BY
RoserT M, O'KEEFE
MarcH 1986
TR-86-5

D.2.6 PrROGRAMMING FENVIRONMENTS
1.6.2 SIMuLATION LANGUAGES

AN INTERACTIVE SIMULATION DESCRIPTION
INTERPRETER

Robert M. O’Keefe *
Department of Computer Science,
Virginia Polytechnic Institute and State University,
' Blacksburg, Virginia 24061, U.S.A.

May 27, 1986

Scope and Purpose - One aim of recent research in discrete event simulation is the construction of
software tools that make simulation more accessible to those without extensive programming skills.
This paper discusses a software tool called Tnter_SIM which provides for interactive development
of, execution, and experimentation with discrete event simulations. The purpose of this paper is to
present Inter_SIM via a simple example, and discuss the strengths and weaknesses of this approach
to model development.

Abstract - The development of discrete event simulation programs has been aided in recent
years by the proliferation of simulation programming languages and the introduction of software
development aids, for instance, program generators. Inter_SIM, an interactive tool for developing
and running discrete simulation models by interpreting a descriptive language, is presented. A
running simulation, when halted, remains suspended. After extension, alteration, or investigation
of the description, the simulation runs from the suspended state. Thus the user views the simulation
model as a ranning model, rather than a piece of static text. The strengths and weaknesses of such
an approach are discussed; other methods of interactive development are reviewed.

*Bob O’Keefe is Visiting Assistant Professor of Computer Science at Virginia Tech, on leave from the Board of
Studies in Management Science at the University of Kent at Canterbury, England. He received his Ph.D. in
Operational Research from the University of Southampton, England, in 1984,

INTRODUCTION

Discrete event simulation was an early application area for specialized programming languages.
GPSS, SIMSCRIPT and GSP were three of the first generation of high-level languages [1]. Many
other languages have since been developed: whereas true compilers can now be obtained for GPSS
and SIMSCRIPT, most others are simply a collection of routines for use with a general purpose
language [2,3,4], or are pre-processed into a general purpose language [5].

Simulation Programming Languages (SPLs) provide a world view in which to structure a simulation.
The programmer describes a model in terms of modules (normally activities, events or processes)
and activates them either implicitly or explicitly through an executive consisting of a time advance
mechanism and a next event set. Further, a good SPIL should provide facilities that aid the
development and verification of the program, and validation of and experimentation with the model.

In addition to the considerable development of SPLs, there are a number of software systems
that free the user from much of the programming effort. There have been three major approaches -
program generators, analysis programs, and descriptive languages. Program generators ask the user
a series of questions about their model, and then produce a program in an SPL. Examples include
Clementson’s CAPS [6], which produces programs in ECSL, and Mathewson’s DRAFT [7], which
can produce programs in a variety of languages. With analysis programs, information representing
a simulation is provided as input data to a generic simulation model. Thus the simulation 1s
constructed as a collection of data, rather than a number of programming statements. Examples
include Pritsker’s Q-GERT [8] and Robert’s INS [9]. A descriptive language, such as the Model
Description Language of Overstreet and Nance {10}, is a very high level description of a simulation,
which is then manually converted into an SPL program, used to generate an SPL program, or
compiled directly to a running simulation. Descriptive languages are typically compact and easy
to learn.

Visual Interactive Simulation

A comparitively recent development is the provision of pictorial or graphical output, where the
simulation drives a continuous visual display representing the system under consideration. This is
a considerable aid to verification, validation and experimentation. Perhaps of greater practical im-
portance, pictorial colour displays helps facilitate understanding of the behaviour of the simulation
model to the end user or decision maker.

User interaction with the running model allows the user to observe the effects of experiments
portrayed on the screen. More importantly, the user can actually be incorporated into the model.
Decisions which are too difficult to encapsulate in the model can be referred to the user at run time
as they occur. When modelling systems in which a decision maker plays an important role, this can
be represented by allowing the decision maker the same interaction as with the real system. This is
called Visual Interactive Simulation (VIS), and owes much to the seminal work of Hurrion [11,12].
Its application is well documented (for a review, and references to a number of applications, sce

Bell [13]).

THE DESCRIPTION INTERPRETER APPROACH

" Extensive use of VIS has highlighted the need to be able to construct simulations interactively.

When a VIS is developed in a compiled language, the developer must build in facilities for the
interaction. Desired interactions required by the user but not anticipated by the developer can not
be met without recourse to altering and re-compiling the program text.

The tool presented here, called Inter SIM, is an attempt to construct a tool that provides for
interactive development. Inter SIM is a descriptive language with the distinctive feature that at
any time the description can be execnted. It is interpreted - there is no need for any intermediate
compilation or processing. The running model can be halted; it remains suspended in state and
time until set running again.

Tnter SIM is activity orientated. Entities generated by a source proceed through a sequence of
activities. At each activity they may be served by resources and other entities, and must queue at
an activity if servers are not immediately available. Resources are passive entities that can only
serve. Resources and entities are grouped into bins and classes respectively; a user describes a bin
of one or more resources, a class of one of more entities.

Inter SIM lacks a mechanism for user defined entity attributes. At the outset, it was decided to
leave this out of early versions of Inter SIM so as to make implementation easier (altering scalar
attributes would require interpreting arithmetic expressions). However, entities can reside in sets,
and set membership can be perceived as a boolean attribute.

The language is non-procedural. A description is composed of instances of four available language
components, namely bin, class, activity and source. The details of each language component can
be found in table 1. A model description is developed by adding new instances of a component, or
altering the details of existing components.

Component Definition of Component Part
Bin
Name name of the bin
* Number number of rescurces in bin
Histogram histogram for
Utilization resource utilization
Show number of resources busy entered in picture
Class
* Name name of class
Letter letter to represent entities in picture
Colour colour used for entities in picture
Show entire class entered in picture
Individual each entity individually entered in picture
Histograms histogrems for

Utilization entity utilizetion

Time time that transient entities are in system

Set number of entities in a set
Number number of entities in clases
Sets sets associated with class, eack with colour that

entities in that set take.

Activity
Name name of activity
Next next activity that an entity is routed to
Priority queue priority
Balk maximum size of queue

Next next activity for balked entities

co-operating resources and entities :-

Obtain acquired by engaged entity but not freed after activity
Advance acquired by engaged entity and freed after activity
Release freed by entity prior to engaging in the activity
Duration duration of activity
Show queue for activity entered in picture
Histograms histograms for

Time times that entity take to reach activity from socurce

Queue length

queue length at activity

Source

Name name of source

Class class vhich generated entities will join
Activity first activity they will queue for
Distribution inter-arrival distribution

Table 1: The language components.

(An asterix indicates a part of a language component description that must be present for each
instance of the component; all other parts are optional.)

An Example

To introduce the system and its use, a simple example model is presented. It is a model of a bank,
where arriving customers either queue for an auto-bank, for one of a number of tills, or for an
enquiry desk. Following service at the enquiry desk, they may decide to queue for a till or use
the auto-bank. The user of Inter SIM would typically start by drawing an activity diagram - an
activity flow diagram for the example is shown in figure 1. This would be followed by identifying the
necessary components, and itemizing many of the details of each component. Here the necessary
components are

AUTO BANK >

el

— ENQUIRY >
TILL -5

Figure 1: Customer flow through the bank.

Bin - AUTO (automatic bank)
CASHIER (cashiers)
DESK {enquiry desks)
Class - CUSTOMER (customers)

Activity - ENQUIRE (service at an enquiry desk)
TILL (service by a cashier)
AUTO (service a2t the auto-bank)

Source - ARRIVAL (arrival at the bank)

(The names of each component are assigned by the user.) The user is then ready to build the
model. When using Inter_SIM, typically a small number of activities are described and tested, and
then other activities are added until the model is complete. However, with a small model as here,
the entire model would probably be described immediately.

When Inter SIM is entered, the user is faced with a console display as shown in figure 2. A
model must be built bottom up, in that it is not possible to make a reference to an instance of a
component that does not exist. Thus descriptions of bins and classes are normally entered prior
to any activities, and sources can only be described when the classes and activities they feed have
been described. Hence the user would start by adding the bins - figure 3 shows the user adding the
bin DESK.

To add the CUSTOMER class, the user would go to the class menu, and complete a description

as shown in figure 4. The decriptions for activities and sources are added last - ENQUIRE, when

retrieved with the menu option ” Which”, would appear as in figure 5.

Printed descriptions for the entire simulation are shown in figure 6. In addition to using two sources,
a dummy activity called ARRIVE (an activity with zere time duration that does not parallel an
activity in the real system) has been used to route arriving customers by probability.

If the simulation is now run, it will immediately execute unti! any key is pressed, or a time for the
end of run is reached. The console will display the picture which changes with each event. An
example is shown in figure 7.

AUTOD 1 1,35,7 :BLUE
CASHIER 4 1,35,13 :BLUE
DESK 2 1,35,17 :BLUE

Class CUSTOMER

Letter ¢

Colour :GREEN

Histograms

Time 0.50 1.00
Sets ENQUIRED:BLUE

SOURCE

ARRIVAL CUSTOMER ARRIVE Neg Exp (10) 0.30

ACTIVITY

Activity ARRIVE FIFO

Next (7) TILL {800}
ENQUIRE {850}
AUTO {1000}

Duration Constant 0.00

Activity ENQUIRE FIFO

Next (6) TILL {800}

Gain<ENQUIRED>

AUTO {850}

Inter SIN Memory left: 114193

Bin Class Activity Source Run File Load Insert Directory -
Global Zero Print Histogram Queue Time

Figure 2: The opening console display.

(The screen is divided into three windows. The top window shows the available menu options, the
middle window is used for entering and showing components, the bottom window is used for error
messages and all other interaction with the user.)

Inter SIM, Bin Memory left: 114193
View Add Delete Change A

|co-ordinates where number of resources busy is shown (y/n,screen,x,y,colour)
Bin desk

Number 2
Histogram n
Show y 1,36,

Figure 3: Entering a bin.

(The user is completing the description of DESK by specifying screen co- ordinates where the
number of busy desks will be shown. The first number is a logical screen. The help line, which is
the top line of the middle window, specifies the responses required from the user.)

Inter SIM, Classa
View Which Next Add Delete Change A

Memory left: 114165

Classg
Letter
Colour
Show
Individual
Hietograms
Time
Utilisation
Set
Number
Sets

customer

C

:green

n

-]

OB P

0.60 1.00

enquired :blue

(Entities from this class will be represented by the letter 'c’ in the picture, and will appear green
unless they have membership of the set ENQUIRED, in which case they will appear blue. Note
that a colon is always a prompt to provide a colour. A histogram for the times that entities from
the class remain in the system has been specified with a cell base of 5.0 and cell width of 2.0. When

Figure 4: A completed description for the CUSTOMER class.

a histogram is part of a component description, automatic statistics collection takes place.)

Inter SIM, Activity Memory left: 113360
Which Next Add Order Delete Change W
Activity - ENQUIRE FIFO Length= 0
Next (B) TILL {800}
Gain <ENGQUIRED>

AUTO {860}

SINK {1000}
Advance DESK i
Duration Normal (2 1.76 0.56
Show 1,26,17 :WHITE
Histograms
Queue Length 1.0 1.00
Activity enquire

Figure 5: Using the Which option to retrieve the activity for ENQUIRE.

(The description shows (a) a queue priority rule (FIFO) (b) the entity is routed by probability, where
probabilities are expressed in thousandths, are drawn from strean number 5, and are cummulative
(each possible branch is tried in turn, where entities routed to queue for a till gain membership of
ENQUIRED) {c) a single DESK is the resource constraint, where the DESK will be released at the
end of the activity (d) a duration (normal distribution with a mean of 4.3, standard deviation of
1.7, and samples taken using random numbers from stream number 2) (e} the queue entered in the
picture, on screen 1, and with a white background (f) a histogram for queue length {with cell base
1.0 and cell width 1.0).)

10

SINK {1000}

Advance DESK 1

Duratioen Normel (4) 1.76 0.586
Show 1,26,17 WHITE

Histograms

Queue Length 1.00 1.00

Activity TILL FIFO

Next (B5) SINK <ENQUIRED>

ENQUIRE {60}
SINK - {1000}

Advance CASHIER 1

Duration Normal (2) 0.45 0.12
Show 1,26,13 :WHITE

Activity AUTO FIFO

Next SINK {1000}

Advance AUTO 1

Duration Neg Exp (1) 1.20

Show 1,26,7 :WHITE

Figure 6: Printed descriptions for the example.

If the running simulation is suspended, the user can take menu options concerned with the inves-
tigation of a running model. For instance, the Histogram option leads to a further menu which
allows users to display, print or file any histogram that is part of any description. The Time option
reveals a further menu concerned with all aspects of time - viewing the calendar of future events,
rescheduling the events, setting the time at which the running simulation will end. Figure 8 shows
an example view of the calendar.

The actions of the other top level menu options are :-
Queue Provides a view of all entities in an activity queue.

Print All the descriptions are sent to the printer or a file, (Figure 6 was produced by Print.)

Global Enables the alteration of parameters concerned with the display and picture, for example:
(1) turn the picture on/off, (2) specify a file for the static background, (3) set a damper for
the speed the picture advances.

Zero Leads to a menu concerned with resetting all or part of a simulation. Streams can be reseeded
and histograms emptied - this is necessary for statistical experimentation. The time can be
set back to zero. Queues can be emptied.

11

time O: 1:24.34

cc2 1 Auto Bank
0 3 Caghier
cced 1 Enquiry Desk

Figure 7: Visual display for the example.

(Each queue entered in the picture is shown as the queue length preceeded by letters representing the
queueing entities, where the letter identifies their class, and colour represents their set membership.
Bins are represented as the number of resources presently being used. The static text, which
annotates the moving part of the display, has been provided by specifying a text file that is prepared

externally to Inter_SIM.)

12

Inter SIM,Time Memory left: 112349
View Activity Reschedule End of run V

0: 1:24.34 .. is current time

0: 1:24.41 ARRIVAL

0: 1:24.44 TILL CUSTOMER #9 CASHIER i
0: 1:24.47 TILL CUSTOMER - #13 CASHIER i
0: 1:24.858 TILL CUSTOMER #6 CASHIER 1
0: 1:24.87 TILL CUSTOMER #11 CASHIER i
0: 1:24.48 AUTO CUSTOMER #5 AUTO i
0: 1:26.36 ENQUIRE CUSTOMER #12 DESK i

Figure 8: A view of the next event calendar.

(Each line shows the time of the event, the name of the activity or source which has scheduled it,
and (if scheduled by an activity) the entity engaged in the activity (class name and entity number)
with any co- operating resources or entities.}

13

File Store the entire simulation in its present ztate.
Load Retrieve a previously filed simulation.
Directory Show a directory of all simulations.

Insert Call a user programmed insert.

Any part of any component description can be changed. New activities could be added, the source
changed, parts of the picture placed on different parts of the screen, histograms added or deleted.
The only restriction is that the name of any component can not be altered.

Incorporating the User in the Simulation

Suppose the manager of the bank reviews the state of all queues approximately every hour, altering
the number of cashiers as he thinks fit. This can be modelled by placing the manager in front of
the running simulation, allowing him to stop the model as desired, and use menu options to change
the number of resources in the CASHIER bin. The manager can try out various experiments, for
example, investigating the effect of a sudden batch arrival.

The above are examples of user determined interaction. Often it is useful to specify model deter-
mined interaction. This can be achieved in Inter SIM by use of the keyword ASK, which when
encountered has the effect of suspending the running simulation and prompting the user for an
appropriate decision, For instance, given

Activity ARRIVE FIFO
Next (6) TILL {760}
ASK
HONE

then when routing a CUSTOMER with this list, if the uniform sample from stream 6 is greater
than 0.75 the user will be prompted with

CUSTOMER #13 finished ARRIVE
Next Activity ?

in the bottom window.
Programmed Extensions

The level of complexity of models that can be directly constructed in Inter_SIM is comparitively low.
Thus facilities are provided for extending simulation with programmed inserts. This is achieved by
re-programming a number of Pascal routines and relinking Inter SIM.

The two most straightforward routines are

precedure main_insert;
procedure user picture;

14

where main_insert is invoked by the menu option Insert, and user_picture is called when ever the
simulation is run. There are also a number of hooks which are always called by the executive, for
instance,

type identifier=string[8]:

procedure user start ectivity(i:identifier);
procedure user.end.activity(i:identifier);

are always called when an activity is started or ended, with i as the name of the activity.

A pregrammed insert can also be called by specifying the word USER in some parts of a component
description, followed by a uger number in the range 1 to 64. The user number is passed to the
appropriate routine

const user num max=64;
stream max=33;

type user num=1..user num max;
stream num=1..stream max;

‘function uaser sample(num:user num;st:stream num):real;
function user priority(num:user num):boolean;
function user next activity(num:user num;e:pt_integer):boolean;

where user_sample is called for USER as an activity or source duration, user.next_activity for part
of a Next activity list, and user _priority for a queue priority rule. Note that both user priority and
user_next_activity must return true if they actually remove an entity from the queue or route an
entity to another activity. Typically the user number is used in a case statement to mvoke another
user provided routine.

Routines are provided to help the programmer with programming inserts. Most simply allow access
to information about the simulation, for instance

function queune size(a:identifier):integer;

returns the present queue size for activity a. Thus, given the example and appropriate declaration,

k:=queue size('TILL ');

is valid.

15

OTHER METHODS OF INTERACTIVE DEVELOPMENT

There are a number of other software tools that have arisen out of research into providing for
interactive development of VIS. Withers and Hurrion {14] produced software for the development
of continuous models based upon objects called vessels. (A vessel can be visualized as a storage
tank with a capacity and flow into and out of the tank.) The user is asked questions about the
model, much as in a program generator, and the model can then be immediately executed. The
system is somewhat simpler than the one presented here, the behaviour of vessels being fairly easy
to define.

Another approach is to provide software for a specific application area. This has the advantage
that the software can converse with the user in terminology specific to the area, rather than in
the abstract terminology of simulation. An example of such work is the VISUALPLAN system for
modelling Flexible Manufacturing Systems produced by da Silva and Bastos [15]. Like the system
of Withers and Hurrion, VISUALPLAN asks the user a series of guestions, following which the
model can be executed.

Ultimately, a user should be able to draw a simulation model. Saduba [16] produced a system
called Q-GRAF for the production of Q-GERT models on high resolution graphics screens. The
user positions network nodes and edges with a mouse, adding necessary textual information at the
keyboard. The network can be immediately processed by the Q-GERT analysis program. Hence the
development cycle is far superior to standard Q-GERT, allowing the user to think and work purely
in terms of the network diagram. However, interaction with the running model is not possible. More
recently, a similar system has been produced by Melamed and Morris [17] at Bell Laboratories,
where models of communication systems can be drawn using a number of representative icons.
Further, it does allow for extensive user interaction.

CONCLUSIONS

Inter SIM has been used by the author and others to build a number of simulation models, in the
areas of communication networks, production layout, maintainability analysis, and health care. In
most cases the provision of a visual display has been of paramount importance. Interaction with
the running model has been important as a means of investigating and validating its performance,
and thus the ability to be able to halt the running model as desired has been scen as very useful by
most users. As yet no model has been constructed where model determined interaction is crucial.

The main strengths of the description interpreter approach are accessibility and rapid development.
Inter SIM models have been developed by a number of users whose previous experience with sim-
ulation is fairly limited. In a number of instances, completed models have been handed over to
end users. Interpretation removes the development time associated with compilation or any other
form of tramslation, and fosters incremental development. Working proto-types have often been
developed very quickly at the keyboard.

The weakness of the description interpreter approach is lack of flexibility. Most models constructed
with Inter SIM have required the programming of some user inserts. Although considerable ex-
tensions can be accomplished via the various facilities for inserts and hooks, this is dependent on

15

knowledge of Pascal, and the process of relinking Inter SIM with the inserts is not painless. The

programming is not always straight- forward, mainly due to having to access the Inter SIM data

structures, and frequently involves more coding than the equivalent extension in an SPL would

entail. Further, having to temporarily halt development so as to extend the system with some

programmed inserts is frustrating. Inserts could have been avoided in many instances if Inter_SIM

were more powerful, particularly if a means of handling user defined entity attributes was present.

(Future development of Inter SIM will see the addition of integer and real attributes to the class

component, and a full expression facility to alter attribute values within activity descriptions). .
Given its inflexibility, some users see Inter_SIM simply as a tool for rapid proto- typing, the In-

ter_SIM model being manually converted into an SPL or general purpose language.

There are a number of other areas where Inter_SIM needs futher development. The enforcement
of bottom-up description is too strict. Frequently a user wishes to refer to a as yet undescribed
resource, entity or activity whilst describing an activity. Top-down description should be sup-
ported. An implementation using full windowing would provide a richer environment, for example,
displaying a histogram over the picture of a suspended run would be a useful aid to working with
a model.

Allowing the user unconstrained interaction with the running model presents a number of prob-
lems. A criticism often levelled against Visual Interactive Simulation is that the user will determine
the results of experiments by looking at the picture for a small amount of time, and accumulating
histograms that are invalid due to user interaction altering various parameters in the midst of statis-
tics collection. Bell [13] discusses some of these problems, and the need for a methodology. Most
interactive experimentation should be accompanied by detailed statistically valid experimentation,
perhaps performed by a specialist.

One encouraging conclusion from experience with Inter SIM is the value of the menu interface. Even
if much of the model must be provided by Pascal inserts, once these have been developed and tested,
the interface allows other analysts to quickly complete development, and end users to interactively
design and execute appropriate experiments. This is in contrast to program generators, which
support development but not experimentation, and analysis programs, where it is often difficult to
alter the input data so as to alter the model or run experiments.

Acknowledgements

Part of this work was supported by\a grant from the Science and Engineering Research Council of the United
Kingdom, supervised by the late Professor K.D. Tocher (Professor of Operational Research at the University
of Sonthampton, England), Professor David Barron (Computer Studies Group, University of Southampton,
England} and John Crookes (Department of Operational Research, University of Lancaster, England), and
submitted as a Ph.D. thesis [18]. This paper benefited from the comments provided by Professor Peter
Brown (Computer Laboratory, University of Kent at Canterbury, England} and Professor Richard E. Nance
(Computer Science Department, Virginia Polytechnic Institute and State University, U.S.A.).

17

References

1. Proceedings of the IBM scientific computing synposium on stmulation models and gaming, IBM,
New York {1966).

2. A.A.B. Pritsker and P.J. Kiviat, Simulation with GASP II, Prentice- Hall, Englewood Cliffs,
New Jersey (1969).

3. PR. Hills, SIMON - a computer simulation language in Algol 60, in Digital Simulation in
Operational Research (Hollingdale, Ed.}, English Universities Press, London, England {1965).

4. G.M. Birtwistle, Discrete Event Modelling on SIMULA, Macmillan, London, England (1979).
5. A.T. Clementson, Extended Control and Simulation Language, Computer Journal 9, 216-220
(1066).

6. A.T. Clementson, ECSL, in Proceedings of the 1378 UKSC Conference on Computer Simulation,
IPC Press, Guildford, England (1978).

7. 5.C. Mathewson, User acceptance: design considerations for a program generator, Software -
Practice and Ezperience 13, 101-117 (1983).

8. A.A.B. Pritsker and C.E. Sigal, Management Decision Making - a Network Stmulation Approach,
Prentice-Hall, New Jersey (1983).

9. S.D. Roberts and T.E. Sadlowski, INS: Integrated Network Simulator, in Proceedings of the
Winter Simulation Conference, The Society for Computer Simulation, La Jolla {1975).

10. C.M. Overstreet and R.E. Nance, A specification language to assist in analysis of discrete event
simulation models, Comm. of the ACM 28, 190-201 (1985).

11. R.D. Hurrion, The Design, Use and Required Facilities of an Interactive Visual Computer Sim-
ulation Language to Ezplore Production Planning Problems, Ph.D. thesis, University of Warwick,
England (1976).

12. R.D. Hurrion, An investigation of visual interactive simulation methods using the job-shop
scheduling problem, J. Opl. Res. Soc. 29, 1085-1093 (1978).

13. P.C. Bell, Visual Interactive Modelling in Operational Research: successes and opportunities,
J. Opl. Res. Soc. 36, 975-982 (1985).

14. S.J. Withers and R.D. Hurrion, The interactive development of visual simulation models, J.
Opl. Res. Soc. 33, 973-976 (1982).

15. C. Moreira da Silva and J. Mesquita Bastos, VISUALPLAN: a Visual Interactive Stmulation
System for FMS Modelling, Progress report number 3, GEIN, Universidade do Porto, Portugal
{1985).

16. J. Saduba, A Study of Q-GERT Modeling and Analysis Using Interactive Computer Graphics,
M.Sc. thesis, Purdue University (1977).

17. B. Melamed and R.J.T. Morris, Visual simulation: the performance analysis workstation, IEEE
Computer 18, 87-94 (1985).

18. R.M. O’Keefe, Developing Simulation Models: an Interpreter for Visual Interactive Simulation,
Ph.D. thesis, University of Southampton, England (1984).

18

