to ensure systemn adaptability and to allow reconfiguration for controlled experimentation, the project has been
designed as an expert system, The use of individually tailored specialist experts coupled with standardized
blackboard modules for communication and control and external knowledge bases for muintenznce of factual
world knowledge allows for quick prototyping, incremental development, and flexibility under change. The system
as a whole is structured as a set of communicating modules, designed under an object-oriented paradigm, and
implemented under UNIX™ ysing pipes and the TCP/IP protocol. Inferential modules are being coded in
MU-Prolog; non-inferential modules are being prototyped in MU-Prolog and will be re-implemented as needed in
Ct++.

CR Categories and Subject Descriptors: H.3.1 {Information Storage and
Retrieval]: Content Analysis and Indexing; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval; H.3.4 [Information Storage and Retrieval]: Systems and
Software ; 1.2.1 [Artificial Intelligence]l: Applications and Expert Systems; 1.2.4 [Artificial
Intelligence]: Knowledge Representation Formalism and Methods; 1.2.7 [Artificial
Intellligence]: Natural Language Processing ; 1.2.8 [Artificial Intelligence]: Problem
Solving - control methods and search; K.6.1 [Management of Computing and
Information]: Project and People Management; K.6.3 [Management of -Computing and
Information]: Software Management

General Terms: Design
Additional Keywords and Phrases: abstract data type, architecture or distributed expert

system, blackboard, composite document, knowledge base, message passing, natural language
processing, PROLOG, relational lexicon, user interface

tProject funded in part by grants from the National Science Foundation (IST-8418877) and the Virginia Center for
Information Technology (INF-83-016).

1. Purpose

As the world's pool of information, and particularly of machine-readable information,
becomes larger, it becomes increasingly necessary to engage the help of computers to control and
manipulate it. Initial attempts at computer-aided text storage and retrieval, however, focused
principally on performance and have achieved only moderate levels of effectiveness. The CODER
(COmposite Document Expert/Extended/Effective Retrieval) expert ISR system is a research system
intended to address these problems through the mechanisms of knowledge-based and goal-directed
Al techniques. In keeping with its purpose as a research tool, the system is designed with
sufficient flexibility to encompass a wide range of experimental techniques. The system is also
designed to permit evolutionary development, both of its overall design and of its specific
functional modules. The construct of a moderated expert system has been instrumental in
achieving both of these design goals.

Particular attention is being given in the system to analysis and representation of
heterogeneous documents, such as electronic mail digests or messages, which vary widely in style,
length, topic, and structure. Understanding the structure of such documents is -one ability that
allows human catalogers and retrieval specialists to out-perform conventional information retrieval
systems. Knowledge of document structure will be combined in the system with knowledge of the
entities that make up documents (words, sentences, dates, or electronic addresses,.to.give.a few
examples) to accomplish both more refined analysis and more satisfactory retrieval of documents
(or sections of documents) that satisfy the information needs of the system users. The initial
application is to support queries directed toward retrieving any relevant passage in the messages
included in a three year archive of issues of the ARPANET AlList digest.

This effort has evolved in part out of prior studies with the SMART information retrieval
system, where use of an extended Boolean logic proved beneficial, and where query expansion
using a relational lexicon improved search effectiveness [SALT 83]. By representing the
uncertainty involved in indexing, and by viewing query processing as a type of inexactreasoning,
later versions of the SMART system successfully used the p-norm model to support “soft”
Boolean evaluation. Relational models of the lexicon were particularly appealing since automatic
processing of machine-readable dictionaries could be employed to identify many of the key
relations for a relatively large vocabulary. Another origin of this effort was work applying
information retrieval techniques to the construction of expert systems [WINE 85). It became clear
that a rule-based approach would allow systems to be tailored to (classes of) users, and that several
search algorithms could be combined dynamically to give instantaneous rather than a “batch” type
of feedback. This work implies that planning and scheduling operations should be an integral part
of an analysis and retrieval system.

Furthermore, it was clear that whereas complex probabilistic models of queries had been
investigated, relatively simple document analysis was involved in prior work. Now that powerful
Al engines are becoming available, it seems timely to examine the benefits of carrying out a partial
natural language analysis of the incoming documents. Such a semi-controlled knowledge
acquisition process, where more precise and comprehensive knowledge representation is possible,
allows some questions to be more effectively handled, and others to be answered for the first time.

2. Functional Description

Conceptually, CODER can be thought of as being composed of two overlapping subsystems:
the Analysis Subsystem and the Retrieval Subsystem. Actually, the system is so constructed that
any number of instances of these subsystems can be running at any given time, but it is useful
nonetheless to envision it as being composed of two parts, ane for each of the system's principle
tasks of information cataloging and information retrieval. These two parts are in many ways mirror
images of each other: each is modeled as a community of experts and each makes use of the central

2

"Spine” of knowledge banks and knowledge administrators (see Fig. 1). Many of the experts
perform similar functions in the two subsystems and use the same bodies of specialized knowledge:
what they do with this knowledge, however, and above all the strategies for combining the experts'
opinions, can differ radically from subsystem to subsystem,

CODER is a knowledge-intensive system. Each of the experts includes its own base of
specialized knowledge about its field. Beyond these, however, the system must also manage large
amounts of three basic types of knowledge:

- knowledge about documents stored in the system,
- knowledge about terms in the language, and
- knowledge about users and their information needs.

Facilities must therefore be provided in the system for knowledge representation and knowledge
maintenance. These facilities, separate from the knowledge manipulation abilities required by the
experts, are provided by non-inferential modules which can be separately implemented and
optimized. Knowledge representations are moderated by a set of type managers which provide the
abstract structures necessary for modelling attributes, objects, and logical relations among objects.
Knowledge maintenance functions are provided by specialized external knowledge bases, which
provide storage and quick recall for the “gratuitously complex” facts of the problem universe.
Isolating these collections of specific facts allows expert design to focus on general knowledge of
principles and on the interaction of these principles with the complexities of the ‘problem universe.

2.1. The Analysis Subsystem

The purpose of the Analysis Subsystem is to construct consistent sets of propositions
describing input documents. These propositions can then be stored in a Document Knowledge
Base and eventually used by the Refrieval Subsystem to judge the relevance of a document to a
given query. To this end the Analysis Subsystem must decide both whar a document is and what i
is about. Processing a document, in other words, involves classifying it (as, for instance, a journal
article or a bibliography) and cataloging it under appropriate concepts. It is also necessary to
establish structured data about the document; it's author, date of origin, and so forth. Experts
in structured data recognition and document classification interact with experts in nataral language
parsing, indexing and concept identification to form hypotheses of the most impeortant features of
each document. When hypotheses of sufficient levels of confidence can be combined into
consistent interpretations, they are passed to the Document Knowledge Base for sterage. (Note
that while each interpretation is required to be internally consistent, there is no reason to expect
them to be consistent among themselves. Different interpretations may emphasize different aspects
of a given document, or may represent different parses of the same text.) A document may produce
one or several interpretations.

2.2. The Retrieval Subsystem

The Retrieval Subsystem performs the dual of this process. Based on a query from a user,
the Subsystem develops an abstract representation of her information need and searches the
cataloging information in the Document Knowledge Base to establish a set of documents that may
satisfy it. To this end, it must marshall expertise in understanding the user's-query, in modelling
the user herself, and in navigating the Document Knowledge Base. It may also call on knowledge
of words and concepts to expand the query, or it may rely on characteristics of document types or
structured data (it may, for instance, look for journal articles with a specific author), or use more

3

subtle means, such as co-citation clustering. Reports of its progress are constantly submitted to the
user, either in the form of documents that may fill her information need or in the form of terms (or
complex structures built of terms) that may better express that need. The relevance of an entity
(document, term, or structure) to the user's information need is the focus - of a dialog between the
user and the experts in the Retrieval Subsystem that continues until the information need is
satisfied.

2.3. The Spine

Central to the system is a set of knowledge bases and type managers that provide control and
bulk storage for the information that is used by both the Analysis and Retrieval Subsystems. This
set of relatively “dumb” modules is called the Spine as a metaphor for its relationship to the
“smarter” experts in the two Subsystem communities. There are several component modules in the
Spine, falling into two broad functional areas: external knowledge bases such as the Document
Database or the Lexicon, and the system resources of the Knowledge Administration Module. All
these components are equally usable by both Subsystems, although the amount and type of usage
may vary. All the components as well have a privileged interface through which they are accessible
to a System Administrator. Comparable to a Database Administrator interface, this interface
provides a deep (and dangerous) level of inspecting and changing functions for knowledge base
verification and maintenance. None of the system modules have access to this level.

The Knowledge Administration Module catalogs and classifies the types of entities about
which the system has knowledge, ensuring consistent representation and use .of knowledge
throughout the system. The set of types chosen, after consideration of several different Al
formalisms, allows for three types of knowledge objects: elementary objects such as characters,
integers, lists of lists of characters and so forth; semantically structured frame objects such as
documents, dates, sentences and so forth; and logical relations over objects. Canonically, these
types of entities can be used to represent knowledge of attributes, individuals, and facts.about
individuals, respectively; the formalism is, however, sufficiently flexible to represent Al structures
such as conceptual dependencies and semantic networks as well,

Comumon storage is provided in the Spine for detailed knowledge of each of the primary
types of entities in the system's universe. The Lexicon, for instance, maintains knowledge about
terms in the language. It can be conceptually divided into two parts, one of general linguistic
knowledge and the other of specialized world knowledge, particular to the collection of documents
employed. Although knowledge from both conceptual halves may be recalled by a given request,
tagging the knowledge in this way promotes portability by allowing knowledge of general use to be
decoupled from the pragmatics of a given document collection and re-used in other applications.
Similarly, the Document Knowledge Base maintains facts about the documents. Adttached to the
Knowledge Base is a simple resource manager providing storage and retrieval for raw document
text. These two modules together are referred to -as the Document Database. Finally, there is a
User Model Base of facts about individual users. These include reports of occurrences during a
single session and general statements about the user, such as the type of information that has
proven relevant to the user in the past, semantic knowledge particular to or supplied by the user,
and common characteristics of relevant documents. These bodies of knowledge inform the
system’s response in intelligently analysing and retrieving docaments.

3. Structural Description
CODER is an ambitious system in several ways. Its very size is unusual in the domain of Al

programming, as is the diversity of methods that can be expected to be applied to the system tasks
over its lifetime. The system must manage knowledge of diverse entities, utilizing a variety of

knowledge representations. The size and complexity of the ‘system provokes problems of
coordination, both among the parts of the system and among the people implementing it.

We have attacked this complexity through the use of two organizing constructs. From
object-oriented programming, we have borrowed the paradigm of classes of objects, and from
expert systems, that of the community of experts. Using the principles of object-oriented
programming, we have been able to define a few general classes of objects out of which the system
can be constructed. The construct of the community of experts then provides a model for
knowledge-based problem decomposition: a problem task is broken into a set of subtasks each of
which can be addressed by an expert in some specialized domain of knowledge.

Breaking the system into specialized experts alleviates the engineering problems of
structuring the system and distributing responsiblity for its construction among several
implementors. It creates new problems, however, in the operation of the system on any individual
task. Since each expert is a specialist in a narrow subtask, none is equipped to solve the task as a
whole. In order to address the overall task, the experts must communicate among each other, and
in order to solve it effectively, their efforts must be coordinated according to some global strategy.
The concept of a blackboard [ERMA 80, HAYE 85] has been used in several expert systems to
provide communication among experts: in CODER we have specialized the blackboard construct to
include an active planning principle for expert coordination.

Regarding the objects in the system as being instances of classes has several advantages.
First, many modules can be implemented once on a generic level and the generic module specialized
to ereate individual system objects. Second, even for modules (such as the individual experts) that
must be built individually, the object-oriented approach provides an effective way of specifying the
external behavior of all the modules in the class. There are also payoffs in the design phase:
thinking of modules in generic terms promotes a cleaner design,and- makes the overall picture
easier to understand,

Designing the system as a collection of communicating objects also makes easier two system
goals that could otherwise be quite sticky. In the real world of limited machines and programming
environments, CODER presents implementation difficulties both in the number of modules that it
comprises and in the amount of knowledge necessary for its function. Not having a large
mainframe to dedicate to the sole purpose of running the system, we very early made the design
decision to distribute the system among a group of networked machines in the Tocal environment,
all of which run UNIX™ and thus support intra-machine communication via the pipe construct and
inter-machine communication via the TCP/IP protocol [LEFF 84]. This decision allows us to place
the large external knowledge bases where there is sufficient storage, the user interfaces where there
are bit-mapped screens, and the inferential modules where there is computational power.
Designing the system as a collection of communicating objects makes it possible to implement the
distribution of the system separately from the system architecture itself. Each module can be built
as a single process (or, conceivably, set of processes) running on a single machine.
Communication with other modules is then handled through abstract message-passing primitives,
All details of the location of the other modules in the system and the protocols needed to reach them
are hidden within the communication managers that implement these primitives. At the level of
system objects, all the implementor needs to know are abstract names.

In addition, the message-object paradigm helps hide language-dependent details. CODER
involves both modules such as the experts and blackboard strategists that are by their nature
inferential and modules such as the type managers and external knowledge bases that have no such
commitment, In fact, some portions of the user interfaces are best written procedurally, in a
language with sufficient low-level primitives for bit manipulation. These conflicting demands have
made it desirable to build the system in-a multi-language environment. Inferential modules are
being coded in MU-Prolog, a UNIX-based dialect of Edinburgh Prolog supporting extended
communication and database operations. Procedural modules are being-coded in-G-++, a dialect of
C that supports the class-object paradigm [STRO 85]. Modules with no paradigm requirement will
be prototyped in MU-Prolog and may then be re-implemented in C++ as required for efficiency.
Consistency between languages is maintained at the level of module-to-module communications.

5

Standardizing the message protocol between objects and treating the knowledge representations as
abstract objects themselves makes it possible to conceal the language in which a given module is
implemented from all the other modules in the system.

4. Object Types

The basic building blocks of the CODER system are detailed below. -Objects of these four
classes, together with the environment provided by the knowledge representation administrators
and communication managers, make up the entire system.

4.1. Blackboards

A blackboard is an area for communication between experts. This communication takes
place through the medium of posting and reading hypotheses in specialized sobject areas. In
CODER blackboards, a specialization of this process provides a means for asking and answering
questions, which are contained in their own special area of the blackboard. The importance of this
type of communication was noted convincingly in [BELK 84]. In addition, the CODER
blackboards provide a special area, maintained by a blackboard management expert called the
Blackboard Strategist, containing a small set of consistent hypotheses of high certainty. This
pending hypothesis area is available for read access by all experts and thus, indirectly, by the
outside world. It provides an instantaneous picture of the "consensus” of the blackboard: i.e.,
what the system as a whole hypothesizes about the problem under consideration at any moment.

An hypothesis is represented by a four-tuple: the fact hypothesized, the expert
hypothesizing it, the confidence that the expert has in it, and its dependencies on other
hypotheses. This additional information, besides providing motivating information for the
distillation of the set of pending hypotheses, allows truth-maintenance functions to be performed
within the blackboard subject areas. If an expert withdraws an hypothesis, for instance, or
radically changes the confidence level with which it proposes it, this information makes it possible
to schedule reconsideration of the hypotheses depending on it.

Monitoring the blackboard for this sort of event is one function of the blackboard strategist.
Since the rules governing truth maintenance are independent of the particular predicates involved in
the facts hypothesized, this function is independent of the application task of the blackboard
community. The strategist also monitors the blackboard for task-specific events and.conditions that
trigger new processing. These two categories of function are kept separate in the strategist, so that
the truth maintenance function can be transported to-other tasks. Nonetheless, they have both been
designed as rule interpreters: neither the strategies involved in truth maintenance nor those involved
in analysis or retrieval are yet well-understood. Consigning these strategies to a rule base allows
them to be changed easily without the entire blackboard needing to be re-implemented.

The final component of the strategist is a scheduler for the tasks identified by the other two
components. Acting on rules of its own that relate static concerns of how many experts -of what
type should be active at the same time on which machines to the mix of tasks scheduled by the
truth-maintenance and task-oriented components, the scheduler issues wake and sleep commands to
the experts in the blackboard community. This allows different groups of experts to be active at
different phases in the community task, but allows experts outside the currently active group to be
called up to answer a question or to reconsider an hypothesis.

4.2. Experts

An expert is, conceptually, a specialist in a certain restricted domain pertinent to the task at

6

hand. Experts are designed to be implemented in relative isolation from one another: no expert has
knowledge of the other experts in the community, and all experts communicate with the community
strictly through the construct of the blackboard. Tsolation,’ of course, is a relative term here. Part
of the specification of an individual expert is the set of predicates that it may view in a blackboard
area and the (possibly overlapping) set of predicates that it may post back. Obviously, there must
be agreement among the expert implementors on the structure and bounds of those predicates if the
experts are to work together. What each expert does with those predicates, however, and what
internal knowledge and processes it uses to produce new hypotheses, are left to the implementor of
the individual expert. Each expert can therefore be built in the way that best takes advantage of the
characteristics of its particular domain of expertise.

An expert has only two requirements for its operation: it should be knowledge-driven, and it
must recognize the appropriate commands from the strategist scheduler. The first is philosophical
in nature: it is part of the CODER design that the complexities of the system tasks be realized in the
knowledge required for their execution, rather than the process of execution itself. In the case of
experts, this implies that expertise be represented as explicit knowledge, separate from whatever
engine manipulates it. The knowledge in the expert, moreover, is constrained by system design to
be general knowledge: either rules for finding and manipulating factual knowledge in one of the
external knowledge bases, or facts that can be applied to classes of objects in the problem universe.
The second requirement is pragmatic: for the strategist to schedule their activity properly, experts
must go through a canonical cycle of operations.

Assigning an expert to a small area of specialization and decoupling it from the remainder of
the system has several advantages. First, the development of the expert is separated from that of
the surrounding system. Interaction problems, normally a plague of Artificial Intelligence systems,
are thereby kept to a minimum. In addition, the experts are kept small, so problems of rule
interaction within the expert are minimized. Tasks which are found to require too much complexity
can be further subdivided along the lines of the areas of expertise required to solve them, until they
are reduced to manageable size.

As a further benefit, experts can be specialized to deal with different types of knowledge, so
that an expert that manipulates knowledge of how to do things can use different inference
mechanisms than an expert in what to do, This will enable the reasoning portions of these experts
to run with more efficiency than, for instance, general rule-based inference engines (see [LEVE
84] for a formal analysis of this effect). In practice, we expect a few generic knowledge-handling
engines can be used to produce a plethora of different experts. Possible engines include both
forward-chaining and backward-chaining rule interpreters, frame-based classification engines, and
pattern-matching engines. These generics would then be associated with different rule bases,
classification trees, and similarity measures, respectively, to produce specialized experts in a variety
of disciplines. The work of Chandrasekaran (e.g., [CHAN 85]) holds great promise that a few
such powerful generics can be isolated and put to good use. .And as such methods are better
understood, they can be used in CODER to build new experts, again without affecting the existing
modules of the system.

4.3. External Knowledge Bases

An external knowledge base (or "fact base") is an object for storage and retrieval of factual
world knowledge. The Document Knowledge Base, the Lexicon, and the User Model Base are all
specializations of this class: others can be created as needed during the development of the system.
Each maintains knowledge about a particular class of objects in the form of specific statements of
fact. This is in direct contrast to the internal knowledge bases of the specialist experts, which are
primarily composed of general rules.

Formally, propositions entered into a Fact Base are required to be ground instances of logical
relations known to the system; that is, to involve neither unbound variables nor meta-terms. These
propositions are added to an External Knowledge Base as single statements, but may be retrieved in

7

either of two ways. The Knowledge Base may be queried with a skeletal fact, that is, a fact
containing one or more variables, and will return the set of all facts in the Knowledge Rase that
match the skeleton. Alternately, the Knowledge Base may be queried with an object (either an
elementary term, a frame, or a relation) and will return the set of all facts involving that object,
(Note here that, since facts are simply instances of logical relations, querying with a skeletal fact is
a special case of querying with a-skeletal relation. Restricting the search for matching relations to
those that occur as the head of the fact is, however, sometimes advantageous.) In addition, a
Knowledge Base may be queried about the number of facts that match an object or a.skeletal fact:
this information can be used by the querying entity for statistical purposes, or simply to avoid
receiving excessively large sets of facts.

All knowledge in an External Knowledge Base is associated (explicitly or implicitly) with the
source of the fact and with the date, time, and session of its entry info the Knowledge Base.
Knowledge can be entered by individual medules during system operation, in which case each fact
is individually and explicitly stamped, or it may be entered by the System Administrator, in which
case the information is implicit.in the names of the fact predicates entered. This information,
available to the System Administrator only, allows suspect facts to be traced and updated. A
function is provided to the System Administrator to delete facts from the Knowledge Base and to
add facts en masse from sources external to the system; in addition, the System Administrator has
access to all of the functions described above.

4.4. User Interfaces

There are three points at which users interact with the CODER system. The System
Administrator interacts directly with the Spine to define new types of knowledge to the system and
to fine-tune the system knowledge bases. This is.a classical, command-driven interface: the
Administrator is assumed to be sufficiently sophisticated to interact directly with the modules being
managing. The other two interfaces (one for document entry sessions and one for document
retrieval sessions) are more complex, since the entities communicating are more complex. On one
side, the users are expected to be less sophisticated and have less precise formulations of their
tasks. On the other, the interfaces relate the users not to functionally discrete modules, but to the
blackboard-moderated communities accomplishing these tasks. The interactions moderated by
these interfaces are less sequences of commands and command executions than dialogues seeking
concensus on the nature of the task to be executed.

The interfaces for the Analysis and Retrieval Subsystems thus require a large amount of
built-in expertise. They also, of course, require a large amount of good old-fashioned device
management and presentation ability, this last somewhat complicated by the design decision to
distribute CODER over several computer systems, and the unfortunate reality that these systems
make use of different interface devices. These two requirements inform the architecture adopted.

Basically, the user interface to a CODER blackboard community consists of an Interface
Manager and a set of translation experts. The Interface Manager is a hardware-specific
module that maps logical "display areas" to and from physical representations such as windows, -
screens or voices. Translation experts moderate between these logical areas and the local
blackboard. The Retrieval Subsystem user interface, for instance, consists of an Interface Manager
together with three translation experts, one translating the infernal representations of the Pending
Hypothesis Area into representations comprehensible to humans and the other two monitoring the
user's actions and translating them to hypotheses posted to the blackboard.

This architecture leaves a great deal of room for experimentation, Different styles of query
input can be investigated, for instance, ranging from Boolean to extended Boolean to term-vector to
natural language. In each case, only the query understanding expert need be changed; the other
experts and the Interface Manager are unaffected. Similarly, the range and subtlety of user
monitoring can be changed without effecting any module except the responsible expert. Finally,
the system can be adapted to an electronic mail front-end by a local adaption of the Interface

8

Manager, in which case the dialog becomes very slow, but the operation of the remainder of the
system does not change. The Analysis Subsystem Interface is-structured in .a similar way, with
display arcas for document text, unknown or suspect words discovered, and interpretations
formed. Wherever possible, the interfaces are structured for the ease of the user. CODER is, after
all, designed to be an experimental system. Sophisticated user interfaces are thus required to
provide as much information as possible during incremental development, and to keep data
collection on system versions, if not a pleasant, at least not an excessively painful process.

5. Progress to Date

Early work on the CODER system has concentrated on design and on preparation of the
knowledge to be loaded into the external knowledge bases. Design of the overall system structure,
the individual object types, and the knowledge representation formalisms has occupied the second
half of 1985 and first few months of 1986. Overall design was completed and implementation
begun in early 1986.

Concurrently with this phase, a large experimental test base of documents has been
assembled from the AIList moderated digest. A collection of the first three full years, comprising
over 3000 messages and about 1,000,000 words of text, has been prepared. The collection has
been brought up under the SMART retrieval system and .comparative runs made. The SMART
implementation of the collection has also been made available at Virginia Tech as apublic service,
and logs kept of the queries submitted. It is hoped that these logs will provide sample queries that
can be used to test versions of CODER,

Any language understanding system requires a large base of knowledge about wards in the
language upon which to draw, and the text parsers required in the analysis phase of CODER ate no
exception. To prepare such a knowledge base for the CODER lexicon, two large English-language
dictionaries are being analyzed, and the knowledge implicit in the dictionary text translated into
Prolog-syntax predicates. The first of these, the (roughly) 85,000-word Collins English
Dictionary, has been converted; work on the second, the Oxford Advanced Learner's
Dictionary of the English Language, is currently underway.

Implementation of the CODER system is beginning with the system resources: the
communications and knowledge representation managers. Concurrently, work has begun on the
generic modules: the generic blackboard and blackboard strategist and the external knowledge base
class. The user interfaces have been prototyped and are currently being extended to full
functionality. Implementation of experts will be saved until last.

Acknowledgements

Numerous students in the last two years have played a role in the development of CODER.
Muriel Kranowski studied hundreds of messages to identify message types and rules for
recognition. Lee Hite and Mark Tischler have developed user interfaces using SUN Windows.and
CURSES software packages, respectively. Sachit Apte has explored problems with distributed
processing. Joshua Mindel prepared a message pre-parser to support the indexing and search
possible with SMART, which Sharat Sharan has kept up-to-date. Robert Wohlwend has effected
the construction of the Prolog lexicon from the typesetting tapes of the major dictionaries. Pat
Cooper and Joy Weiss have provided secretarial support.

The Oxford Text Archive and Melbourne University Dept. of Computer Science have
supplied tapes with dictionaries and Prolog interpreters, respectively.

8anJ1a3u| JaS[y

s1s51[e123dg

pajuaiig ~ Jasg

oseg
L3pajt
FEEN

p4adx3
EEH

=

Jabeye,
298 IAPM| 42S(]

Ass ARy
- fitengy

1ajuan fetjueq
PUB UOL}IED1UALILIOT
walsfisgng [easiiyay

Salys1dnay
uoljeuLpdsen

% butuuel 4

ysibajedys
[RABLISY

. 34adx3
Noegpaag [

=

yAadxy
yAoday

([seaay fiyldotdg

By PANLOAAYG

"su,|9y g SUWLIe L
*5,900 JueAS|aY

{2pol¢ hdanty

L3pOL 4351

qHv0axIvIg
IVAIIYLIY

T a4nbL4
s1sileloadsg sisijeLdads
21ualLl] - vle uaiiejatdialug
pay 0 1e@ sel11119u4 e} UL
uzligiuasaaday abpapmouy
— bue
ydedxy [saseg afipajsmouy ﬂMn_U
ETRLITTL I auldsg, ohuwzuﬂﬂ&
1aadx] %
slveuleg sBpaj oty LTI
PLAOA,
ﬁ _ pazileioadg
yAadxy @n_
aorufig abpaymouy \ yaadxy
EREILITEC S I aporyiy
[LREITEY)
e —
3dedxg
uoyelsy UooLXa yAtadx3
uoLye|ay
JAadxy ﬂm”_
ad ey ydadxg
adfiy—eyeq
ydadx3 @
adfiy=aoq yL2dx3
adfy—soq
@ 4abeuel.
aseq sbpapmouy | ﬂ mU
paadxy Juawnooq I y
PELZY }40dx3
Y 3 Buixapuy
Asbeuepy
abe.oyg pxag

WILSASANS TYAIIALTY

Jdajua] 1043407
pue uvol1BI1UNUIIG]
waishsgng sisfijeuy

S01}SLANAH
- |uetjeuipacen

g Buluue|g

sibajes
sisfieuy 7

4ANJONAYG $Xa 1

BYR(PBANLONAYG

34 yusunoeg

s)stjeidads

Buissasoug-mieg.

[

43548
puy Jdasn

W

a5y

aJejlaluf Jasn

pUSITLERY|

aabeusy
FORLAMIN| A3S0)

\WA

—

seody fHplaoLdd

QY 08AIY 18
SISATYNY 209

9SRQRIR JuaMnoeg

d4d02

WILSASENS SISATVNY

}adx3
yAeday

C—J

}aadxq
29X3 P

TN

Lk

-l
M3

Figure 2: CODER Object Types

e ———

Rule Base

mrpert —
BL ACKBOARD
G

Blackboard C—2
(|
G|
-L/ Strategistx

External

Knowledge Base

Resource
Manager

1

Figure 3: User Interface Subcommunity

Local Blackboard Translation Experts User Interface Manager

~
A

@ \ Display Area A

Pending Hypothesis
Area

Report
Expert

If] Display Ares

|

)

)

o P
%:3;7 -

]

12

References

[BELK 84] Belkin, N.J.,, RD. Hennings, and T. Seeger. Simulation of a Distributed
Expert-Based Information Provision Mechanism, In Inf. Tech.: Res. Dev. Applications.
3(3): 122-141, 1984,

[CHAN 85] Chandrasekaran, B, Generic Tasks in Knowledge-Based Reasoning:
Characterizing and Designing Expert Systems at the “Right” Level of Abstraction. The
Second Conference on Ariificial Intelligence Applications: the Engineering of
Knowledge-Based Systems (Miami Beach, FL, Dec. 11-13, 1985): 1EEE, 1985, pp.
294-300.

[ERMA 80] Erman, L.D.,, F. Hayes-Roth, V.R. Lesser, and D.R. Reddy. The Hearsay-II
Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty, ACM
Comp. Surveys, 12:213-253, 1980,

[FOXE 83] Fox, E.A. Extending the Boolean and Vector Space Models of Information Retricval
with P-Norm Queries and Multiple Concept Types. Dissertation, Cornell University,
University Microfilms Int., Ann Arbor Mi, Aug. 1983.

[HAYE 85] Hayes-Roth, Barbara. A Blackboard Architecture for Control. Artificial Intelligence
26 (1985), pp. 251-321.

[LEFF 84] Leftler, Samuel J., Robert S. Fabry, and William N. Joy. A 4.2BSD Interprocess
Communication Primer. In ULTRIX-32 Supplementary Documents, Vol. I1I, 3-5 - 3-28,
1984.

[LEVE 84] Levesque, Hector J. A Fundamental Tradeoff in Knowledge Representation and
Reasoning. Proceedings CSCSI-84 (London, ON, May 1984): pp. 141-152.

[SALT 83] Salton, G., E.A. Fox, and H. Wu. Extended Boolean Information Retrieval.
Commun. ACM, 26(11):1022-1036, Nov. 1983.

[STRO85] Stroustrup, Bjarne. (1985). The C++ Programming Language. Reading, MA:
Addison-Wesley.

[WINE 85] Winett, Sheila and E.A. Fox. Using Information Retrieval Techniques in an Expert
System, In Proc. Second Int. Conf. on Artificial Intelligence Applications, Dec. 11-13,
1985.

13

