An Interactive Environment for
Dialogue Development:

Its Design, Use, and Evaluation
-Or-
Is Aide Useful?

D.eborah Hix Johnson
H. Rex Hartson

TR-85-35

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

September, 1985

Sulmitted to:

CHI '86 Conference on Human-
Camputer Interaction; Boston,
Rpril 1986

AN INTERACTIVE ENVIRONMENT FOR
DIALOGUE DEVELOPMENT:
ITS DESIGN, USE, AND EVALUATION
— OR -
IS AIDE USEFUL?

by

Deborah Hix Johnson
H. Rex Hartson

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061
703/961-4857

Abstract: The Author’s Interactive Diglogue Environment (AIDE) of the Dialogue
Management System ie an integrated set of direct manipulation fools used by a dialogue
author to design and implement human-computer interfaces without writing source code.
This paper presents the conceptual dialogue transaction mode!l upon whick AIDE is based,
describes AIDE, and illustrates how a dialogue author develops an interface using AIDE.
A preliminary empirical evaluation of the use of AIDE versus the use of a programming
language to implement an interface shows very encouraging results.

Either author can be contacted for correspondence at the address above.

AN INTERACTIVE ENVIRONMENT
FOR DIALOGUE DEVELOPMENT:
ITS DESIGN, USE, AND EVALUATION
- OR -

IS AIDE USEFUL?

by
Deborah Hix Johnsop
H. Rex Hartson

1. INTRODUCTION AND BACKGROUND

2. A MODEL OF HUMAN-COMPUTER INTERACTION

2.1 Formulation of the Model
2.2 Description of the Dialogue Transaction Model

3. THE AUTHOR’S INTERACTIVE DIALOGUE ENVIRONMENT (AIDE)

3.1 Motivation for AIDE
3.2 Relationship of the Dialogue Transaction Model to AIDE
3.3 Description of AIDE Version 1

AIDE Tools and Interface

Use of AIDE to Develop Dialogue Transaciions

4. AN EMPIRICAL EVALUATION OF AIDE

4.1 Experimenta! Hypothesis

4.2 Experimental Methods
Subjects
Experimental Design
Task Description

4.3 Results

4.4 Interpretation of Results

5. CONCLUSIONS AND FUTURE WORK
REFERENCES

ACKNOWLEDGEMENTS

1. INTRODUCTION AND BACKGROUND

User interface management systems {UIMS) are attracting considerable attention
from researchers and practitioners as 2 viable approach to producing quality human-
computer interfaces (e.g., Buxton, 1983; Hayes, 1985, Kamran and Feldman, 1983;
Kasik, 1982; Olsen and Dempsey, 1983; Wasserman, 1983). However, many UIMS
emphasire the execution-time aspects of interface management. Only a few UIMS have
interface design tools and even fewer have been empirically evaluated. The Author’s
Interactive Dialogue Environment (AIDE), the dialogue development environment of
the Dialogue Management System, is an exception. AIDE — its conceptual model, its
use, and its empirical evaluation — is the subject of this paper.

The contextual setting for AIDE is the Dialogue Management System {DMS),
being constructed at Virginia Tech. DMS is a comprehensive system for designing, im-
plementing, testing, and maintaining software systems with quality human-computer
interfaces {Hartson, Johnson, and Ehrich, 1984). Interface development in DMS is
treated not as an “add-on” activity but rather as ar integral part of the entire soft-
ware engineering process. This is accomplished through a methodological approach
which gives dialogue design emphasis equal to that of computational design. The only
other approach known to the authors which relates interface development to software
engineering iz found in RAPID/USE (Wasserman and Shewmake, 1985),

In DMS at design-time, an interactive software system is separated imto three
components: the dialogue component, the computational comporent, and the global
control component (which governs the sequencing among the dialogue events and com-
putational events). This separation supportz the concept of dialogue tndependence
{Ebrich and Hartson, 1981}, pioneered as a fundamental premise of DMS. Dialogue
independence ensures the clear delineation of the dialogue component design from the
design of the other two components of an application system. To emphasize this sepa-
ration, individuals in different roles are responsible for each of the three components.
DMS has a Design- Time Facility which provides different sets of interactive tools, one
for each role to use in developing its appropriate component. In DMS, a dialogue
author (Ehrich and Hartson, 1981} has sole responsibility for developing the dialogue
component. The DMS Design-Time Facility provides AIDE for the dialogue author
to use in designing and implementing the dialogue component withoul wriling source
code.

2. A MODEL OF HUMAN-COMPUTER INTERACTION

2.1 Formulatson of the Model

The dislogue transaction model of DMS {Johnson, 1985} was developed to be used
as the framework for the development of AIDE and to guide the dialogue author in using
AIDE to produce interfaces. Few models, either theoretical or practical, exist to guide

human-computer interface design. Notable exceptions include dialogue cells (Borufka,
Kuhlman, and ten Hagen, 1982} and interaction events (Benbasat and Wand, 1984).
Few, if any, UIMS are based on suck models, without whick the components of an
interface can be an overwhelming collection of unrelated prompts, displays, messages,
expressions, inputs, and devices. The development of the dialogue transaction model
was based on formalization of a theory of human-computer interaction (Johnson, 1985).
This theory grew out of extensive observations of humans using a8 wide variety of
interface styles, techniques, and devices. The model is more comprehensive than what
is presented below; only portions necessary for an understanding of this paper are given
here.

2.2 Description of the Dialogue Transaction Model

In DMS, the dialogue component of an interactive application gystem is comprised
of dialogue units called dialogue transactions. There are two types of transactions: out-
put and input. A dialogue outpuf transaction is a non-interactive tramsaction which
presente the results of computational processing (e.g., results of a database search) to
the end-user; it will not be further discussed in this paper. A dialogue snput transaction
is a sequence of one or more interactions to extract from the end-user a set of inguis-
tically {(grammatically) related tokens — essentially a single complete command — as
shown in Figure 1. An interaction, one for each token, 1s comprised of three ordered
parts:

<computer prompt, human token input, computer confirmation>

A prompt can consist of any type of display, including such pieces as menus,
labelled function key outlines, text, graphical objects, forms to be filled in, spoken
words from a voice synthesizer, as well as combinations of these. The function of a
prompt at run-time is to request an end-user input. Correspondingly, a token tnpuf
definition can be comprised of pieces defined for menu selection, function key selection,
mouse selection, command string input, forms completion, or voice input, any or all
of which may be active simultanecusly. The input part ie the most complicated part
of an interaction; its function at run-time is to accept, linguistically process, and {at
least syntactically} validate all end-user inputs. A confirmation gives the end-user
information about the syntactic validity of the mput. Confirmations can be positive
(reinforcing feedback) or negative (error messages), and can be comprised of such
pieces as text, graphics, and voice. Positive confirmations are often implicit {(null}. To
ghow how anp imterface 18 decomposed into elements of the model, a simple dialogue
from a hypothetical information system for indexing documents is given in Figure 2.
Development of a portion of this dizalogue, using AIDE, is presented in the next section.

3. THE AUTHOR’S INTERACTIVE DIALOGUE ENVIRONMENT (AIDE}

$.1 Motivation for AIDE

AIDE is a set of direct manipulation tools in DMS| used by the dialogue author to
design, implement, and modify dialogues without writing source code, Most interfaces
are composed of objectz that belong to identifiable classes of communication forms

—_ F —

dislogue wput transaction

interastion interaction interaction

- o e PR CWMR whm

coufir-
"t mation f

Figure 1. Model of a Dislogue Input Transaction.

™ Computer Prompt: Please enter your Jast pame, followed by <CR> :

- ~ | Bumen Input: Bimtk <CR> .

E "O& | Computer Negohive Cenfirmation: This is not the pame of & vahid Information System wser,
E \(‘ | Computer Prompt: Piease try apsin.

g Al ~ L. Bumen Input: Bmitt <CR>

ti

"~ Computer Prompt: INFORMATION SYSTEM
Enter & function, followed by <CR> :
T TERMS: add or modify for docte

& B DOCTS: retrieve, or View terme
ey & X EXIT for hformation System
E) 4;5(L Hymern Jnpul: T <CR>
% — Computer Prompt: To add or to modify terms. enter az A or &z M. followed by <CH> :
: & L Human Inpet: K <CR>
= ~ — Computer Prompt: Plexse type in pumber of the document you wish to modify, followed by <CR> :
td; - -
& o b Humon Input: 123
‘_'\
.g‘é ‘
S

Figure 2. A Simple Dialogue Decomposed snto Parts of the Model.

{e.g., typing command strings, selecting from menus, filling in forms, picking graphical
objects). Rather than having an interface designer repeatedly code the same type of
interface object {e.g., a menu), AIDE provides interactive tools for developing each of
them. Thus, AIDE allows the dialogue author to concentrate on dialogue form and
content, rather than on debugging source code.

8.2 Relationship of the Dialogue Transaction Model to AIDE

AIDE contains toole to develop each dialogue element (transaction, interactiom,
prompt, input, and confirmation] in the model. Navigation by the dialogue author
within AIDE is guided by the relationships among model elements. For example, the
author can easily move around within AIDE to develop the partz (prompt, input, and
confirmation) of an interaction, or to work on another interaction within the current
transaciion, or to work on a different transactior.

8.8 Description of AIDE Vereion 1

AIDE Tools and Interface. The first version of AIDE can produce prompts con-
sisting of combinations of menus, keypads, forms, text, and graphics. Inputs can be
defined for menus, keypads, and forms. Confirmations can be textual and graphical.

Each element of the dialogue transaction model has a corresponding set of logical
definitions for the programmed function keys. At any time during AIDE use, the
currently active key functions are shown in a labelled keypad outline on the AIDE
command screen. A function may be selected either by pressing a key on the auxiliary
keypad or by touching its labelled image on the touch-sensitive command screen. All
interface parts which the dialogue anthor creates at design-time appear on a separate
color dialogue screen as they will be seen by the end-user at application system run-
time.

The control structure among the AIDE keypads provides both vertical (e.g., from
transaction to interaction to interaction part) and horizontal {(e.g., among the parts
of an interaction) navigation among dialogue elements. To illustrate, the keypad for
developing the prompt part of an interaction has the following functions:

EXIT AIDE DEVELOP GRAPHICS

DELETE CURRENT PROMPT DEVELOP FORMS

DEVELOF MENU DEVELOP ANOTHER INTERACTION PART
DEVELOP KEYPAD RETURN AND DEVELOP ANOTHER INTERACTION
DEVELOP TEXT HELP

At this point {i.e., when using AIDE tc develop a prompt}, the dialogue author may
go vertically down the model hierarchy by selecting (for example) DEVELOP MENU (as
a piece of a prompt}, go vertically up by selecting RETURN AND DEVELOP ANOTHER
INTERACTION, or move horizontally in the same level by selecting PEVELOP ANGTHER
INTERACTION PART (i.e., an input or a confirmation). AIDE allows the dialogue
author to move freely among the dialogue elements in almost any order as they are
developed.

Use of AIDE to Develop Dialogue Transactions. When designing and implement-
ing a dialogue transaction, the dialogue author begins by decomposing that transaction
into its interactions. For tramsaction 2 of the information system of Figure 2, this de-
composition is partially illustrated in Figure 3b. The dotted lines descending from the
transaction, ®get valid command”, indicate that this transaction decomposes into the
interactions (represented by concentric circles} shown below it. Figure 3a shows the
corresponding grammar for this transaction. The first interaction, called “get valid
command name”, will be used here to illustrate use of AIDE. To develop the prompt,
the dialogue author moves to the DEVELOP INTERACTION keypad and chooses the DE-
VELOP PROMPT functior key. The keypad whose functions are shown above appears
and the author can choose {among other functions} to DEVELOP MENU, DEVELOP KEY-
PAD, DEVELOP TEXT, DEVELOF GRAPHICS, or DEVELOP FORMS, any or all of which

—_— A —

may be part of a prompt. Assuming the prompt for interaction “get valid command
name” is to be a menu, the author selects DEVELOP MENU, and the keypad containing
the functions for the menu tool appears. This tocl allows the author to develop all the
fields of the menu, including their content and visual attributes, on the dialogue screen
as the end-user will see them at run-time. By choosing the DEVELOP GRAPHICS key,
the author can add graphical objects to the same screen. The completed prompt might
look az shown in Figure 4a, which is printed directly from the AIDE dialogue screen.

et
walid
commnd

begin

- ' N
e <docs>
TERNS ADD [é}m FILE fillnuj ‘ -
KODIFY oL~ n.br
EVE
doc-abr

{Sguare brackets indicate that » choice of one itex i

DOCUKNENTE § RETRI
YIEW

DT

<exit>

—

-

tc be made; upper case indicater copstants aud lower

case mdicate: vanable names.}

(b}

{a)

Figure 3. (o} Grammar and (b} Some Interactions for Sample Transaction “get valid command’.

- To define the language input part of the “get valid command name” interaction,
the dialogue author leaves the PROMPT keypad by selecting the DEVELOP ANCTHER
INTERACTION PART key, and choosing, on the subsequent keypad, DEVELOP INPUT.
For a menu, the input definition is relatively simple; it requires two pieces of information
for each menu choice offered to the end-user: a token value to be returned to the
computational component and the name of the successor snieraction which is to follow
the current interaction. The AIDE dialogue screen containing the completed language
definition is shown in Figure 4b. {Token value and successor screen columns are not
displaved at run-time; they are only for design-time definition of input.} At run-
time, if the end-user enters the choice “T”, the token value “terms” is returned to the
computational component at the end of the transaction. In addition, the successor
interaction will be “add_or_modify”, as also seen in Figure 3b. For interfaces which
use typed text strings, the language input definition is a bit more complicated; space

— 5 —

return

(s)

(b)

INFORMATION SYSTEM \

o,
Enter a function, followed by CR. L d?
< @5
1 TERMS: a0a or modify for docts & ~

b DOCTS: retrieve, or view terms N

X EXIT from Information System \

INFORMATION SYSTEM \

Enter a function, followed by <CR> !

Toker Val Successor Sereen

terms acd_pr _wod T TERMS: auo or modify for docts
20cs reLr_or. view b DOCTS: retrieve, or view terms
exit X EXIT from Information Systes

_/

Figure 4. fa} Prompt and {b} Input Definition for Sample Interaction “get valid command name”.

limitations do not allow further discussion. Developing confirmations is very similar to
developing a textual or graphical prompt and also will not be detailed here.

4. AN EMPIRICAL EVALUATION OF AIDE

This first version of AIDE has undergone testing — not extensive testing, but
rather a pilot empirical study to begin determining the usefulness of the dialogue
transaction model and of AIDE for developing human-computer interfaces.

4.1 Ezperimental Hypothessis

The hypothesis of this evaluation was that creation and modification of human-
computer interfaces is faster and easier by using AIDE than by using a conventional
programming language. The independent variable was the mechanism used for per-
forming the task of developing an interface (i.e., AIDE or a programming language);
the dependent variable of primary concern was the length of time it took subjects to
complete the task.

VY S TPV

\,\s ENTE TEST DISPLAY %f c’(r'{/ '{'l
it
“} ns | w2 | s | s

et
~y
—

O

7

7158 1i8 }
@ -

PLEASE PRESS KEY WITH SELECTED AIRLRAFY IDEWTIFIER

L

MM

Figure 5. Display with Keypad Prompt.

4.2 Ezperimental Methods

Subjects. Subjects were programmers on the DMS project. Three people served as
dialogue authors and three others as application programmers. The small sample size
was due to the imited numbers of “expert” AIDE users and “expert” DMS-environment
programmers. It was desired that all subjects initially be “experts” at their task so
that the issue of training was not a confounding variable.

Ezperimental Design. The experiment was a two-level between-subjects design
with one independent variable. The two levels were the use of AIDE and the use of
a programming language. The task was to create a keypad-based interface and then
modify that interface to be menu-based. The dialogue author subjects used AIDE. The
application programmer subjects used their choice of either Fortran or C, and had the
use of some powerful programming services for placement of text and graphics on the
screen. The interface design, both for the creation task and the modification task, was
completely defined for both groups of subjects. Subjects in both groups were given the
same procedural instructions and written interface design task description.

Task Description. Each subject was first asked to create a transaction for a simu-
lated carrier-based air traffic control environment, requiring creation of the graphical
computer prompt, the humar snput, and the computer response parts. The prompt de-
scription given to each subject is shown in Figure 5. The system was to accept as input
from the end-user only labelled keypad kevs, and was to return to the computational
component a token value which was the character string labelling the corresponding
key (i.e., the aircraft identifier]. The computer response (a dialogue output transac-
tion} to the pushing of a keypad key labelled with an aircraft identifier was to make
the corresponding aircraft symbol blink.

The modification tazk was given to each subject upon completion of the creation
task. The prompt was the same as that for the creation task, except that the keypad
was to be replaced with a menu for aircraft selection; again the subjects were given an
exact description of how it was to look. The system was to accept as input only the
typing of aircraft identifiers given in the menu, rejecting any other input as soon as
it could be determined erroneous. This required character-at-a-time input validation.
The computer response to the menu selection of a valid aircraft identifier was to make
the corresponding aircraft symbol turn red.

4.8 Results

The mean times, in minutes, for each group of subjects tc perform the creation,
modification, and total tasks are shown in Table 1. The difference between the two
groups was found to be significant for the creation task, #{4) = 11.9, p < .005; for the
modification task, 4} = 5.2, p < .005; and therefore for completior of the total task,
t{4) = 9.9, p < .005.

TABLE 1: MEAN TIME TO PERFORM TASKS (IN MINUTES)
Dialogue Authors Application Programmers

Creation Task 43 168
Modification Task 29 63 *
TOTAL 72 231

* One application programmer subject became too tired to complete the modification task;
that subject’s time until quitting the modification task was used in the calculations, since a time
to completion for the task was unavailable.

In addition to the quantitative resulte given above, subjective results were acquired
by observing subjects and by post-task questions. Among the programmer subjects,
the experimenter observed numerous signs of frustration and tiredness; when asked by
the experimenter how it had been, all immediately responded “Tiring!”. The author
subjects, on the other hand, responded “That’s all” and “Fine”, and showed no signs
of frustration or exhaustion. All programmer subjects said they had the most trouble
with positioning objects on the screen and doing the character-at-a-time validation for
the menu inputs. Author subjects named no problems other than response time of the
database underlying AIDE. Not any of the subjects thought the task was too difficult.

4.4 Interpreiation of Hesults

These results support the hypothesis that creation and modification of an interface
is faster and easier by using AIDE than by using a programming language, at least for
those types of interfaces AIDE was designed to develop. This ie clearly demonstrated
in the mean time to complete the tasks by each group of subjects. The dialogue
author subjects performed the creation task 3.9 times faster than did the application

-

programmer subjects, the modification task 2.2 times faster, and the total task 3.2
times faster. The subjective observations made by the experimenter during the tasks
and the questioning of subjects after task completion support the hypothesis as well.

This study does not completely address the question of just how these results reflect
on the dialogue transaction model, instantiated in the AIDE interface. Presumably a
bad mode! would not have a good instantiation. Thus, since both the design and
the use of AIDE is directed by the model and since this study indicates that AIDE
performs well, it is can be inferred that the model is 2 reasonable representation of
human-computer interaction. It is also difficult to isolate other significant factors that
might affect results of this study, such as segregation of the effects of the model from
the obvious advantages of direct manipulation incorporated into the AIDE interface.
At the least, this study is an evaluation of an approach to interface design, specifically
one using the DMS dialogue transaction mode! and the tools of AIDE. The results of
this study definitely indicate that interactive tools for interface development are worth
more research. Future research will further address the validation of this conjecture.

5. CONCLUSIONS AND FUTURE WORK

While the general goal of AIDE is to provide an interactive tool for a dialogue
author to use in developing human-computer interfaces, AIDE Version 1 bad a specific
goal. Its purpose was to prove that the theory and concepts of DMS — dialogue
independence, the role of a dialogue author, and interactive tools for the dialogue
author — could by implemented. Version 1 was limited in the types of interfaces it could
produce. Nonetheless, it has been used to produce several demonstration application
systems having two different interfaces {e.g., one which is keypad-based, the other
menu-based} with identical functionality. At application system run-time, both these
interfaces execute with the same computational component, thus demonstrating that
dialogue independence is 2 viable concept. The evaluation of AIDE discussed above
shows very promising results, indicating that a highly diverse group of tools can be
integrated into a single, cohesive, usable interactive system for developing interfaces.

AIDE 2.0, with significantly more features, is currently being implemented on a
Silicon Graphics IRIS 2400 Workstation. The appearance of the AIDE 2.0 interface is
quite different from that described in this paper, making use of the IRIS windowing
capabilities and mouse. One goal for development of the second version is to produce an
AIDE which can be taken to an industrial test-bed for use in a real world development
situation. Many other exciting possibilities for further development and empirical

evaluation of DMS, and especizlly of AIDE, Lie ahead.

REFERENCES

Benbasat, I., and Wand, Y. (1984). A structured approach to designing human-computer dialogues.
International Journal of Man-Machine Studics, £1, 105-126.

Borufka, H. G., Kublman, H. W. and ten Hagen, P. J. W. (1982). Dialogue cells: A method for
defining interactions. Computer Graphics and Applications, 7, 25-33.

Buxton, W., Lamb, M. R., Sherman, D., and Smith, K. C. (1983). Towards a comprehensive user
interface management system. Computer Graphics, 17, § 3542.

Ehrick, R. W., and Hartson, B. R. (1981). DMS - An environment for dialogue management. In
Proceedings of COMPCONS1 (p. 121). Washington, DC.

Hartson, H.R., Johnson, D.H., and Ebrich, R.W. (1984}. A human-computer Dialogue Management
System. In Proceedings of INTERACT '84: First IFIP Conference on Human-Computer
Interaction (pp. 57-61). London, England.

Hayes, P. (1985). Executable interface definitions using form-based interface abstractions. In
Advances fn Human-Computer Interaction. H. Rex Hartson (Ed.), Ablex Publishing Corpo-
ration, 161-190.

Johnson, D.H. (1985). The atructure and development of human-computer interfaces. Doctoral
dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.

Kamran, A., and Feldman, M. B. {1983). Graphics programming independent of interaction tech-
piques and styles. Computer Graphice. 5864,

Kasik, D. J. (1952). A user interface management system. Compuler Graphics, 16, § 99-106.

Olsen, D. R., and Dempsey, E. P. {1983). SYNGRAPH: A graphical user interface generator.
Computer Graphice, 17, 8 43-50.

Wasserman, A. I {1983). The unified support environment: Support for the User Software Engi-
neering methodology. In Information system design methodologies. A. Verrijn-Stuart (Ed.},
North Holland.

Wasserman, A. I and Shewmake, D. T. {1985). The role of prototypes in the User Software
Ergineering (USE} methodology. In Advances in Human-Compsuter Interaction. H. Rex
Hartson (Ed.}, Ablex Publishing Corporation, 191-210.

ACKNOWLEDGEMENTS

The authors wish to thank the members of the DMS team who have so competently and cheer-
fully participated in the research and implementation efiorts presented in this paper, especially Dr.
Roger W. Ehrich, Dr. Robert C. Williges, Beverly A. Williges, Jef Brandenburg, Antonio Siochi,
and Dr. Verns Schuetz. This work has beer funded by the Nationa!l Science Foundation, Informa-
" tion Technology Program Grant No. IST-8310414, Dr. H.E. Bamford, Jr., Program Director.

— 10 —

