TR-86-8

DIAGNOSTIC ASSISTANCE USING DIGRAPH
REPRESENTATIONS OF DISCRETE EVENT
SIMULATION MODEL SPECIFICATIONS*
C. Michael Overstreet

and
Richard E. Nance}

26 March 1986

*Research partially supported by the Office of Naval Research and the Naval Sea Systems Command
through the Systems Research Center at Virginia Tech.

tDepartment of Computer Science, Old Dominion University, Norfolk, Virginia 23508.

#Systems Research Center and Department of Computer Science, Virginia Tech, Blacksburg, Virginia

24061
Also cross-referenced as Technical Report Number SRC-86-001, Systems Research Center, Virginia

Tech.

SRC-86-001

DIAGNOSTIC ASSISTANCE USING DIGRAPH
REPRESENTATIONS OF DISCRETE EVENT
SIMULATION MODEL SPECIFICATIONS*
C. Michael Overstreett

and
Richard E. Nancei

26 March 1986

*Research partially supported by the Office of Naval Research and the Nava) Sea Systems Command

through the Systems Research Center at Virginia Tech.
tDepartment of Computer Science, Old Dominion University, Norfolk, Virginia 23508.
iSystems Research Center and Department of Computer Science, Virginia Tech, Blacksburg, Virginia

24061
Also cross-referenced as Technical Report Number TR-86-8, Department of Computer Science,

Virginia Tech.

ABSTRACT

Automated diagnosis of digraph representations of discrete event simulation models is
illustrated as an effective model verification technique, applicable prior to coding the model
in an executable language. The Condition Specification is shown to provide an effective
representation, from which automated analysis can initiate with a digraph extraction. Sub-
sequent diagnostic simplification techniques are applied to the digraph, either antomatically
or in concert with the modeler. Three categories of diagnostic assistance are defined: analvi-
ical, comparative, and informative. The categories represent diagnostic techniques that are
progressively more difficult to automate. Examples of techniques assigned to each category
are included, and a concluding caution is made that diagnostic techniques requiring modeler
interaction should not be ignored in the preoccupation with complete automation.

CR Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing
and Debugging — Diagnostics; 1.6.4 [Simulation and Modeling]: Model Validation and
Analysis

Additional Keywords: model development, model specification

1. INTRODUCTION

Software development technology is recognized as an area in which major advances are
needed. Various systems and methodologies have been advocated for reducing software
costs (see, for example, [14, 36]). The work reported here focuses on model development,
which encompasses more than “program development" [25, p. 326]. By restricting attention
to the modeling domain of discrete event simulation, we hope to identify techniques which
can reduce the cost and improve the quality of simulation models. This work represents an
extension of earlier research in the representation of simulation models [29], and the reader

is advised to consult the earlier paper for details omitted here for brevity.

1.1. The Role of Diagnosis in a Model Development Environment

The complexity and scope of simulation models has forced reliance on automated assis-
tance. While different tools are required in different phases of the model life cyele, we con-
centrate on diagnostic procedures intended to support the model development phases (see
Nance [25, pp, 326-329]). These tools assist the development process by providing early
diagnosis of several types of real or potential problems and by providing alternative forms

of documentation.

Several researchers have reported work in the area of simulation support; among the
more interesting are the program generators [5, 8, 19, 35]. Other authorities have asserted
that, if significant improvements are to be realized, the problems of quality and produec-
tivity must be addressed at a global level through the ecreation of integrated systems
designed to provide an environment for simulation mode] development and experimentation
[23, 27, 39]. In this paper we discuss some tools which are intended to be part of a model

development environment (MDE), following an architecture described by Balei [1].

1.1.1. The Context

A model development environment (MDE) consists of a set of hardware and software
tools, collectively referred to as the model development system, and the physical surround-
ings in which the development tasks are accomplished. Typically, the term “environment”
is used; however, emphasis is cleariv placed on the tocl set: a configuration of hardware,
languages, data bases, and utilities residing within an operating system enabling interactive

use.

Through experience with rapid prototyping of several utilities, we are attempting to
define the requirements for a “production” MDE. The Conical Methodology [22] forms the

underlying conceptual framework for the prototypes by:

{1} guiding in the partitioning of model development functions among the
tools (see [1}),

(2} clarifying the relationships among the tools to achieve an integrated
environment, and

(3) assisting in the definition of tool functionality through the emphasis on
specific principles.

As an example of the principles governing tool functionality, the methodology requires that
the modeling team employ a top-down model definition followed by bottom-up model
specification, producing model documentation during the construction process. Addition-
ally, project documentation is an indispensable requirement of the MDE. Important in the
Conical Methodology is the clear distinction between a “model specification” ({which
describes how the model is to behave) and é “model implementation" (which describes how

the behavior is to be achieved).

1.1.2. Model Diagnosis

Within a model development environment based on the Conjeal Methodology the pur-
poses of model diagnosis are:

(1) to assist in the identification of conceptual errors {misperceptions) or

descriptive errors (misrepresentations) as early as possible in the modeling
effort,

(2) to suggest alternatives that might be less prone to errors or might offer
more efficient model representation and experimentation, and

{3) to provide guidance and checks on the modeling effort (for example, the
reminder to update required documentation as changes are made in the
model representation).

Diagnééis begins with the first communicative model and céntinues throughout the model
life cyéfe (22, pp. 12-17].

Three categories of diagnostic assistance are identified within the MDE. The most
common is analytical diegnosis: aetermination of the existence of a property such as attri-
bute utilization or revision consistency (both diseussed below). The second category is com-
parative diagnosis, which requires the definition of measures intended to depiet differences
among multiple representations of a single model or between representations of different
models. Informative diagnosis constitutes the third category, which includes assistance in
the form of characteristics extracted or derived from model representations. Graphical tech-

nigues are prominent in this last category.

1.2. Related Work

Graphical depictions of system behavior represent a longstanding simulation modeling
technique. Among the program generators, for example CAPS [5] and DRAFT [19], the
entity cycle diagram provides a graphical language for system description that originated

with the “wheel chart” of K.D. Tocher [34]. The GPSS block diagram can be traced to the

beginnings of the language [11]. Zeigler’s influence diagram [38, p.92}, for example, charac-
terizes the interactions among cells that can potentially effect a state transition. More
generically, the influence diagram depicts the causality in state transitions among system

components.

The references cited above employ graphical techniques as a modeling form, character-
izing the behavior among system components. The diagnostic techniques that follow are
applied to model representations in order to detect modeling errors or provide information
to the modeler. In this respect, the intent is similar to that of Burns and Winstead [3}, who
utilize a signed digraph to capture causality assumptions in a syvstems dynamics model. The
authors, commenting on 'the. application to discrete event models, restrict their consideration
to determined events (strictly time dependent in contrast with state dependent or a coﬁbi—
nation).

DeCarvalho and Crookes [9] use a graphical representation of a model specification to
identify independent “cells” in order to-improve the efficiency of an activity scanning time
floﬁ: mechanism. The graphical form also serves to identify components with output that

can be revised in replications of the simulation run.

Schruben’s event graphs offer the closest parallel to the graph-based diagnostics to be
described [33]. The primary distinctions between event graphs and those that follow lie in
the semantic level of description. Event graphs inherently represent the event scheduling
world view (see [16, pp. 20-21]), limiting the representations of felationships to those permit-
ted among events (scheduling, conditional occurrence, and cancellation). We utilize graphs
for diagnostic purposes that depict relationships among objects, attributes of objects, states
of objects (activities), and events (changes in the states of objects). (See [24, p. 176] for a

precise definition of “event” and “activity.")

Schruben’s objectives are similar to ours: use graphical analysis to simplify model
representation and recognize potential logic errors. However, by working at a more primi-
tive semantic level, stripping away the implicit knowledge embodied in the event scheduling

world view, we can capture broader (“richer"), but less precise, relationships.

An explanation of the implicit knowledge embodied in world views is bevond the scope

of this paper. The interested reader is referred to [16], [28], [29], and [30].

The Conical Methodology can be accurately classified as an entity-relationship (E-R)
(also referred to as entity-relation-attribute (ERA)) modeling technique generally attributed
to Peter Chen [4]. However, the conceptual underpinnings are influenced more by the simu-
lation pfogramming]anguageé SIMULA and SIMSCRIPT and the ideas of George Mealy
[21] and P.J. Kiviat [15,18] than by the much later E-R concepts. The CM is object-
oriented, while the entity-atiribute-set (EAS) conceptual view of system description .[17,18]
combines an “object influenced” static view with an “event causality” dynamic view. With
respect to the description of interactions among permanent gntities (in SIMSCRIPT termi-
nology) and accommodation of a top-dowul modeling approach, the Conical Methodology

draws more heavily on concepts from the SIMULA implementation of process interaction.

2. MODEL REPRESENTATION AND MODEL DIAGNOSIS

Accomplishing the purpose of early detection and correction of modeling errors through
diagnostic assistance requires a representation formalism prior to that achieved through an
executable programming language. That is, a “formal” specification must precede the “for-
mal" implementation (a program). Such a specification formalism is provided by the condi-

tion specification (CS) introduced in an earlier paper [29} and briefly reviewed below.

Unlike the representation provided by a simulation program, the condition specification

contains none of the syntactic or semantic elements imposed for execution purposes.

Furthermore, the implicit knowledge permitted by the adoption of a world view is removed;
the model behavior is made explicit in terms of the objects and relations among the objects
comprising the model. Implicit knowledge in a specification impedes the application of
diagnostic analysis; therefore, the explicit representation is a precursor to effective diagnosis

130},

2.1. The Condition Specification.._

A model specification is defined as a quintuple:

< input specifications,
output specifications,
object definition set,
indexing attribute,
transition specification >.

The input and output specifications jointly define the interface between the model and ™
its environment. The indexing attribute, commonly called “system time," provides the

means for depicting temporal relationships so fundamental in diserete event simulation.

Objects are defined in terms of attributes, which must be typed by the modeler. |
The enumeration of values for all attributes of an object at a particular value of system
time defines the state of that ohject at the particular instant (value of system time).
The transition specification for a model defines: (1) an initial state, (2} termination
cénditions, and (3) the dynamic structure — how each attribute value {and object)

affects every other attribute value (and object).

The transition specification could take a form such as that used by Zeigler with
the transition function, which prescribes a mapping from one modei state to another
[38, pp. 141-142]. However, the generality achieved by Zeigler’s abstract, formal
description of the dynamics of component interactions is purchased with a loss in the

instructive characterization that promotes convergence to an eventually correct and

-6 -

executable model representation. The condition specification, summarized in Table 1, is
an attempt to strike a balance between descriptive generality and an instructive for-

mallsm.

TABLE 1: Syntax and Function of Condition Specification Primitives
(from [29, p. 197]).

Name

Syntax

Function

Value change

Not specified

Assign attribute values

description
Set Alarm SET ALARM(< alarm name > Schedule an alarm
[{ < argument list >)],
< time delay > }
When Alarm WHEN ALARM{ < alarm name exp > | Time sequencing condition
[{ < parameter list > } 1)
AFTER ALARM(< alarm name > Time sequencing condition

Ai'ter Alarm

Cancel Alarm

& < Boolean exp >
[{ < parameter list > }])

CANCEL ALARM(< alarm name > -
[, < alarmid > |)

CREATE(< object type >

Cancel scheduled alarm

Create Generate new model object
[, < objectid > 1)
Destroy DESTROY(< object type > Eliminate a model object
: [, < objectid >])
Output Not specified Produce output
Stop Not specified Terminate simulation experiment
Comment, { < any text not inclnding 2 "}" > } Comment

2.2. An Example Revisited: The Machine Repairman Model

Nlustration of graph-based diagnostic techniques requires an example, and for
brevity we utilize the machine repairman mode! introduced in [29, pp. 198-199]. The

model is a variation of the classical machine interference problem which prescribes ser-

vice of facility failures according to the closest failed facility [31.6].
Model Abstract:

A single repairman services a group of n identical semiautomatic
facilities. Each facility requires service randomly based on a time
between failure which is a negative exponential random variable with
parameter “mean_uptime.” The repairman starts in an idle location
and, when one or more facilities requires service, the repairman trav-
els to the closest facility needing service. Service time for a facility
follows a negative exponential - distribution - with - parameter -
“mean.repairtime.” After completing service for a facility, the repair-
man travels to the next service request. The closest facility is deter-
mined by shortest travel time. Travel time between any two facili-
ties or between the idle location and a facility is determined by a
function evaluation. :

Model Objective:
Estimate total and percentage downtime for each facility.

Model development following the Conical Methodology begins with a deﬁnitionﬁl
stage, which concludes with the interface and object specifications shown in Figures 1
énd 2. {A Pascal notation is used for comments in all figures and tables.) The model
definition produces an object-oriented, static description in terms of strongly-typed ”
attributes. Attribute association with objects can lead to multiple uses of a single attri-
bute in describing objects. This apparent redundancy promotes “correctness by
emphasizing the relationships among objects in the ensuing model specification stage.
The model specification stage, requires dynamic description to be imparted through an

attribute-oriented construct called a condition action pair (CAP).

A CAP is composed of a condition, a boolean expression or time-based signal, and
an associated set of actions, which are taken when the condition is evaluated as “true.”
Specification via the CAP construct requires the modeler to prescribe the condition(s)

under which defined attributes change value and the expression effecting the change.

-8 -

Input:
n
mean.uptime
mean_repairtime
max. repairs

- Qutput:
total_downtime [1..n]
. percent..downtime {I..n}

{ Number of facilities
{ Mean time between facility failures

{ Mean repairtime

{ Number of repairs for termination

{ Total downtime for each {acility

{ Percentage downtime for each facility } :

. positive integer;

positive real;
positive real;
positive integer;

: ponnegative real;

nonnegative real;

FIGURE 1: Machine Repairman Interface Specification

{ Object

environment

facilities

. begin_downtime| 1.0] °

repairman

idle position

Attribute

system._time

n

mean uptime
mean.repairtime
Max. . repairs

n

max_Tepairs
mean uptime
mean repairtime
i

failure{ 1..n)
failed| 1..n]

total_downtime| 1..n |
percent_downtime [1..n]
end_repair{!..0)
arr_facility{l..n}

num repairs

MAax_repairs

mean repairtime
status

location
end_repair(l..n)
arr_facility{l..n)
NUIN_TEPAIrs

arr_idle

Type }

: positive real;
: positive integer constant;
: positive real consfant;

positive real constant;

: positive integer constant;

: positive integer constant;
: positive integer constant;
: positive real constant;

: positive real constant;
I

Yok ae

time-based signal;
Boolean;

positive real ;

nonnegative real ;

: positive real;

time-based signal;

: time-based signal;
: nonnegative integer;

: positive Integer constant;
: positive real constant;

: { avail, travel, busy);

: (idle,:lin };

: time-based signal;

: time-based signal;

. nonnegative integer;

: time-based signal;

FIGURE 2: Machine Repairman Object Specifications

CAPs with identical conditions are grouped into an action cluster {AC). Figure 3
explains and illustrates the relationships among the object specification {definition

stage), the CAP (specification stage), and the action cluster.

Object Specification Extract

repairman: status (avail, travel, busy)
location :(idle, i:1..1)

Condition Action Semantics
{ <condition™ , < action set>)
Condition Action Pair Examples {and Explanations}

(WHEN ALARM arr_facility (i:1..n), status :=busy)
{When the repariman arrives at a facility, he 1s immediately
busy repairing the {acility.}

(WHEN ALARM arr_idle, status :=avail}
{When the repairman arrives at the idle location, he is
available to repair failed facilities.}

(WHEN ALARM arr_facility (i:1..n), location :=i)
{When the repairman arrives at a facility, his location is
that facility.} '

Action Cluster Formation

WHEN ALARM arr_facility (i:1..n); _
SET ALARM {(end_repair (i), neg_exp{mean_repairtime));
status :=busy;
location :=i;
END WHEN

FIGURE 3: Iliustration of the Relationships in Attribute Definition and Specification.

Figure 3 illustrates the strong similarity of the CS representation to production
rule organization in knowledge bases [26, p. 23-33]. Achieving this reéembiance was not
an underlying motivation; héwever, the implications of the structural similarities are
not being ignored. Consequently, the utility of logic programming within model

development is a currently active area of investigation.

- 10 -

The action clusters for the machine repairman model are shown in Figure 4.

{ Initialization }

WHEN Initialization
INPUT (n, max_repairs, mean—uptime, mean_repairtime };
CREATE repairman AN object WITH

location := idle;
status := avail;
END WITH
CREATE facility A p—set WITH INDEX i :1..n ALSO
failed} i | := false;
total_downtime| i | :=0;
SET ALARM(failure{ i }, neg_exp{ mean_uptime) };
END WITH;
DEFINE down A d—set OF facility WITH failed| { | = true;
num-_repairs 1= {J;
END WHEN
{ Termination }
WHEN pam_Tepairs ;> max._repairs
FORi:=1TGnDO
percent_downtimeli] := total_downtimeli]/systemtime;
OUTPUT(i, total.downtimeli],);
END FOR
STOP
END WHEN
{ Fallure }

WHEN ALARM(failure {i: 1..1})
failed| i] := true;
begin_downtime| i | := system_time;

END WHEN
{ Begin repair }
WHEN ALARM arr_facility (i: 1. 1)
SET ALARMY(end_repair(i), negexp{ méan_repairtime });
status := busy;
location :=i;
END WHEN
{ End repair })
WHEN ALARM endrepair (i: 1..n)
SET ALARMY{ failure(i }, neg—exp{ mean_uptime) };
friled] i | := false;
total_downtimef i | := total.downtime| i] +
(system..time - begin_downtime|i])
statns = avail;
DUIR.TEPAITs := LUM.repairs + 1;
END WHEN
{ Travel to idie }

WHEN down = emply & status = avail & location = idle:
SET ALARMY(arr_idle, traveltime(location, idie)} §;
status := travel;

END WHEN
{ Arrive idle }

WHEN ALARM(arr_idle };
status ;= avail;
location == idle;

END WHEN
{ Travel to facility }

WHEN status = avail & down = NOT empty;
i 1= closest_failed_fac(down, location };
SET ALARMY(arr_facility(i), traveltime

{ location, 1 }); .
status := iravel;
END WHEN

FIGURE 4: Machine Repairman Action Clusters

The initialization and termination ACs are required in every model: the first to
prescribe initial state definition, the second to stipulate the conclusion of a single simu-
lation experiment. Examination of the remaining ACs reveals a formal specification of

the actions taken when:

(1} A facility failure occurs: the “failed” condition of the facility is noted
and the downtime recording is begun.

(2) "The repairman arrives at 2 facility to begin repair: an end of repair
is scheduled, the repairman is “busy," and his location is at the facil-
ity.

(3) The repairman completes the repair of a facility: the next failure of
that facility is scheduled, the facility is “operational,” the repairman

is available, and the number of repairs and total downtime are
updated.

(4) No facility requires repair as the repairman completes a repair and
becomes available: the repairman travels to the idle position (status
is “travel").

(8} The repairman arrives at the idle position: his status is available for
repairs and his location is at the idle position.

(6) The repairman completes a repair and finds at least one facility
failed: the closest falled facility is determined and the repairman
begins travel to that loeation.

Note that the fourth and sixth ACs described above conform to the definition of con-

fingent events, while the others are determined events (see Nance [24, p. 176]). The

event scheduling world view accommodates the latter and the activity scan, the former.
The condition specification accommodates both.

A skeleton function specification for the model is shown in Figure 5 to complete
the model specification. Note that a report specification [29, p. 197] is omitted for brev-
ity; the use of OUTPUT from the interface specification serves to convey the required

information on model behavior. Neither INPUT nor OUTPUT are totally specified.

-12 -

{ Function Arguments Type }

closest_failed_fac (down :i:1 .. m, :1..mn
location : idle, 1..n)

traveltime (origination : idle, 1 .. 1, : positive real
destination : idle, i .. » }

neg.exp . { mean :real) : positive real

FIGURE 5: Machine Repairman Function Specifications

2.3. The Basis for Model Diagnosis

Our contention is that model diagnosis should not require a significant investment
of time and effort beyond that demanded of the modeler for specification and docu-
| menjl}ation of the model. Consequently, graph-based representations suitable for diag-
nosis are automatically derivable from a condition specification. The following terms

are defined to support that derivation:

An attribute 7 is a control attribute of an action cluster if z appearsin a
condition expression of the action cluster.

An attribute z is an output attribute of an action cluster if the actions can
change the value of attribute 2.

An attribute z is an input attribute of an action cluster if the value of =z
affects the output atiributes of the action cluster.

The control, input, and output atiributes for the machine repairman model are shown

in Table 2,

For a condition specification, let

T = [tl, Lys e s tk} be the set of all time-based signals in the CS;

A= [al, @, s @] be the set of all other attributes in the CS; and
m

TABLE 2: Attribute Classification for the Machine Repairman Model

Action Control Input Output
Cluster Attributes Attributes Attributes
{Abbreviation)
INITIALIZATION initialization n i
(in) max_repairs failed
mean_uptime fatiure(i}
Mmean_repairtime total_downtime
DUMm_Tepairs
location
status
TERMINATION DUI_Tepairs system_time total_downtime
(te) max_repairs total_downtime percent_downtime
FAILURE failure{i) system_time begin._downtime
: (fa) faiied
BEGIN REPAIR arr_facility(i) mean_repairtime end_repair(i)
{br) i status
location
END REPAIR end_repair(i) mean_uptime failure{i}
(er) system_time failed
total downtime total _downtime
NUm_Trepairs OUIR_repairs
begin_downtime status
TRAVEL TO IDLE failed location arr_idle
(ti) status status
location
ARRIVE IDLE arr_idle status
(ai) location
TRAVEL TOFAC status i i
(tf) failed arr_facility{i) location
status

AC = [acl, ac ;- acﬂ] be the set of all action clusters in the CS.

With these definitions, the basis for graph derivations is established.

3. Graph-Based Diagnosis
The preceding development provides the foundation for the graph-based diagnosis,

which requires the derivation of two digraphs: (1) an action cluster attribute graph,

- 14 -

and (2)an action cluster incidence graphs. A definition and descripiion of the utility of
each is described in the following sections. The diagnostic information derivable from

each graph, the emphasis of this paper, is described in some detail.

3.1. Action Cluster Attribute Graphs

The Action Cluster Aitr'ibﬁ?te Graph {ACAG) for a CS is defined as foliows.
Assume CS to be a conditién specification T;Vith k time-based signal atiributes, m other
attributes, and n action clusters. Then G, a directed graph with k¥ 4+ m + n nodes, is
cdnstructed as follows:

G has a directed edge from node i to node jif
(1) nbde i is a control or input attribut‘e for node j, an AC, or
(2) node j is an output attribute for node i, an AC.
Thus G is bipartite with one set of nodes representing ACs and the other, attributes:
The ACAG for the machine repairman model is omitted for brevity sinee it represents
the information in Table 2 in a different format.

The ACAG depicts the interaction between the ACs and attributes in a model
specification, showing both the potential for actions of an AC to change the value of an
attribute, and the reverse (an attribute’s influence on the actions of an AC). In order to
distinguish interactions that occur instantly from those involving a time delay, edges
from an AC to a time-based signal (attribute) are depicted with a dashed line; other
edges with a solid line.

While the graph is a potential documentation tool, any complex model is likely to
have a graph much too large to be directly helpful to a modeler: Examination of Table
2 reveals the tendency of graphs to become cluttered and incomprehensible. The graph,

in the form of an appropriate data structure, is primarily useful as input for some of

the analyses discussed below.

3.1.1. Analysis of Action Cluster Attribute Graphs
The ACAG can be used to support several types of model analysis:

(1) Attribute Utilization: if the node representing an atiribute has an
out-degree of 0, then that attribute cannot influence model behavior.

Note that having an unutilized attribute is not necessarily an error since the attribute
may be serving strictly a reporting (“statistical”) function, in which case it should

appear in some output specification (and this is easily verified).

(2) Attribute Classification: analysis of the graph can identify the func-
tion (e.g.- control, output, or input) of each attribute in a model
specification.

For example, attributes can be classified as “control,” if their value change can cause
the occurrence of some actions, or as “statistical,” if they serve only reporting fune-

tions.

(3) Attribute Initialization: if {he node representing an attribute has in-
degree of 0, then the attribute must be uninitialized.

The model may contain uninitialized attributes other than those with an in-degree of 0.
The absence of attribute initialization is a sufficient but not a necessary condition for

the existence of uninitialized attributes.

(4) Action Cluster Completeness: if the condition expression for an AC
contains attributes which are not time-based signals, then at least
one control attribute of the AC must also be an output attribute of
the same AC.

To avoid one type of “infinite loop” some action of the AC must eventually make the

condition for that AC false.

(6) Revision Consistency: development of a model specification is stages per-
mits the infended use of attributes, described in an earlier incomplete
specification, to be checked against the actual usage In a later, more

_18 -

compiete revision.

3.1.2. Matrix Representations

Matrix representations can be constructed from an ACAG, and the manipulation of the
matrix data structure has intuitive appeal. The operations described here are similar to

those for producing term-document matrices in information storage and retrieval |32, p. 50].

The information contained in an ACAG can be represented by a pair of boolean

matrices. Let a CS have m ACs, ac, ac, ", ac , and n attributes, @, 6, a .
m n

Then the attribute action cluster matriz for a CS is an n by m Boolean matrix defined as

b{i, 7)= {

The action cluster attribute matriz for 2 CS is an m by n Boolean matrix defined as

b(iaj)= {

3.1.3. Operations on Matrix Representations

follows:
1 if edge (a, ac J_) exists in the ACAG
¥

0 otherwise.

follows:
1 if edge {ac, e) exists in the ACAG
iy

0 otherwise.

If Al is an attribute action cluster matrix for a CS and A2 is an action cluster attri-
bute matrix for the same CS8 constructed so that the .ordering of attributes and ACs
corresponds in both matrices, then we can define the attrz’bute_ interaction matriz A as

A=A1 X AQ.
A contains 2 1 in position (1,j) if and only if attribute a is an input or control attribute for
an AC for which a.j is an output attribute. Thus the matrix A indicates the potential for

one attribute to direetly influence the value of another.

Powers of the matrix A can be used to measure the strength of relationships among
attributes and perhaps assist the modeler in decomposing the CS by identifying groups of
related attributes. The term “attribute cohesion” is given to the measure of this strength of

relationships.

If the order of the matrices in the above multiplication is reversed, then an acfion clus-
ter interaction matriz is formed. A “1" is formed in position (i,j) if and only if ac has an
H

output attribute which is an input attribute of a@c . Thus an action cluster interaction
J

matrix indicates the ability of one AC to directly influence another.

Powers of an action cluster interaction matrix can be used to measure strength of rela-
tionships among ACs and perhaps guide the modeler in the decomposition of the CS. The
term “action cluster cohesion” is used. Bauer, ef. al. [2] demonstrates the utility of this
matrix in a recent paper describing the application of factor analysis to effect model decom-

position.

3.2. Action Cluster Incidence Graphs

The Action Cluster Incidence Graph (ACIG), is useful in the analysis of model specifi-
cations, in depicting a particular type of interaction among ACs. The idea is simple: if an

action of AC has the potential to cause AC to occur (by changing the value of a control
t 7

attribute), then a directed edge leads from AC to AC . As before, a solid edge indicates
J j

that AC can cause ch to occur in the same instant of simulated time and a dashed edge
4

indicates the potential occurrence only after a time delay (through a time-based signal).

The automatic construction of an ACIG from a CS is easily accomplished following the
procedure given below. However, this procedure produces a graph which may include many
potential edges. That is, an edge from AC. to AC might be constructed although the

_ 1 7

application of additional knowledge would reveal that AC, could never cause ACj to oceur.
:

- 18 -

Potential edges removed by the application of additional knowledge are termed infeasible.
Overstreet [28, p. 271] shows that no algorithm can exist to produce from a model specifica-
tion an ACIG which never includes infeasible edges. Even so, in many cases the number of

infeasible edges is not excessive.
An ACIG for a CS consisting of a set of ACs {ac_ ac_ - ,ac } . can be constructed
I, 2, n
as follows:

(1) For each 1<i <n, let node i represent ac_
]

(2) For each ac, partition the atiributes into three sets:
T = {éontrol attributes which are time-based signals}
C = {all other control attributes}
O:_ = {output attributes}

(8) ~Foreach1 <i<n,
For each 1 <j <n,
Construet a sohd edge from node i to node j if O ﬂC #0

Construct a dashed edge from node i to node j i O qC =0,

END foreach1 <j<n
END for each 1 <i <n.

For the machine repairman model, the ACIG produced by the above algorithm is show
in Figure 6. Note the prevalence of immediate change edges in the graph. Some of these
potential edges can be classed infeasible by employing knowledge-based analysis in a

manner described in Section 3.2.2.

3.2.1. Analysis of Action Ciustef Incidence Graphs

In addition to providing documentation of possible component interactions, the ACIG
caﬁ assist in several interesting analyses. The graph itself can be analyzed for the following
propgrties:

(1) Connectedness: if, for a given condition specification, no ACIG exists
which is not connected, then the CS is said to be connected.

ydesr sousprou] 40950 U0y uswWIRday] aulyoeA 9 AUNOILA

—~

23

.\

93UBYd pakypep auny, ,---
‘s3ueyo ojRIpawIWy T

"

n

- 90 -

If 2 CS has an ACIG which is not connected, then the model specification contains
components which cannot influence the actions of other components. Consequently, the
specification consists of two or more independent submodels. The property can be extended
in a useful fashion. If the initialization AC for a CS is the only node connecting components,
then the speéiﬁcation contains non-interacting components. ’While lack of connectedness is
not necessarily an error, knowledge that a CS has this property may be useful to the model-

ing team.

(2) Accessibility: if, for a given condition specification, no ACIG contains
nodes with an in-degree of zero {other than the Initialization node) then the
CS is said to be accessible.

If a CS is not accessible, then it contains ACs which can never be activated in any sub-
sequent execution. These ACs can be deleted from the model specification with no effect, a

result unlikely to be intentional.

(3} Out-complete: if, for a given condition specification, no ACIG contains
nodes with an out-degree of zero {other than the termination node) then
the CS is said to be out-complete.

If a CS is not out-complete, then it contains ACS'Which can be deleted from the mode!
specification without affecting model behavior. The inclusion of ACs with an out-degree of
zero is not necessarily an error. The purpose of such an AC might be to report model
behavior. In this case the AC should contain some kind of output operation, which is

readily recognizable.

3.2.2. Extended Uses of Action Cluster Incidence Graphs.

The analyses described above require only direct operations on ACIGs. More extensive
uses require additional tools, such as simplification techniques, defined metrics, and inter-
face utilities. The knowledge-based simplification of an ACIG, alluded to above, illustrates

the capability for modeler assistance.

3.2.2.1. Graph Simplification

Examination of the ACIG for the machine repairman model reveals several infeasible
edges among the potential edges shown in Figure 6. For example, the edge from INITIALI-
ZATION (in) to TERMINATION (te) can be deleted as infeasible since model termination
immediaﬁéeiy following initialization is not feasible (the comparison of the wvalue of
“num_repairs’ with that of “max_repairs” must permit some non-zero simulated time
period).

Coupling experf; knowledge of simulation analysis with that of the application domain
enables further recognition of infeasible edges. Table 3 provides a summary of the results of
the simplification procedur;e, which at this juncture is applied through interaction with the

modeler.

Each action cluster in the model is typed as “contingent” (the condition is not strictly a
time-based signal) or “determined.” Each potential successor is examined to determine its
feasibility. Infeasible edges are deleted, based on arguments briefly summarized in Table 3,
and the resulting graph is presented in Figure 7. A more detailed explanation of the simplif-

jcation procedure is given in [28, pp. 199-214].
Three significant points arise from the examination of Table 3 and Figures 6 and 7:

(1) While automatic graph construction is easy, the simplification necessary to
provide useful diagnostic assistance can be involved. Representing the
knowledge required to perform edge deletion can range from the almost
trivial (termination can never immediately follow initialization) to the more
challenging (a travel to the idle position can only follow an end of repair
and if the set “down"” is empty).

(2) The knowledge required for simplification is both generic to simulation (the
first example in (1)) and specific to the application domain (the second
example).

(3) The level of deseriptive detail furnished by the specification language
affects the difficulty in acquiring and representing the required knowledge.
For example, the specification {down = NOT empty} is equivalent to

Y 1) I

TABLE 3: Summary of the Graph Simplification for the Machine Repalr Model

Action Type Potential Basis Feasibie
Cluster of Successors: for Edges
{Abbreviation) EdgeI Output Deletion of Edge d e
Attributes
INITIALIZATION c te: puIn_repairs Termiration immediatety foliowing
(in) max, repairs initiation indicates an error.
¢ tf: failed Violates assumption of all
status facilities initially operating
¢ ti: location Violates assumption that initially
falled repairman is at idie position
status
d fa: failure{i} Not deleted fa
TERMINATION . None
(te)
FAILURE c ti: down=empty Repairman does not go to
{fz) {NOT failed|ijVi:1..n) | idle position except after
ending a repair and finding no
facilities failed
¢ tf: failed Not deleted tf
BEGIN REPAIR ¢ tf: statns Repairman must end a repair
(br) failed
¢ ii: status Repairman must end a repair
location
d er: end_repair(i) Not deleied er
END REPAIR c ti: down=empty Not deleted i
{er) (NOT failed[i]Vi:1..n)
status
d fa: failure{i} Not deleted fa
¢ te: nuin_repairs Not deleted te
c tf: down=NOT empty Not dejeted tf
{failedfi] for
some i:1..n)
status
TRAVEL TOIDLE | ¢ fi: status Repairmar does not travel
(ti) to idle immediately following =
travel to idle
¢ tf: status Repairman must arrive at the
tdle position before identifying 2
failed facility
d al: arr_jdle Not deleted al
ARRIVE IDLE ¢ ti: status Repairman leaves idle position
(ai) locatior only to repair a failed facility
. ¢ tf: location Not deleted if
TRAVEL TOFAC | ¢ ti: status Repairman travels to facility
{tf) . only to begin a repair
d br: arr_facility(i) Not deleted br

i Edge types: d = determined (strictly a time-based signal}; successor occurs following some delay
¢ = contingent (state or state and-time-based); successor could oecur immediztely

» = none (no edge).

ydern eduaprou] mysnj) uorpy wewsreday pagidung 4 FUNOIA

87

-pBueyd pake[ep duN], -,
.@wﬁdﬂo vad_ﬂ&EEH :............_

{failed [i} for some i:1..n}: but. while the latter refiects a direct relationship
between the END REPAIR and TRAVEL TO F ACILITY action clusters,
the former is indirect, forcing a derivation.

The introduction of expert systems into model development environments to provide diag-
nostic assistance is clearly accommodated by the condition specification and the semantic
structure of condition action pairs. However, the exploitation of the modeler’s intelligence
through diagnostic assistance should not be overlooked in the rush toward totally

automated support.

3.2.2.2, Structural Evaluation

The structure of an ACIG can be diagnosed for other characteristics, three of which are

briefly deseribed in this section.

(1) Complexity: no definition of complexity is offered here; it is a property not
easily defined. However, we propose that an ACIG for a model specification
can be analyzed to suggest, at least to a relative if not an absolute degree,
both anticipated run-time overhead and difficulty in implementation,
verification/validation, and maintenance.

Several graph-based metrics can be proposed which, at least at an intuitive level, relate
to the complexity of the underlying model. Several authors have proposed graphical related
metrics for the study of software complexity. See [20, 37, 12] for some proposed metrics and

[10, 7, 13] for evaluations of these metrics.

(2) Precedence structure: An ACIG, by the nature of its construction, conveys
something about the sequencing of model actions. For example, if a node
has in-degree one, then its occurrence in any execution based on the CS
must always be preceded by the AC with an edge to that node.

For each AC, the ACIG provides both a set of predecessor ACs and a set of successor
ACs. Although no algorithm is likely to detect errors in these sets, the predecessor and suec-
cessor sets are interesting diagnostic tools. Such sets presented to one who understands the

behavior of the simulated system, could enable that individual to recognize that anticipated

successors are missing or unexpected successors are included.

(3) Decomposition: While the ACIG depicts interaction among ACs, the
approach can be used for components other than ACs. An incidence graph
for decompositions of a model into structures other than ACs can be util-

ized.
For example in [29], this approach is used to analyze alternate world view representa-
tions of a single CS. Utilizing the action cluster interaction matrix, derived from the ACIG,

as the basis for a factor analytic decomposition technique is cited above [2].

4. Diagnostic Assistance in the Model Development Environment

Iin Section 1 three categories of diagnostic assistance are defined. Collectively, the
categories span a continuum from manual to automated techniques. Analytical diagnosis
includes the mos§ readily automated; while the informative category represents the most "
knowledge intensive. Table 4 utilizes this classification scheme to provide a summary of the

graph-based technigues described herein.

The summary provided in Table 4 assists in emphasizing three points with regard to

this research:

(1} The categorization of diagnostic assistance clarifies the extent to which the
responsibility for detecting problems in a model specification is shared
between diagnostic tools and the modeler.

(2) While analytical diagnosis produces the most definitive statements about
the model specification, informative diagnosis may present the highest
utility/cost tradeoff, especially in the short term.

(3) Within the categories of comparative or informative diagnosis, precise
measures and completely defined techniques cannot be recommended. Only
by empirical investigation can proposed measures and techniques be
evaluated.

5. Summary

Graph-based diagnostic analysis offers considerable promise for the expansion of

_9Fr _

TABLE 4.

Categorized Summary of Diagnostic Assistance

Caiegory of Disgnostic
Assistance

Propertles, Measures, or Technigues
Appled to the Condition SpecHication {C8)

Basis for Diagnosis

1) Anslytical: Determiration of

a) Attribute Utiiization: No attribute is defined

Action Cluster Attribute Graph

the existence of a property of thai does nob affect the value of another {ACAG)
& model representation. unless it serves a statistical {reporting)
fuaction.
b) Atiribute Initialization: All requirements for ACAG
initial value assignment to attributes are met,
¢) Action Cluster Completeness: HKequired state ACAG
changes within zn action eluster are possible
d) Attribute consistency: Attribute Typicg ACAG

during model definition is consistent with
attribute usage in model specification.

e) Connectedness: No action cluster is isolated. Action Cluster Incidence Graph

[ACIG)
f} Accessibility: Only the initialization action ACIG
cluster is unaffected by other action clusters.
g] Out-complete: Only the termination action ACIG
ciusier exerts no infiuence on other action
clusters.
b} Revision Consistency: Refinements of a model ACAG

specification are consistent with the previous
version.

Attribute Interaciion Matrix
{originates with the ACAG)

Attribute cohesion: The degree to which
attribute values are mutually influenced.

2) Comparative: Measures of i}
differences among multiple
model representations.

Action Cluster Interaction Matrix

{originates with the ACAG)
ACIG

I} Action Cluster cohesion: The degree to which
action clusters are mutually influenced.

k} Complexity: =2 relative measure {or the

comparison of a CS to reveal differences in

specification (clarity, maintainabiiity, etc.} or

implementation (run-time overhead) criteriz.

Attribute Classification: Identification of the ACAG
function of each attribute (e.g. input, output,
control, ete.}

m) Precedence Structure: Recognition of
sequential relationships among action clusters.

n) Decomposition: Depiction of subordinate
relationships among eomponents of 5 CS.

8) Informative: Characteristics | 1)
extracted or derived from

model representations.
ACIG

ACIG

human problem-solving ability to deal with large, complex simulation models. The ACAG
and ACIG, and their graphical and matrix derivations, represent a source of much needed
automated and partially automated assistance in the model development. task. The graph
construction and simplification procedures provide concrete evidence of the potential for

expert systems applications in simmulation modeling. However, the need to recognize the sig-

nificant progress to be achieved through assistance in extending the modeler’s intelligence is

asserted and reinforced by the taxonomy of diagnostic assistance presented. In the short- to

intermediate-term the high payoffs may be found in the category of informative diagnosis.

ACKNOWLEDGEMENTS

The authors acknowledge the many stimulating discussions with Osman Balci, whose
influence is no doubt reflected in this work. Also, the extensive helpful guidance of the
referees in the revision of an earlier version is acknowledged. The careful, laborious typing
of manuseript versions by Karen Kaster is gratefully appreciated. -

REFERENCES

[11 Balei, O. Requirements for model development environments. Computers & Operations
Research 13, 1 (Jan.-Feb. 1986).

[2] Bauer, K.W,, Kochar, B, and Talavage, J.J. “Simulation model decomposition by fac-
tor analysis." In Proceedings Winter Simulation Conference, {San Francisco, CA,
December 1985), pp. 185-188.

[3] Burns, J.R. and Winstead, W.H. M-Labeled digraphs: An aid to the use of structural
and simulation models. Management Science 81, 3 (March 1985), pp. 343-357.

[4] Chen, P.P. The entity-relationship model--Toward a unified view of data. ACM Tran-
sactions on Database Systems 1, 1 (March 1976), pp. 9-36.

[6] Clementson, A.T. Ezstended Control and Simulation Language/Compuier Aided Pro-
gramming System, Detailed leference Manual, The University of Birmingham, Birm-
ingham, England, April 1978.

[6] Cox, D.R. and Smith, W.L. Queues, Methuen and Company, Ltd., 1961.

[7} Curtis, B., Sheppard, 8.B, Milliman, P., Borst, M.A., and Love, T., Measuring the
psychological complexity of software maintenance tasks with the Halstead and
McCabe metrics. IEEE Transactions on Software Engineering SE-5, 2 (March, 1979),
pp. 96-104.

[8] Davies, N.R. “A modular interactive system for discrete event simulation modeling.”
In Proceedings Ninth Hawai! International Conference in System Sciences, Western
Periodical Company, (January 1976), pp. 296-299.

[9] DeCarvalho, R.S. and Crookes, J.G. Cellular simulation. Operational Research Quar-
terly 29, 1 (1976), pp. 31-40.

[10] Elshoff, J.L., and Marcotty, M. On the use of the cyclomatic number to measure pro-
gram complexity. SIGPLAN Notices 13, 12 {December 1978), pp. 29-40.

{11] Gordon, G. The development of the general purpose simulation svstem (GPSS). In

- I _

(12]

[13]

[19]
[20]
21]

[22]

[23]

[24]
[25]

[26]

History of Programming Languages. Richard L. Wexelblat ed., Academic Press, 1981,
pp.- 403-425.

Heﬁry, S. and Kafura, D. Software structure metrics based on information {low.
IEEE Transactions on Software Engineering SE-9, 5 (September 1981}, pp. 510-518.

Henry, S. and Kafura, D. “On the Relationships Among Three Software Metrics,"
Proceedings 1980 Symposium on Software Quality Assurance, in Performance Evalua-
tion Review 10, 1 (1981), pp. 81-88.

Howden, William E. Contémporary software development environments. Communica-
tions of the ACM 25, 5 (May 1982}, pp. 318-329,

Kiviat, P.J. Digital computer simulation: Modeling concepts. RAND Memorandum
RM-5378-PR, August 1967.)

Kiviat, P.J. Digital computer simulation: Computer programming languages. RAND
Memorandum RM-5883-PR, January 1969,

Markowitz, HM. SIMSCRIPT: Past, present, and some thoughts about the future.
In Current Issues in Computer Simulation, NR. Adam and A. Dogramaci, eds.,
Academic, New York, 1979, pp. 27-60.

Markéwitz, HM., Malhotra A., and Pazel D.P. The EAS-E application development
system: Principles and language summary. Communications of the ACM 27, 8
(August 1984).

Matthewson, S.C. “Interactive simulation program generators.” In Proceedings of the
European Computing Conference on Interactive Systems, Brunel University, 1975.

McCabe, T.J. A cémpiexity measure. IEEE Transactions on Software Engineering
SE-2, 4 (December 1978), pp. 308-320.

Mealy,r G.H. “Another look at data." In Proceedings Fall Joint Computer Conference,
1967, pp. 525-534.

Nance, R.E. “Model representation in discrete event simulation: The conical methodol-
ogy". Technical Report. CS81003-R, Department of Computer Science, Virginia Tech,
Blacksburg, March 15, 1981.

Nance, R.E., Mazaache, AL., and Overstreet, C.M. “Simulation model management:
Resolving the technological gaps." In Proceedings Winter Simulation Conference,
(Atlanta, GA), December 1981, pp. 173-179.

Nance, R.E. The time and state relationships in simulation modeling. Commaunications
of the ACM 24, 4 (April 1981), pp. 173-179.

Nance, R.E., “A tutorial view of simulation model development.” In Proceedings
Winter Simulation Conference, (Arlington, VA), December 1983, pPp- 325-331.

Newell, A. and Simon, H.A. Human Problem Solving, Prentice-Hall, Inec., Englewood
Cliffs, NJ, 1972.

28]

[29]

[30]

[31]

[35]

[36]

[37]

[38]

[39]

Oren, T.I. “Computer aided modelling systems.” In Progress in Modelling and Stmulo-
tion, F.E. Cellier, ed., Academic Press, London, 1982.

Overstreet, C.M. “Model specification and analysis for discrete event simulation.”
Ph.D. Dissertation, Department of Computer Science, Virginia Tech, Blacksburg, VA,
December 1982.

Overstreet, C. M. and Nance, R.E. A specification language to assist in analysis of
discrete event simulation models. Communications of the ACM 28, 2 (February 1985),

pp- 190-201.

Overstreet, C.M. and Nance, R.E. World view based discrete event model simplifica-
tion. In Modeling and Simulation Methodology in the Aritficial Intelligence Era, M.S.
Elzas, Oren, T.1., and Zeigler, B.P. (eds}, North-Holland, to appear.

Palm, D.C. The distribution of repairmen in servicing automatic machines. {Swedish),
Industritidningen Norden, Vol. 175, p. 75, 1947.

Salton, G., Automatic Information Organization and Retrieval, McGraw-Hill, New
York, NY, 1968.

Schruben, L. Simulation modeling with event graphs. Communications of the ACM
26, 11 {November 1983), pp. 957-963.

Tocher, K.D. and Owen D.G. “The automatic programming of simulations." In
Proceedings Second International Conference on Operational Research, 1960, pp. 50-
68.

Vidallon, C. GASSNOL: A computer subsystem for the generation of network
oriented languages with syntax and semantic analysis. Simulation ’80, (Interlaken,
Switzerland, June 25-29), 1980.

Wasserman, A.. Tutorial: Software development environments, IEEE Computer
Society Press, MD, 1981.

Woodward, M.R., Hennell M.A., and Hedley D. A measure of control flow complexity
in program text. IEEE Transactions on Software Engineering SE-5, 1 (January 1979),
pp. 45-50.

Zeigler, B.P. Theory of Modeling and Simnulation, Wiley, New York, 1976.

Zeigler, B.P. Multifacetted Modelling and Discreie Event Simulation, Academic Press,
New York, 1984.

-0 -

UNCLASSIFIED

SECURITY CLASSIFICATION OF THiS PAGE (When DaraEEnrered).

READ INSTRUCTIONS

REPORT DOCUKENTATION PAGE BEFORE COMPLETING FORM

iz. GOVT ACTESSION NO. 3, RECIPIENT'S CATALOG NUMBER

1. REPORT NUMBER

SRC~86-001 (also TR-86-8 Dept of (S)

5. TYPE OF REPORT & PERIOD COVERED
Interim Report for period
June "85 to March '86.

6. PERFORMING OXG. REPORT NUMBER

&. TITLE fand Subtitle)
Diagnostic Assistance Using Digraph
Representations of Discrete Event Simulation
Model Specifications

7. AUTHOR(&)} B. CONTRACT OR GRANT NUMBER(s}

C. Michael QOverstreet N60921-83G-A165 BOL2Z
Richaré E. Rance

2] AND ADODRESS 0. PROGRAM ELEMENT. PROJECT, TASK
5. PERFORMING ORGANIZATION RAME AN B RO G R A B I NUMBERS

Systems Research Center and Dept. of C.S.
Virginia Tech

Blacksbure, Virginia 24061
11, CONTROLLING OFFICE NAME AND ADDRESS

2. REPORT DATE
26 March 1986

Naval Sea Systems Command
13. NUMBER OF PAGES
3 .

SEAG1E

Washington, D.C. 20362 -
T 4on TORING AGENCY NAME & ADDRESS(if different from Controlting Office} | 15. SECURITY CLASS. (of this report)

Naval Surface Weapons Center Unclassified
Dahlgren, VA 22448 152 DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT fof this Report)

This report is distributed to scientists and engineers at the Naval Surface
Weapons Center and is made available on request to other Navy scientists.
A limited number of copies is distributed for peer review.

17. DISTRIBUTION STATEMENT (of the absfrac! entered in Block 20, if difierent from Report)

18. SUPPLEMENTARY NOTES

16, KEY WORDS (Continuc on reverse gide if necessary and identify by block number)

Software Engineering, testing and debugging, diagnostics, Simulation and
Modeling, model validation and analysis, model development, model specification,
model diagnosis, computer assisted modeling, automated model analysis.

20. ABSTRACT ¢Continue on reversy side If necessary and identify by block number)

Automated diagnosis of digraph representations of discrete event simulation
models is illustrated as an effective model verification technique, applicable
prior to coding the model in an executable language. The Condition Specificatign
is shown to provide an effective representation, from which automated analysis
can initiate with a digraph extractiom, Subsequent diagnostic simplification
techniques are applied to the digraph, either automatically or in concert with
the modeler. Three categories of diagnostic assistance are defined: analytical,

DD . i(::th;g }473 EDITION OF 1 NOV 6515 OHBSOLETE

UNCLASSIFIED

. . e ——

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dsta Entered)

comparative, and informative. The categories represent diagnostic
techniques that are progressively more difficult to automate., Examples of
techniques assigned to each category are included, and a concluding caution
is made that diagnostic techniques requiring modeler interaction should not
be ignored in the preoccupation with complete automation.

5/N 0162- LF- 014- 6601
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/When Date Entered)

