TR-85~7

SORTING IN LINEAR EXPECTED TIME

M.T. NOGA and D.C,S. ALLISON

Lockheed Palo Alto Research Laboratory,
Palo Alto, CA 94304

and
5 Department of Computer Science
Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061

ABSTRACT: A new scorting algorithm, Double Distributive
Partitioning, is introduced and compared against Sedgewick's
gquicksort. It 1is showuwn that the Double Distributive
Partitioning algorithm runs, for all practical purposes, in
0(n) time for many distributions of keys. Furthermore, ‘the
combined number of comparisons, additions, and assignments
required to sort by the new method on these distributions 1is
always less than quicksort.

KEYWORDS: Statistical sbrting, hybrid sorting, distributive
partitioning, quicksort.

Page 2

1. INTRODUCTION

In this paper we present an internal sorting method which
apparently runs faster than quicksort [1] for many reasonable
distributions of the items (keys). The outstanding feature ‘of
the new method 1is that for nearly every input vector
-approximately the same number of operations are required to
sort. The method combines the idea of sampling with that of
distributive partitioning. For reasons which will become clear
we name the new method double distributive partitioning (DDP).
To measure the speed of our algorithm against that of gquicksoert
we have used the accepted standard of counting fundamental
operations (those which take only one or a few cycle times to
complete). The eritical features of the algorithm are
illustrated by segments of PASCAL code. Varizble names were
chosen 8o that a rather straightforward tranécription into

another high~level language should be possible.
2. HISTORICAL PERSPECTIVE

It has been known for some time that, besides being fast,
quicksort performs remarkably well for almost any distribution
of items. Consider Table 1 where the number of fundamental
operations required by the 'median-of-three! hybrid quicksort
ef R. Sedgewick [2] are compared on several common
distributions. (Sedgewick's implementation is known to be one
of the fastest of the hybrid gquicksort algorithms.) It can be
sSeen that the number of operations involved is nearly

identical. Analysis shows that quicksort has an O(nlogn)

Page 3

expected-casé behavior, where n is the number of items to be
sorted. One slight drawback to using quicksort is that the
worst-case behavior is 0(n2). However, it can be argued that

if care is exercised in choosing the partitioning element,-then
a3 n increases, the probability of the wofst-case occurring is

extremely small,

/

There is another sorting method called DPS [3,4,6,9,10,13]
which has been shown to sort substantially faster that
quickéort on uniform distributions; see Table 2 for some
comparative performance statistics. In this method a linear
formula is used to distribute the items into bins (buckets or
boxes). The contents of any twe bins i and J, 1 < 3, are such
that all items in bin i are less than those in bin J. After
this initial distribution, the method may be recursively
applied to each bin or'comparison based methods can be used to
finish the sort. A theoretical treatment of DPS by Devroye and
Klinesek [#] asserts that performance will be O(n) for a wide
raﬁge of distributions, i.e., those which have either
~exponentially dominating tails or compact support., Among these
are the chi-squared, beta, normal, expohential, and rectangular
distributions. Unfortunately, there is a rather wide range in
performance depending upon which of these distributions is
encountered during the sorting process [5). The reason is that
certain bins will contain a higher percentage of items than
others, This means that if the distributive method is
recursive, the probability is high thét an ltem will have to be
redistributed. On the other hand, if the DPS method is a

Page 14

hybrid (like several of those listed in Table 2), additional
time will be spent on the second pass {(or third pass) sorting
method (for examﬁle, bubblesort, insertion sort, quicksort, -
heapsort). Thus, it 1s questionable whether any of. the
existing DPS hybrids will run faster than quicksort for most
non-uniform disfributions except when n is quite large (n >
10000). Our research emphasis will be to find a distributive
scheme which places approximately the same number of items into

each bin regardless of the distibution of the items involved.

Although'there are some other methods which work well 1in
special cases, for example when the items are already nearly in
order (insertion sort), or if the keys are of a fixed length
(radizx sort), we will be interested in more general methods
where the keys are not necessarily of fixed size and there 1is
no a priori knowledge concerning the original ordering of the

keys.

Page 5

Table 1. Comparing the performance of Sedgewick's
quicksort on several different distributions. Entries
are the number of operations (assignments + arithmetics
+ comparisons) for a PASCAL implementation. All
operation counts were derived from an average of 25 runs.

O e 0 0 D S T TR D) W D D D D D et e S O GNP 0 D D T A R A O S D S A . . D D D T G D

n Uniform Normal Gamma Exponential
250 go28 8102 8071 8035
500 17698 17725 17910 17657
1000 38800 39213 38667 33008
2000 84524 84257 8u640 84320

T O I S S T G S S S0 T O D D S S D ek A Al ok s A st A st S o U D ks BT sk ol W WD M kg S ek b e wAS et S wek w— — —

Table 2.
methods

Previous tests of distributive sorting

versus quicksort; n = 5000 items.

Test
Authors

DPS method
and time

Quicksort
method and
time

Computer and
Language

A €D e D G T AR IO W0 T DD W WY R O D S O W S D T A R AT D D A G6 A T O W

Distributive
Pass,
Heapsort
Pass.
1.970sec

Non<recursive
version due
to S. Baase
{71.

6.301sec

Burroughs
B6T700,
PASCAL

S S T S A W T D D D WD MG D S S S A A A G G AN A D A D A N LA S M D W el S G ek W vt v S A A

Dobosiew
wiez [3]

Find median,
split vector,
distributive
pass on each
subvector,
Method is
recursive.

Non~recursive
version due
to R. Loeser
[81.

2.072ms

CDC 6400,
FORTRAN

(FIN 4.1,
OPT = 1)

T L - - D D W D A e e o e e vl e el e v W S D - -

Partition
vector into
two groups
of size n/2,
distributive
pass on each
subvector,
merge sort
two groups.
Method is
recursive.
3.448ms

Median=of-
three due to
R. Sedgewick
[21.

5.262ms

IBM 370/158,
ALGOL 60

Distributive
Pass. = Method
is recursive.

Non-recursive:

version due

to R. Singleton

[1117.
168ms

470 v/6,
FORTRAN

Page 6

Page 7
3. DPS ON NON-UNIFORM DISTRIBUTIONS

Figure 1a illustrates what can happen when we use DPS on
any distribution that is non-uniform; some bins will contain
more items on the average than other bins. In the illustration
the curve represents an exponential distribution. Overlaying
the distributive bins on top of the curve clearly indicates
that 1in the expected sense bin 1 will contain more items than
bin 2, bin 2 more items than bin 3, bin 3 more items than bin
4, and so forth for each pair of consecutive bins. For a
different distribution a completely different scenario might
present itself. As an example, consider the standard normal
distribution; Fig. 1b. The middle bins would become the most
overpopulated while outlier bins, such as bins 1 and 2, would

contain very few (if any) items.

.All published DPS sorts 'emplo& a linear distribution
formula under the assumption that the data is nearly uniformly
distributed., Historically, there have been several reascns for
adopting this strategy. First, if ne information is known
about the distribution thén it is wusually best to assume
uniformity. Second, gathering statisties in the hope of using
this information to derive a 'nﬁn—linear distribution formula
could be quite costly. Third, even if gathering statisties was
relatively inexpensive, the number- of operations heeded to
implement such a formula (multiplications, additions, special

functions, etec.) would most likely be prohibitive [6].

N

N

Fj la

Linear distribution scheme: Distributive bins
superimposed over exponential curve show that
leftmost bins will contain highest percentage
of items.

0

Fa. e

Tor a normal distribution center bins will contain
highest percentage of the items.

Page 9

Another subtle reason for wusing a 1linear distribution
formula can be deduced from Figures 1a and 1b. After the first
distributive pass, the items in each bin will be much closer-to
a uniform distribution than the original set of items.
Therefore, it should take only one more distributive pass on
the average to approximately sort all the bins. After this a
simple sorting technique, such as bubblesort or insertion sort,

can be used to complete the sorting process.

4, TOWARDS A NEW DISTRIBUTIVE METHOD

The effect of using a non-linear distribution formula is
illustrated in Figure 2. The width of the bins is smaller when
there are more.items and larger when there are 1less items.
Therefore, each bin will contain approximately the same number
of items. Can we sort faster than quicksort by gathering
statistical information and - using this information to
distribute the iteﬁs in a2 non-linear fashion? Surprisingly,
there has been little research directed towards answering this
seemingly straightforward question. Only in [6] has it Dbeen
mentioned that this course of attack might yield a fast method.
Our goal is set =-- we will attempt to develop a 0(n)
statistical sorting method which outperforms quicksort for

nearly all distributions.

F‘j.l.

Non-linear distribution scheme: Each bin will contain
approximately the same number of items. Bins will vary
in width depending upon shape of distribution curve.

Page 11

The new method will clearly require two sub-tasks, one to
gather the statistics, and another to derive the correct
formulae needed to distribute the items into the biﬁs.
Hopefully, the end result of the distributive pass will be such
that each bin will contain approximately the =same number of

items.

5. GATHERING STATISTICS

To insure speed, we have chosen to systematically sample
items 1, 1+k, 1+2k, 143k, ... 1+mk. k is the perioed of the
- Sample, meaning that every kth element is to be sampled. m is-
chosen so0 that 1+mk <= n < 1+{(m+?)k. First, we locate the
minimum and maximum items of the sample and divide the range
into a number of equally sized intervals. All of the sampled
items are then 1linearly distributed to obtain a felative
frequency count for each interval. The computation can be
carried out in O(m+1) <= 0(n) time, wheré m+l1 is the.number of
~samples, by wusing a simple distributive pass. The following
(commented) PASCAL code illustrates the basic mechanism, where

a is the array to be sorted:

{ Find min and max items in sample }

samplemin :
samplemax

i::=1 + k;
WHILE i <= n DO

“s

al1]
al1]

nu

-

BEGIN '
IF afi] < samplemin THEN samplemin := al[il]
ELSE IF ali] > samplemax THEN samplemax := a[il;

i =14+ k

Page 12

END;

{ Divide the range [samplemin, samplemax] into
a number of equally spaced intervals (nintervals)
and obtain a frequency count of the number of sampled
items in each interval. The code is a little tricky
in the sense that we want all the items distributed
into intervals 0 through (nintervals - 1). However,
because of computer arithmetic (some machines round,
others chop), the computation of j can be as large
as nintervals., The remedy is to add the contents
of the frequency counts for intervals
(nintervals - 1) and nintervals and store the
result in fregqlnintervals - 1]. }

IF n < 1000 THEN nintervals =z 10

ELSE nintervals := round(n/100.0};

sampleconstant := nintervals/{samplemax -~ samplemin);

FOR i := O TO nintervals DO freq[i] := 0;

i = 1;

REPEAT
J := trunc((ali] - samplemin) * sampleconstant);
freq[j] := freq[jl + 1:
iz =i+ k

UNTIL i > n;

freq[nintervals - 1] := freqlnintervals - 1]

+ freqlnintervals];

Wé believe that k should be rather small (say around 5),
thus yielding a very 1large sample. There are two reasons.
First, the exﬁense of taking a large sample will be quite small.
when compared with the expense of distributing all n items,
which will have to be carried out later in a distributive pass.
Second, there is no reliable method for estimating the standard
error of the mean when we use a systematic sampling scheme.
However, a larger sample size tends to nullify a periodic
variation in the data, except if the data has a period of
exactly k. It is clear that systematic sampling is a very good
method when the data aré randomly distributed, approximately in

~order, or approximately in reverse order [121.

Page 13

The number of sample intervals (nintervals) does not have
to be large. A good choice is to let this quantity be 1
percent of the number of items. However, if n i3 1less _than
1000, the number of sample intervals should not go below about

10 [12].

6. NON-LINEAR DISTRIBUTION SCHEMES

One idea is to somehow match the statistical data against
some set of standard distributions. The cumulative
distribution function (CDF) corresponding to the closest match
could then be used to distribute the items into 0(n) bins,
Unfortunately, there is no known fast heuristic which can carry .
out the match with any reliability. Even if it were possible
to quickly and reliably estimate the distribution type, a
significant number of arithmetic operations would be necessary

'(in many cases) to implement the CDF.

A second idea is to use curve fitting techniques, such as
the method of least-squares, to approximate the CDF based upon
the statistical data. We have actually implemented ¢this idea
with some success, The key 1s that the polynomial which
approximates the c¢urve must be_ of a rather 1low degree;
otherwise the number of multiplications and additions needed to
find the polynomial as well as carry out the distributive pass
would make sorting by this method more time consuming than
quicksort. With this restriction in mind, we employed the
method of least-squares to fit a third degree polynomial to the

accumulated sample data. This polynomial (factored by Horner's

Page 14

method) was then used to distribute the unsorted vector. We
found this method to be slightly faster than quicksort for n <«
2000. We tested both the wuniform and standard normal
distributions. However, for large n it became necessary to use
more intervals to gather the statistical data. It is a well
known result that with additional data points it becomes harder
for a least~squares curve of a fixed degree to exactly
represent the data. Therefore, the variance in the population
size of the distributive bins began to increase dramatically as
n grew larger and larger. Outlier bins near the minimum and
maximum of the sampled data tended to become very overcrowded.

This is the main reason this method was abandoned.

" The failure of the CDF least-squares method points the way
to a third distributi#e method which is both elegant and
straightforward. The idea 1is te¢ use a piecewise lihear
approximation, where the number of bins is directly
proportional to the number of samples falling into -each
particular interval. Thus, each item must pass through two
distributive formulae to locate its destination bin. The
second distribution formula will be specifié to the particular
statistical interval concerned. We illustrate the idea by

giving an example,

Suppose that n = 1000 and we are taking a sample size of
10 percent. We will use 10 sample intervals. After sampling
let us assume that the following frequencies were recorded for

each of the intervals 0 through 9:

Page 15

interval 0 1 2 3 L 5 6 T 8 9

i . A . S A W S N A e D e S s Dt e b el D ded WD e WS W EER S

frequency 2 8 6 10 13 12 12 10 13 14

Furthermore, let us assame that the sample min was found t6 -be
0, and the sample max 100. If n bins were to be used to
distribute the items over the entire range then we would break
interval 0 into 20 bins, interval 1 into 80 bins, interval 2
into 60 bins, ..., and interval 9 into 140 bins. The 20 bins
of interval 0 would cover the range [0,10), the 80 bins of
interval 1 would cover [10,20), ..., and the 140 bins of
interval 9 would cover [90,100]. Any item less than the sample
min would go into bin 0, and any item greater than the sample
max would go into bin 1000. The distribution formula for (say)r

interval 2 would be as follows:

(x - 20)/(30 - 20) * 60 + 100

where x is an item that falls imto interval 2. Code excerpts
in the next section illustrate how it 1is possible to
efficiently compute the distribufion c¢onstants for each

interval.

It should now be clear why we have chosen the name double
distributive partitioning. As we shali see, not only does this
method approximate the CDF over the sample range, it has the
further advantage of being computationally robust unlike the

least-squares method.

Page 16

7. IMPLEMENTATION AND STORAGE REQUIREMENTS

Using the information gained from the freguency count of
the sample we can conveniently compute the necessary constants
needed for the piecewise distribution formul ae, One
distribution formula is computed for each sample (or
statistical) interval. The following PASCAL excerpt
demonstrates the actual mechanism. The parameter c is used to
vary the total number of bins that will be wused over all
intervals of the double distributive pass. For example, if ¢ =
0.5 then n/2 bins will be used over the entire sample range.
offset[i] holds the number of bins wused over all previous
sample intervals; that 1is, over statistical intervals O
through (i-1), i > 0. The arhay intervalmin holds the minimum
allowable value for each statistical interval, and
nbins_in_interval is the number of distributive bins that will
be employed over a particular interval.

ke := k *.¢; . :
intervalwidth := (samplemax - samplemin)/nintervals;
offset{0] := 0;
nbins_in_interval :z= round(kc ¥ freq[01l);
intervalmin{0] := samplemin; '
constant[0] := nbins_in_interval / intervalwidth;
FOR i := 1 TO nintervals-1 DO
BEGIN :
offset[i] := offset[i-1] + nbins_in_interval;
nbins_in_interval := round(kc ¥* freqfil); :
intervalmin[i] := intervalmin{i-1] + intervalwidth;
constant[i] := nbins_in_interval / intervalwidth

END;
extrabin := offset[nintervals~1] + nbins_in_interval;

Page 17

The next section of PASCAL code contains the double
distributive pass. A 3ingly linked-list is used to represent
the items of each bin. In this way, wWe avoid having to
physically move the elements during the distributive pass. An
extra bin (calculated above) is used to catch those items which
will overflow the computation of j2 in the last sample
interval. Again, this is necessary since certain machines
(such as the VAX 11/78Q0) round flecating point computations.
Below, the variable sampleconstant (see code excerpt in section
5) is wused to compute the statistical interval to which each

item belongs.

FOR 4 := 0 TO extrabin DO lhead{i] := 0;
FOR i := 1 TO n DO
BEGIN

IF (ali] <= samplemin)
THEN j2 := 0
ELSE IF (ali] >= samplemax)
THEN j2 := extrabin
ELSE
BEGIN
J1 := trune({(alil - samplemin)
¥ sampleconstant); -
j2 :=z trunec((al[il - intervalmin[jti])
* constant{jl1] + offset([j1])
END;
l1inkfi] := lhead[j21;
lhead[j2] := i
END; '

At the éompletion of the above computaticn each empty list
- will have a l1ist head equal to zero, and each hon-empty list
will have a terminating zero link. By making one pass through
~all the 1lists, the contents of the bins may be quickly
rearranged into a destination array b. An insertion sort may

then be employed to complete the sorting process [13]. The

Page 18

following PASCAL c¢ode completes the algorithm.

{ dump linked-1ist inte b }

i 1= 03
FOR j2 := 0 TC extrabin DO
IF lheadlj2] < 0
THEN
BEGIN
next := lhead[j2];
iz i+ 15
b{i] := alnext];
WHILE link[next] <> 0 DO
BEGIN
next :=z link[next];
i =1+ 1
bli] := alnext]
END
END;

{ insertion sort }

bin+1] :=2 infinity; { infinity is a large real number }
~FOR i := n=1 DOWNTO 1 DO
IF vli] > b[i+1] THEN
BEGIN
temp := bli];
Joi= 1+ 1;
REPEAT
blj=-11 := bljl;
Joiz= o+ 1
UNTIL blj] > temp;
b[j=1] := temp
END

The amount of storage required to implement the algorithm
is only slightly greater than that used by moét of the hybrid
DPS algorithms. Assuming that items and 1linked-list pointers
each require one word of storage, fthe total array storage
required is (3n + en) words (c is the constant that determines

the total number of bins used in the double distributive pass).

Page 19
8. AVERAGE AND WORST CASE ANALYSIS

We will assume that the items consist of a set of n
independent, identically distributed random variables with
density funection f. As we have noted, +the sampling process
takes O{m+1)} < 0O{n) time, To distribute the items and dump
them into array b alsoc takes 0(n) time. The time for the
insertion sort can be <calculated by considering the time it
takes to carry out an insertion sort on each individual bin,
To sort bins 1 through (en-1) will take 0(n) time for the
following .density functions: exponential, gamma, beta,
bindmial, uniform, normal, plus all other densities which have
either exponentially wvanishing tails or compact support
(without strong peaks). The proof follows immediately from the
main result given by Devro&e and Klinecsek in [4], where they
show that it takes 0(n) time to sort using a distributive pass
followed by a bubblesort pass. Essentially, our result follows
because the systematic Sampies gathered frpm the random
distribution are alsd inherently identically distributed random
variables. Thus, the analysis of the distributive pass over
each statistical interval reduces to the one given by Devroye
and Klinesek for their theoretical sort over the entire range

of the items.

To approximate the time to sort bins 0 and ¢n will require
an estimate of how many items fall into these bins. An
expression for the expected number of items in these two

intervals is

Page 20

_max
nj; xf(x)dx <aym,

amplemax
nfm

sampliemin
The constant 8 is the number of items in statistical

expected in bin e¢n

u

"

expected in din O «f(x)dx + B <c:2n.

in

interval 1 falling into bin 0., That 8 is a constant follows
from the assumption that the n items are random variables. It
turns out that the integral in both expressions can be bounded
above (as n gets large) by positive constants_ai and a, for the
set of density functions given above. Thus the total time
taken by the algorithm is
T(n) < (eym? + 0(n) + (e,n)® + 20,8 +B8°.

In most instances a, and oo, will be quite small (< 0.1) and
thus the running time exhibited by the algorithm will Dbe

dominated by the 0(n) term.

The wofst case of the algorithm is 0(n2) since it is
possible that after the distributive pass one bin may contain
as many as (n-1) items. The result follows immediately from
the fact that insertion sort has a worst case 0(n?) running

time.

We note that the worst case can be improved by - making a
slight modification to the algorithm. After the items are
distributed a check of the number of items in each bin .can' be
made. If a bin contains more than (say) 10 items, heapsort
f14] can be employed tec finish ordering 1it. Since heapsort
always requires O(nlogn) time to sort a vector of size n, the

worst case of the modified DDP sort would then be O(nlogn).

Page 21

Note also that the average T{(n) in equation (1) will always be
less than or equal to O(nlogn)} if heapsort is used on bins O

and c¢n.

9. TEST RESULTS

PASCAL implementations of DDP and quicksort were compared
on a DIGITAL VAX 11/780. The tests were conducted with 0.01n
sample intervals and n/2 bins (¢ = 0.5) for DDP and a smallest
partition size of 8 (in lieu of insertidn sort) in Sedgewick's
quicksort., Tests were restricted to four distribution types:
uniform, standard normal, gamma (alpha = 2.0, heta = 1.0), and
exponential. IMSL subroutines GGUBS, GGNML, and GGAMR were
used for random number generation [15]. Instead of obtaining
CPU timings, counts of <certain fundamental operations were
obtained by placing software_ counters into the DDP and
quicksort codes, The set of tallied operations included:

1. Arithmetices: Addition, subtraction, multiplication,

division. _

2. Assignment: Replacing the value of a variable by
the value of another variable, or the
value of a constant.

3. Comparison: Coiparing the values of two variables,

a variable and a constant, or two
constants,

No distinetion was made Dbetween the use of simple
variables and array variables or their types (real, integer,
boolean) in any of the operation counts. In some cases the

code contained composite statements involving several

Page 22

operations. These were broken intoc the requisite number of
assignments, comparisons, and arithmeties. Exceptions were

arithmetic statements such as

These were counted as only one arithmetic; the assignment
involved was considered to be implicit and was not added to the
assignment counter. FOR loop constructs with n repetitions

counted as an additional n comparisons and n arithmetics.

A summary of the test results can be found in the graph of
Figure 3. The two curves in the graph represent the average of
the total number of operations (arithmetics + assignments +
comparisons) taken by DDP and guicksort on the set of four
distributions. Twenty five test runs were madé for each
distribution type. One reason we chose not to graph the
results of each distribution separately is that the standard
deviation amongst the total number of operations for the four
types was very small. For examplé, for n = 32000, these were
78.4 (DDP) and 4376.0 (quicksort). The standard deviation
divided by the average number of operations was consistently
better for the DDP sort. These results, along with the fact
that DDP always sorted with fewer operations than quicksort,

indicate the superiority of double distributive sorting.

Page 23

Additional statistics were gathered for DDP to determine
the average number of items falling into the set of non-empty

bins, the average number of bins containing more than 8 items,

and to determine the size of the largest bin; see Table 3.

(The extra operations needed to gather these statistics were
not included in the DDP operation counts.) Note the stability
in the average size of the non-empty bins, the expected
doubling in the number of bins containing more than 8 items,
and small growth size of the most populous bin. (The largest
bin was the largest one obtained during any one of the 25 test

runs.)

The relationship between the number of specific operations
required by each algorithm varied with the size of n, For n =
1000, (DbP:quicksort), the ratios - wWere . (12.7:14.1) for
arithmetics, (5.7:10.2) for assignments, and (8.4:14.5) for
comparisons. For n = 32000, the respective ratios were
(10.1:16.1), (18.2:43.9), and (26.9:68.3). Obviously, the
widening performance gap as n gfows larger can be attributed to

the expected complexity of each method.

3]

RYIUTH

_.;.__.j._._._... —
. i :

(swa3

. NE=1
"‘;‘f’“‘“‘f"ﬂ__‘"—'_" -

:
|

$o ;#a&::
SR

o W 3 . RESLLEIN s:m moﬁ 40 macm&;ok;ma m>P“mFm+ UL . ,
_ , ! “ _ !
g b | | _
: i : ;
i K A _

Table 3.

DDP sort:

Some statistics gathered from tests on the

Average size of non-empty bins (non-empty),

average number of bins containing more than 8 items
(big 3), and size of largest bin during each test
{(largest).

-——m——uan——_---————--n——————-.--.———-c——-—wn---:——-u-—-—.--—-—-—-s——

UNIFORM

NORMAL

EXPO-
NENTIAL

Page 25

-—-——mm-—m—-------———m----————-—----n————-n-:-n—:-n-a--——u————--—-

2000

4000

8000

16000

non-empty
big 8
largest

non-empty
big 8
largest

non-empty
big 8
largest

non-empty
big 8
largest

non-empty
big 8
largest

non-emtpy
big 8
largest

2,327
30.000

—.w-————--——uu——----ﬂ———mw—--————“----———-un—-u-————-p-u-.--——

Page 26

10. CONCLUSIONS

For approximately 20 years it has been the goal of
computer scientists to find a sorting method which runs faster
than quicksort on a real machine, independent of the
distribution of items involved in the sort. We believe that
the method presented, which has linear expected time

complexity, realizes this goal.

Quicksort still possesses some advantages over DDP, such
as a smaller "storage requirement and superior locality of
reference, important issues in the paging environments of
modern mainframe computers. However, in most cases, we believe
that DDP will outperform quicksort when a large amount of real

store 1s available to handle the sort computation.

Two issues unresolved by the present research involve the
adaptability of DDP to parallel computation and the search for
a more robust sampling scheme that might allow DDP to perform

Wwith even greater consistency over a wider class of_inputs.

1. ACKNOWLEDGEMENTS

We wouid like to thank Pete Mancuso for several helpful
discussions concerning statistical distribution theory, Carolyn
Bjorklund for reading an earlier version of the manuscript, and
a referee for suggesting some modifications to the'DDP code

which resulted in a more efficient implementation.

(1]
[2]
[31]

(4]
[51]
(6]

(71
(81

91
[101]

[11]

(127

(131

[14]

[15]

Page 27

REFERENCES

C.A.R. Hoare, Quicksort (Algorithm 64), CACM 4, no. 7
(1961), p. 321,

R. Sedgewick, Implementing quicksort programs, CACM 21,
no. 10 (1978), pp. B847-856.

W. Dobosiewicz, Sorting by distributive partitioning,
Info. Proe. Lett. 7, no. 1 (1978), pp. 1-6.

L. Devroye and T. Klincsek, Average time behavior of
distributive sorting algorithms, Computing 26, no. 1
(1981), pp. 1-T. '

M.T. Noga, Fast Geometric Algorithms, Ph.D. Thesis, Dept.
of Comp. Sei., Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061 (1984),

H. Meijer and S.G. Akl, The design and analysis of a new
hybrid sorting algorithm, Info. Proe. Lett. 10, no. 4-5.
(1980), pp. 213-218.

3. Baase, Computer Algorithms: Introduction to Design and
Analysis, Addison-Wesley (1978).

R. Loeser, 3Some performance tests of Rquicksort® and
descendants, CACM 17 (1974), pp. 143-152.

M. van der Nat, A fast sorting algorithm, a hybrid of
distributive and merge sorting, Info. Proe. Lett., 10,
no. 3 (1980), pp 163-167.

J.3. Kowalik and Y.R. Yoo, Implementing a distributive

~ sort program, Journal of Information and Optimization

Sciences 2, no. 1 (1981), pp. 28-33.

R.C. Singleton, An efficient algorithm for sorting with
minimal storage, CACM 12, no, 3 (1969), pp. 185-186.

G.W. Snedecor and W.G. Cochran, Statistical Methods, Iowa
State Univ. Press (1967). :

D.C.S. Allison and M.T. Noga, Usort: an efficient hybrid
of distributive partitioning sorting, BIT 22 (1982), pp.
135«139,

A.V. Aho, J.E. Hoperoft, and J.D. Ullman, The Design and
Analysis of Computer Algorithms, Addison~Wesley (1974).

gnterngtional Mathematical and Statisties Library, Edition
(1980).
¥

