A PROTECTION MODEL INCORPORATING
BOTH AUTHORIZATIONS AND CONSTRAINTS

by

Dr. Dennis Kafura
Dr. Atika Laribi

TR-85-30
August 1985

A PROTECTION MODEL
INCORPORATING BOTH AUTHORIZATIONS AND CONSTRAINTS

Dr. Dennis Kafura
Dr. Atika Laribi

Department of Computer Science
Virginia Polytechnic Institute
Blacksburg, VA 24061

Abstract

This paper presents a powerful and flexible protection model which includes both au-
thorizations of open systems and constraints of closed systems. In this model, rules of
“inheritance” determine the authorizations which are created for new data derived by au-
thorized computations from existing data. These rules create a middle-ground between
purely discretionary and purely non-discretionary systems. Although the proposed pro-
tection model is quite general, it is presented in this paper in the context of a distributed
relational database system. The core mechanisms of the model control access to all data
bases including the authorization and constraint data bases themselves. It is, therefore, a
self-regulating and integrated system. The power and flexibility of the model derive from
its use of authorizations and constraints as two complementary and interrelated types of
control. The tight protection provided by closed systems is maintained since constraints
are defined only as a complement to authorizations and not as a substitute. An enforce-
ment algorithm is given which shows how the effects of the authorizations and constraints
can be efficiently realized. Among other applications, it is shown how this model provides
a useful, partial answer to the question of safety decidability.

1. Introduction

In this paper we present a protection model incorporating both authorizations and
constraints. In the usual sense, an authorization conveys the ability to perform some
act. Constraints, however, impose limitations on how the authorizations may be used or
distributed among users. The power and flexibility of this model derives from the use of
authorizations and constraints as complementary forms of control and the manner in which
the authorizations and constraints are integrated to form a self-regulating mechanism. The
model we present, termed the hybrid model, is used to solve two general protection prob-
lems which occur in many applications and acutely in distributed database managements
systems (DDBMS). These two problems are: (1) controlling the information which may
be derived from the database, and (2) regulating the flow of information (equivalently,

transfer of rights) among users.

In the remainder of this section the two protection problems mentioned above will
be explained in greater detail and the relevance of these problems to DDBMS will be
explained. Also in this section other protection models are reviewed in the light of these two
problems. Section II describes the structure of the proposed model. Section III formalizes
the notion of “inheritance” which plays a critical role in the model’s operation. Section
IV presents a simple example of how the model can be used to solve the two protection
problems for a small distributed database. Section V contains the algorithm used to enforce
the model’s protection rules. Section VI briefly explains how the model can be used to
handle several other problems which arise in a distributed database system (e.g., views,
revocation).

Two Protectron Problems

The first of the two protection problems is how to allow authorizers to regulate the
access o data not yet existing in the DDBMS but which the user can obtain through a
series of database computations. Such a computation is termed a “serial computation”.
Data derived from the DDBMS, as illustrated in Figure 1, may be viewed as follows. Let:

R be the set of all relations stored in the DDBMS.
R(A) be the set of data authorizer A has control over.
D(R(A)) be the set of data that can be derived from

R(A) through a serial computation.
R(U) be the set of data user U has access to.
D(R(U)) be the set of data that can be derived from R(U).

The intersection of D(R(A)) and D{R(U7)) is the set that needs to be controlled by authorizer
A. This set represents data not yet existing in the DDBMS, but whose derivation and/or

1

access needs to be regulated. Authorizer A needs to keep control over the information
users derive from the data R(A) so as to monitor the misuse of data obtained from the
system. The control of D(R(4)) may be particularly crucial if some data, Ry, included in
R(4) is controlled by multiple authorizers. Authorizer A may require that users do not
derive specific information using R, independently of the rights they obtain from other
authorizers.

<« D(R(A))
DRW) N DREA))

A\ 2

DR))

RW)

Figure 1, Derived Data

In protection systems using only authorizations a dichotomy arises between achieving
precision at high overhead versus loosing control over derived data if this overhead cannot
be tolerated. For example, the authorizer may grant minimal authorizations over R(A).
With this choice the authorizer has complete control over the intersection of D(R(4)) and
D(R(U)). However, users have to explicitly ask for rights for every specific data base
operation they require and the authorizer must appreciate all of the potential effects of
granting or withholding the requested authorizations. This is a considerable overhead for
both user and authorizer. On the other hand, authorizations can be defined over R(A) which
permits any serial computation using R(4). In this case, the expense to the authorizer and

2

user is lowered but the authorizer does not have any control over the intersection of D{R(4))
and D{R(U)). The same dichotomy exists in systems using only constraints.

The second protection problem is how to control of information flow among users. A
network user U/, having an authorized access to some data R, could use &, in some, perhaps
trivial, serial computation and give access to the result of this computation to another user
U; not having any access to R, itself. The authorizer of R, should be able to control such
a flow of information to user U;. This is particularly important in DDBMS where the
authorizer may not have complete information on the capabilities of each user.

The flow of information among users is handled in two basically different ways by
systems which are termed either discretionary or non-discretionary. In discretionary sys-
tems the creator of data is allowed to use this data in any way and to grant any and all
authorizations for the data. Typical discretionary models are the access matrix model
[LAMPS71], authorizations lists and capabilities [GRAHA72], formularies [HOFFM71],
and predicate-based models [HART'S76] [HARTS84] [TRUESS|. It is typically difficult to
provide effective controls on the flow of information when a discretionary approach is used.
Non-discretionary systems, on the other hand, assign a “classification” level to each object
and a “clearance” level to each user. The classification of a computed object depends on
the classifications of the objects from which it was derived and not on the user who created
the object. Access to the newly created object is determined by the relationship between
the object’s classification and the user’s clearance. The creator has no discretion to award
or deny access. While it is easier to control the flow of information with non—discretionary
techniques, this approach is usually quite rigid. For example, the classification levels must
be hierarchical [BELL73] or form a lattice [DENNIS82]. Such rigidity is not desirable.

The system that we propose is a hybrid one which combines the authorizations of
open systems and the constraints of closed systems. The system also is a middle ground
between discretionary and non-discretionary system since, via a concept of “inheritance”,
the protection rules that apply to a computed result are derived from the user-defined
rules which applied to the data used to generate this result.

One illustration of the flexibility of the hybrid model is the following. Suppose that an
authorizer grants to a user a set of authorizations allowing some stated access to the data
which the authorizer owns and which is stored in the DDBMS. Also suppose that from this
set of data the user can derive new information which the authorizer wishes to control.
The authorizer can control this derived data by defining constraints. In this manner
authorizers do not have to explicitly grant access to all the different serial computations
users are allowed to make. In many cases, the succinct form of a constraint makes it much
easier to express the set of data that users should not be allowed to derive than to write
authorizations for all the ones they are allowed to compute.

3

The solution to these two protection problems is elaborated in the context of a dis-
tributed relational database management system (DDBMS). It is important to remember,
however, that neither these problems nor the concept of combining authorizations and
constraints is inherently limited to the database domain. A DDBMS is used to illustrate
the protection problems for the following reasons. First, such systems are important ap-
plications which, in the most realistic cases, exhibit stringent protection requirements.
Second, by contrast with other topics in DDBMS research, the security issue seems to be
largely unsolved. Finally, a relational data model is used because most DDBMS prototypes
have been relational ones [ADIBAS2] [CERIS2] [CHANS2] [HAAS82], and because of the
claimed advantages of the relational model in a distributed environment [SCHMIB3].

The two protection problems described above arise in DDBMS from two principal
causes: scale and distributed authority. In addition to the sheer volume of information
possible in a general DDBMS, the scale problem is also reflected in the diverse types of
both information and users. This diversity makes it difficult to grant or revoke authoriza-
tions which conform to the legitimate needs of potential data users as well as safeguard
against potential misuse of these authorizations. The distributed authority which results
when different organizations are involved in a common DDBMS confuses the concepts
of ownership and cost. When a database — distributed or otherwise — serves only one
organization the data belongs , in the last instance, to the organization as a whole and
the costs to collect and organize the data are borne by this single organization. In the
cage of distributed authority, it becomes much more important to control the transfer of
costly data between organizations. The protection requirements of DDBMS are presented
in more detail in [LARIBS5]. '

Related Work

Protection models incorporating both authorizations and constraints have appear pre-
viously. Most recently Minsky and Lockman [MINSK85] use an actor based model to il-
lustrate the power of combining both types of protection rules. Their work has proceeded
independently, and apparently in parallel, with out own. While their approach is similar
to ours, there are two major points of difference. First, they characterize their work as be-
ing “ ... fairly abstract, in the sense that we do not assume any particular computational
context, such as a programming language, or any specific application domain. Indeed,
some of the options to be considered below for the various components of an obligation
would not be practical in some computational contexts, and some would be useful only
for certain kinds of applications. This lack of specificity of the various constructs means,
unfortunately, that we cannot be very precise about the syntax and semantics of the vari-
ous constructs which we introduce, or about their implementation. ” [MINSKS85,page 8].
In this paper we are much more specific about the use of authorizations and constraints

4

in a database domain. This allows us to clarify the semantic issues involved and to show
the details of an enforcement algorithm. Second, the “inheritance” mechanism described
in Section IIT has no counterpart in the Minsky and Lockman model. This mechanism
plays 2 key role in solving the two protection problems described above. The concept of
constraints has also been mentioned in [FERNAB1], [ASTRAT6), [BRACCT79]. The later
two of these were referred to in Minsky and Lockman.

The hybrid system also bears some resemblance to the “history—keeping” scheme pro-
posed by Cohen [COHEN77]. In Cohen’s scheme a history of user accesses is maintained
and a graph representing the information the user has already obtained from the sys-
tem is built. A user is denied access to more data if this new data combined with the
knowledge already acquired violates a constraint. Cohen does address the issue of derived
data and gives a solution to the problem. However, we believe that the “tagging” algo-
rithm, presented in Section V, is more efficient because less information has to be retained
in the system. Cohen addressed only the issue of computational constraints, while the
hybrid model contains a larger group of constraints including constraints on the flow of
information between users and between sites. In addition, we propose an integrated view,
Le. all data bases, including authorizations and constraints, are controlled by a single
authorization-constraint mechanism. In Cohen’s model constraints are defined only on the
main data base.

Other researchers have also explored the more specific problem of DDBMS security.
Bussolati [BUSSO80] proposed a scheme ~— based on the ANSI model — which allows
for different data and security models in the same DDBMS. This approach seems overly
ambitious. Because the design of Bussolati’s system is heavily based on mappings between
different data and security models, a considerable overhead is introduced. Furthermore,
the application oriented approach of the ANSI model implies an inflexible system in which
all application programs have to be known in advance. Finally, the control of information
between sites or between users is not considered in Bussolati’s work.

Kersten considered how to determine which authorizations apply when an object is
accessed through a series of calls of programs owned by different subjects [KERSTS81]. The
scheme which he proposes is extended to communicating DBMS, where the integration is
minimal and the user is not given a unique view of the entire database. Only one very
specific problem is considered in the work without placing it in the context of a particular
protection model. However, the principles given for decentralized control could be a good
starting point for further research.

The idea underlying the model proposed by Van de Riet and Kersten [RIET80] is that
-2 unified approach — integrating programming languages and database management —

5

should be taken. A language-based scheme can be quite powerful when a uniform environ-
ment exists. Our view, however, is that in a DDBMS involving different organizations, a
single language assumption is not realistic. Instead we make the weaker assumption that
only a commeon, and fairly neutral, data model is required.

A generalization of the authorization mechanism of system R to the distributed case
is given in [WILMSB81]. One of the basic policies used in this extended system is that each
site controls access to the objects it stores, and also controls the granting and revocation
of access rights to those objects. This specific policy is only one of several which can be
supported by the hybrid system we propose. Other policy alternatives are considered in
[LARIBSS5].

II. Aunthorisations and Constraints

The driving mechanism of the hybrid system is the authorization-constraint mecha-
nism. This mechanism is represented in Figure 2 where the regulation of transactions is
illustrated by control lines. Transactions to any of the data bases are regulated by the
authorization-constraint mechanism. Any query or update to a data base supported by
the DDBMS has to satisfy the access control rules defined by the authorizations and con-
straints. Authorizations and constraints are also organized in relational data bases and are
therefore controlled by the same mechanism. Thus, the authorizations and constraints form
a self-regulating, interdependent mechanism. Hence, we have an integrated system where
the two major elements, authorizations and constraints, control all data bases themselves
included.

After describing the different types of authorizations and constraints, we will present
an example to illustrate the authorizations-constraints mechanism. The authorizations
format is derived from Hartson’s predicate-based model [HARTS76] [HARTS84]. The
authorizations are themselves stored in a relation with the domains defined below. The
following two types of authorizations are defined, depending on the type of operations
authorized.

AUTO =(A,U,0,R,B, 8,C)

for the access operations READ, WRITE, UPDATE, and DELETE, and

AUTC = (A,U, J,Ry, Ry, By, By, S, C)

for JOIN operations, where:

UPDATE or QUERY

W 0N CEon

o

controls

AUTHORTZATTONS

Figure 2. Authorization-Constraint Mechanism

A4 is the authorizer’s name

U is the user’s name

0 is the operation U is authorized to perform on R,
i.e., READ, WRITE, UPDATE, or DELETE.

J is the JOIN operation U is authorized to perform between
R; and R,.

R is the relation 7 is authorized to access.

Ry, Ry are the relations U is authorized to JOIN.

B,B,, B, are the bit coded fields used to define PROJECTIONS on
the data fields. The correspondence of the bits of
the field to domains of the data relation is given by
the order of the domains as defined when the relation is
created. A value of 1 in a bit indicates that the user
has access to the corresponding domain of the relation.

s is a predicate defining under which system

conditions this authorization is in effect.
S can be used to express a data dependent
predicate defining a RESTRICTION.

c is a constraint set defining limitations on the users
ability to perform actions using this authorization.

The following notation will be used to refer to the various fields of a specific authorization.

For the authorization AUT, A(AUT) will be. used.to.denote-the-name-of the-authorizer—

for AUT, 0(AUT), will denote the operation being authorized, etc.. In general, an “*” can
replace any of the fields in an authorization (or constraint) to specify that the authorization
(or constraint) is to be effective for any value of that specific field. The system conditions
can mention the user’s site, the data site, or network characteristics such as the traffic
status or the state of each node operating.

Recall that the authorizations can be defined on any of the data bases maintained by
the system including the main user database, the authorization database, or the constraint
database. The database to which an authorization refers could be explicitly named by an
additional field in the authorization. However, for simplicity, we will assume that the
relation names are unique across all of the databages, Therefore, the relation name will
imply the intended database. As suggested in Figure 2 the names AUTHORIZATIONS and
CONSTRAINTS will be used to refer to the relations which are the databases used by the
hybrid model itself.

The second major element of the hybrid model is the constraint, Each type of constraint
specifies an action which is not allowed to occur regardless of any authorizations which
may permit that action. The format of constraints is very similar to that of authorizations.
The domains defined in the constraints are the same as the ones in authorizations.

There are several types of constraints defined in [LARIB85]. Some of these constraints
control the user’s rights to perform access operations and join operations. Other constraints
control the transmission and storage of data among sites in the distributed database 8ys-
tem. In this paper attention will be focussed on the two most important types of con-
straints.

The first form of constraints, computational constraints, allow for the control of data
derived by users through authorized computations. This form of constraint prevents a user
from obtaining two domains together in a computed relation. These constraints have the
following format:

CONC = (4,D,, D, §)

where D, and D, are the domains which cannot appear together in any serial computation.
Computational constraints are implemented by associating the constraints with each rela-
tion containing either one of the two domains named in the constraint. In particular, when
presented with a computational constraint, the hybrid model will associate the constraint
(4, D1, Dy, S) with every authorization for every relation containing domain D, and it will
associate the dual constraint (A4, D;,Dy,S) with every authorization for every relation con-
taining domain D,. When a query is submitted for processing the enforcement algorithm
described in Section V will form the set of all applicable constraints. The query is rejected
if this set contains both a computational constraint and its dual.

The second form of constraints, termed flow constraints, regulate the transfer of rights,
and therefore information, between users. Flow constraints have the following format:

GONF = (A, Rg O, U].'l U21S)

where authorizer 4 specifies that user U, is not allowed to authorize user 7, to perform
operation O on relation R under the system condition 3. Using flow constraints data may be
protected by not allowing users to distribute rights (information) which they themselves
have obtained from other users. Without some safeguard the original authorizer, who
might not approve of the attempted transfer, would be unaware of and unable to prevent
the transfer.

Different and flexible relationship among users can be defined using flow constraints.
Some users might have the right to access data, to have full ownership on the computed
data, and to give access to it to other users. Less trusted users would have only the right
to compute data but without the privilege of full ownership. This division is equivalent to
the division between ”administrative” and ”property rights” as described in [BUSS081]
The system of authorizations-constraints is well suited for creating such different types of
users, since the ability to give authorizations and the associated constraints can precisely
define the type to which a user belongs, and allow for the definition of a great number of
fypes of users.

The implementation of flow constraints makes nse of the integrated nature of the hy-
brid model. A right is transferred from user Uy to user U, when U, performs an UPDATE
operation on the AUTHORIZATIONS relation. However, as with all operations, U]s ability
to succeed in this UPDATE is conditioned by constraints associated with the authorizations
which Uy possesses. When a flow constraint is presented to the hybrid model, the reduced
constraint (4,0,U,,8) is associated with every authorization which ©, has to perform op-
eration O on relation k. When a transfer of rights is attempted the enforcement algorithm
presented in Section V will gather together all authorizations which U, possesses for the
relation named in the transfer. If any of these authorizations is associated with a constraint
prohibiting the transfer, then the transfer (i.e., the UPDATE of the AUTHORIZATIONS
relation) is rejected.

ITI. Authorisation and Constraint Inheritance

The relation resulting from a user’s query can be stored in the database for later use.
New authorizations and constraints have to be associated with this computed relation.
The process by which these authorizations and constraints are derived is referred to as the
inheritance process.

The inheritance algorithm makes use of a concept called “tagging”. An authorization
is said to be tagged when a constraint is associated with it. The effect of this constraint is
preserved across computations by the inheritance mechanism because authorizations for a
computed relation are tagged with the union of the constraints associated with the relations
from which the result was derived. Using the inheritance process and the implementation
of the computational constraint enforcement presented in the Section V, the authorizers are
guaranteed that the limitations they put on the use of their data are respected even, and
especially, when the data is used in further computations. An important property of the
implementation of the constraint evaluation is that the constraints cannot be lost during
computations since they are not dependent on the names of the relations involved in the
constraints. In particular, it is not necessary to have the derivation history of computed
relations, i.e. the names of all the relations used to derive them, to enforce the constraints.

10

The policy used for the inheritance process is that a user deriving data with the intent of
storing it in the DDBMS obtains a conditioned ownership over the derived data. The user
obtains the rights to READ, WRT TE, UPDATE, and DELETE the new relation. However,
such ownership is conditioned because all the constraints associated with the data used in
the derivation are inherited and will take effect whenever the computed relation is used in
subsequent computations. The user is also authorized to grant other users READ, WRITE,
UPDATE, and DELETE rights over the new relation provided no constraint restricting this
transfer was inherited. The user also inherits JOIN rights depending on the Jory rights
used in the derivation. A JorN right between the new relation and R; is granted if and only
if the user the right to JOIN R; with all relations used to compute CR. The inheritance
process is formalized below, followed by an example.

Let CR = fy, (R, Rs,..., Ry) express that CR is derived by user 7, through a computation
involving relations R, for i = 1,...,n. Authorizations for ¢ are created and inherit all
computational and flow constraints associated with any of the B;. To express formally
the inherited constraints, we first have to define the sets of authorizations and constraints
associated with the R!s. Let:

AAUT(R) = {AUT; | R(AUT;)=R; and U(AUTy)=U,)
be the set of access authorizations for R,,
TAUT(R) = {AUT; | (R(AUT;)=R; or Ry(AUTj)=Ri) and U(AUT) = U,)

be the set of JOIN authorizations for R;. Now let
UCCONSET(R) = {C(AUT;) | AUTy € AAUT(R)}

be the set of al]l constraints associated with the access authorizations for Ri,
UJCONSET(R) ={C(AUT)) | AUT; € JAUT(R)}

be the set of all constraints associated with the JOIN authorizations for R;, and
UCONSET(R:) = UCCONSET(R) |J UJCONSET(R)

be the set of all computational and flow constraints imposed on U for the use of &.. Finally,
the set of constraints which are then imposed on CR is the union of all the constraints
imposed on the various R!s:

CONSET(CR) =[] UCONSET(R)).

t

Then the following authorizations giving U, READ, WRITE, UPDATE, and DELETE
access to CR are created:

11

AUTg(CR) = (DBA,Uy, READ,CR, +,CONSET(CR))
AUTw (CR} = (DBA,U,,W RITE,CR, +, CON SET(CR))
AUTy(CR) = (DBA, U1, UPDATE,CR, +, CONSET(CR))
AUTp(CR) = (DBA,U,, DELETE,CR, », CONSET(CR)).

The JOIN authorizations created for relation CR are derived from the JOIN autho-
rizations which exist for the R!s. An authorization for the join of CR with relation R, is
~created if U, has JOIWN rights for R, and R for all Ris used in computing CR. Formally, if
there exist join authorizations AUT,; where:

R; (AUT;“') = (Rk and Rg (AUT};,‘) = R,‘) or (Rl (AUT;“') = R,‘ and Rg (AUTk,) = Rk)

for each R; € CR, then create a join authorization of the form:

AUT(CR) = (DBA,Uy, J,CR, Ry, +,CONSET(CR)).

This completes the set of authorizations created for computed relations. Note that the
system state predicate in the preceding authorizations is set to ”*” to indicate that no
state conditions are imposed on the basic access rights U, obtains on ¢R. That is, the
state conditions are not inherited.

The inheritance process is powerful enough to provide authorizers with a tool for an
efficient control of the data the user derives from the database and stores for future use. In
addition, it js flexible enough to allow for different policies to be easily represented. As an
illustration of this flexibility we will look at the manner in which different types of policies
for the contrel performed on data supervised by multiple authorizers, can be implemented
in the hybrid system.

Suppose that a relation R, is under the control of authorizers Aj, Az, and As. There are
two ways in which the authorizations and constraints defined by the different authorizers
can be interpreted

(1) With the first option, all authorizations and constraints defined by the different au-
thorizers on the data apply at any time. This implies that the same response is given
to the user for queries on the same data. If 4, grants user U, an access O, to R, and
A» grants U; access Op on Ry, then whenever a constraint on the use of R, 1s imposed
by either A;, 4; or 4y, it has to be reflected on all authorizations granted to U, for R,

12

by either authorizer. This is done by tagging all authorizations for the access of R, by
Uy with all the constraints imposed by any of the authorizers.

(2) The second option is to allow for some inconsistency in the responses given by the
DDBMS. This may be necessary for example if R, is replicated and controlled by
different agencies and one agency does not allow U, to obtain R, from its data base but
does not object to U, obtaining it from another source in the network. In this case each
authorizer performs a different control over the data, Lets suppose that authorizer A
grants authorization AUT, to Uy over Ry, and authorizer 4, grants authorization 4vU7T,
to U, over Ry, and that these are the only authorizations granted to U7;,. Lets further
suppose that 4, imposes a constraint con 51 on the use of &, by U7,. This constraint will
take effect only if U, uses AUTI to access R,. Using the tagging algorithm, only AvT,
will be tagged by the constraint con S1. In this way the constraints which apply to an
access to the data depends on the authorizations used for the access, and therefore on
the authorizer which granted the access.

IV. Example

To illustrate how the security requirements for DDBMS can be satisfied with the
proposed system we will present an example of a small distributed database and a number
of access control rules including both authorizations and coustraints. As shown in Figure
3, this database is composed of four relations distributed among three sites.

Site Relation Domains

Payroll” | Employee SSN, Name, Dept#

Office Department Dept#, Name of Dept., Code#

of Head, Address of Head
Bank Account [Account#, Code#, Balance, Address
niversity | Course Course Name, SSN of Instructor,

Registrar Address of Instructor

Figure 3: Example Distributed Data Base

An employee in the payroll office,,, is given access to these four relations and their
respective joins by means of twelve authorizations. These authorizations are granted to
user Uy by the payroll manager (PAM), the bank manager (BM), the university registrar

13

(UR), or by the database administrator (DBA):

AUTy = (DBA,Uy, R, Employee, 111, P, , ?)
AUT; = (PM,U, RW, Employee, 011, P,, o)
AUTs = (DBA,U,, R, Department, 1101, P;, ?)
AUTy = (PM,Uy, RW, Department, 1101, Py,)
AUT; = (DBA,U,, R, Account, 1111, Ps, ¢)
AUT; = (UR, Uy, RW, Course, 111, %, Ps, §)
AUT; = (PM,Uy, J, Employee, +,111, Py, ?)
AUTs = (DBA,Uy, J, Employee, +,111, Py, o)
AUTy = (DBA,U,, J, Department, », 1111, Py, $)

AUTy = (PM,Uy, J, Department, +, 1111, Py, ¢}

AUTyy = (BM, Uy, J, Account, *,1111, Py, 9)

AUTy, = (UR, U, J,Course, », 111, Pya,)

where ¢ in the last field indicates that there are no restrictions put on the authorizations
at this point.

This set of authorizations and constraints gives U, read and write access to the relations
Employee, Department, and Course, and write access to the relation Department. U, is also
given the rights to join relations Employee, Department, Account, and Course with any other
relation, The authorizations are to take effect when their respective access conditions are
satisfied.

We will not spell out all the access conditions to avoid unnecessary details for the
example. As an illustration we will give possible interpretations for predicates P, and
Py. Py, for example, might expresses that the terminal used should be a terminal at the
Payroll office. P, might specifies that the authorization is to take effect only if the relation
Employee, is accessed by U, between 8:00 a.m. and 5:00 p.m.

Suppose however, that the data base administrator wants to prevent U, from obtaining
the Name and the Balance or the SSN and Account of any employee. U, could obtain the Name
and Balance of an employee in at least two different ways. By joining the relations Employee
and Department on the domain Dept#, and Jjoining the resulting relation with the relation
Account on domain Code#, the user can associate the name of all heads of departments and
their balance. A join of Employee and Course relations on domain SSN followed by a join
with the relation Account on domain Address allows the user to derive the Name and Balance
of instructors.

Using computational constraints the desired constraints can be expressed as:

14

CONCy = (DBA, Name, Balance, Py,)
CONCy = (DBA, Balance, Name, Py,)
CONCs = (DBA, SSN, Account, Py,)
CONCy = (DBA, Account, SSN, Pyg)

CONC,, for example, would be associated with every relation containing the domain Name
and would prevent such relations from appearing in JOIN operations with any other rela-
tion which contained the domain Balance. CONC; is the dual of CONC,. Recall that any
computation which brings together a constraint and its dual will be rejected.

The authorizations would then be tagged as follows:

AUT, = (DB, U,, R, Employee, 111, P, {CONC,})
AUTy = (PM,U;, RW, Employee, 011, P, {CONCy})
AUTy = (DB,U,, R, Account, 1111, P5, {CONC,, CONCs })
AUTs = (UR,U,, RW, Course, 111, +, Py, {GONC4})
AUT; ={PM,U,,], Employee, +,111, Py, {CONC;})
AUTs = (DB, Uy, J, Employee, +,111, P, {CONC,})
CAUTy = (BM, UL, J, Account, *,1111, Py, {GONO’g,CONCs})
AUTz = (UR, Uy, J,Course, *,111, P12, {CONC,})

Lets further suppose that U, performs a JOIN of relations Employee and Course on
domain SSN , obtaining the relation C'E. Authorizations AUT, and AU T2 are used to allow
the JOIN to be performed. An authorization AUTys is granted to U;, and the tags of AUT,
and AUT), are transmitted to AUT,s as:

AUTys = (DBA, Uy, RW, CE, 11111,%, {CONCy,CONC,})

If U, later requests a JOIN of relations CE and Account on the domain Address to be
performed, the query is rejected because it violates constraint CONC, which is tagged in
the authorization for CE.

If a bank employee UB is given access to the relation Account but has an associate at
the payroll department UP with accesses to the relations Employee and Department the data
base administrator may require that the rights of UB be constrained so that they cannot
be passed to UP under any condition. Assuming that user U8 has the authorization:

15

AUTyy = (DBA,UB,RW, Account, 1111, *, ¢)

The following flow constraint is then defined:

CONCy = (DBA, Account, RW, UB,UP,).

and AUT 4 is tagged with CONC,. This constraint prevents UB from transferring READ or
WRITE permission on the relation Account to user UP.,

V. Enforcement Algorithm

This section contains the description of an algorithm which dynamically enforces the
rules defined by authorizations and constraints. The algorithm is termed “dynamic” be-
cause it is applied at the time a database transaction is executed. A more restrictive
“static” algorithm — one which is applied when a constraint is defined — is presented
in [LARIB85]. The algorithm has two phases: the authorization enforcement and the
constraint enforcement. :

The authorization enforcement phase is based on Hartson’s algorithm [HART'S76)
[HARTS84]. In Hartson’s model authorizations are defined on data objects that may
not be physically stored in the data base but may be described by a series of operations on
relations. In the hybrid system authorizations are defined on relations that are physically
stored in the data base. The only operations used in the authorizations in Hartson’s model
are READ, WRITE, UPDATE and DELETE while in the hybrid system JOIN S are also used.
Moreover, the intermediary steps which evaluate the authorizations to be applied are quite
different in Hartson’s algorithm and in the algorithm for the Hybrid System, due to the
inherent difference in the definition of the data objects and the operations involved in the
authorizations.

The authorization enforcement phase of the algorithm consists of steps 1)-(8). Steps
(1) and (2} of the algorithm find all of the authorizations which are relevant to the query.
The query may be rejected in step (3) if some domain in the result is not authorized. The
check made in step (4) may reject a join query if insufficient authorizations are available
to conduct the required join operations. Finally, steps (5) and (6) evaluate the system
‘predicates for all of the authorizations and reject the query if the predicate is false. The
constraint enforcement phase consists of steps (7)-(10). Steps (7) and (8) collect all of the
constraints applicable to the query. The computational constraints are applied in step (9)
and the flow constraints are applied in step (10). The query is rejected in steps (9) or (10)
if query would violate any of the constraints,

16

For the purpose of presenting the enforcement algorithm, a query is assumed to have
one of two, somewhat simplified, forms. The first form is taken by queries involving access

operations. In this case:

Q = (U!OaRa T;{Dl'lD?!"-st})

where the access operation 0 is applied to relation R by user U/. In the case of READ op-
erations D,,...,D,, represent the domains projected in the result. For WRITE, UPDATE,
- and DELETE operations T is a (set of) tuple(s) relevant to the operations. The second
form of a query is:

Q = (U:J: {R11R2:'--1Rn}1{Dlt~D2v'-1Dm})

denoting that join operations are performed among relations &y, ..., R, and projecting do-
mains Dy,...,D,, to form the result. As before the notation R(Q) or R:(Q) will be used to
denote a relation named in the query, U(Q} will denote the user who is making the query,

etc..
The following algorithm is executed each time a query Q is submitted to the system.

(1) Find all authorizations for user U (@). This is called the franchise of the user

and is denoted
F={AUT, | U(Q)=0U(Aut)}.

(2) Select authorizations for query operations. Find in F the authorizations that
have relations appearing in the query and are for the operation specified in the
query. For queries involving access operations this is expressed as:

G={AUT, | AUT.€F and O(AUT)= 0(Q) and R(AUT) = R(Q)}
while for queries involving join operations this is expressed as:

G={AUT, | AUT. €FA O(AUT) = JOIN A (R (AUT)) € R(Q) vV R:(AUT;) € R(Q)))

(8) Check that all projected domains are accessible. That is determine if “for all
D; in Dy,...,D,, there is an AUT, in @ such that R(AUT;) = R, and B*(AUT;) =1
where D; is the kth domain in relation R, and B* denotes the value of the kih
bit in the bit field B of the authorization. The query is rejected if one or more
domains are not accessible.

17

(4) Check join rights. If the query is a join query then check that there are au-
thorizations in ¢ to allow the JOINS with all other relations involved in the
query. Evaluate “for all & in Q there is AUT,, in G such that R, (AUT.,) = R;
and Ry{AUT,) = R, for k = L...,n and k # . Reject the query if not all
combinations of joins are authorized,

(5) Determine equivalence classes. Partition ¢ into equivalence classes by hav-
ing two authorizations be in the same equivalence class if they authorize an
- operation on the same relation

Gi={AUT; | AUTjeG and R(AUT)) =R,

(6) Evaluate the effecisve access condition Jor the query. This is computed by
first evaluating the access condition for each equivalence class defined in the
two preceding steps, and then making a logical AND of all equivalence classes
access conditions. The access condition for an equivalence class is found by
doing a logical OR of the access conditions of its authorizations. Formailly:

EAC; = \/ s(aUuTy)

7
for each AUT, in G;. Then, the effective access condition js:

EAC = H EAC'k
k

The query is rejected if does not satisfy the effective access condition,
(7) Find all constraints.

CONC={CONC; | AUT;e¢ and CONC(AUT;) = CONG;)

(8) Select all effective constrainis. Evaluate the access condition of each constraint
in CONC and eliminate the ones which do not satisfy their access condition.

ECON = {CONG; | CONCieCONC and CONC; = true}

(9) Enforce the computational constraints. For each computational constraint eval-
uate if the two domains specified in the constraint appear together in the result
of the query. If it is true for at Jeast one constraint then the query is rejected,

18

Formally, reject the query if there exists two constraints CONC; and CONC; in
ECON for which D,(CONC) = D,(CONC;) and D,(CONC)) = D, {CONC,). and
where both D; and D, are in the projected domains of the query.

(10) Enforce the flow constraints. The flow constraints are enforced when 0(Q) =
UPDATE and R(Q) = AUTHORIZATION. In this cage:

(a) Use steps (1)~(8) to find the effective constraint set, ECON', for U(Q) to
perform the operation O(T) on relation R(T).

(b) The update is rejected if there exists a flow constraint C; € ECON'such
that U(c)) = U(T) and 0(c¢;) = O(T). If the update is not rejected then
allow the update modifying the authorization being written so that ¢(T) =
C(T)UECON'. This modification accounts for the inheritance of constraints.

Ezample

To illustrate the enforcement algorithm the authorizations of our previous example are
considered again. The complete set of authorizations and constraints is repeated here for
convenience:

AUT, = (DBA,U,, R, Employee, 111, P,, {CONC, })
AUT, = (PM, Uy, RW, Employee, 011, Py, {CONC, })
AUTs = (DBA,Uy, R, Department, 1101, P, ¢)
AUT, = (PM,U,, RW, Department, 1101, P,, ?)
AUTs = (DBA, UL, R, Account, 1111, P5, {CONC,, CONCs})
AUT; = (UR,U,, RW, Course, 111, %, Py, {CONC,})
AUTy = (PM,U,, J, Employee, +, 111, P, {CONC))
AUTs = (DBA,U,, J, Employee, +, 111, P3, {CONCy})
AUT, = (DBA,U,, J, Department, s, 1111, Py, 6)
AUTio = (PM,U,, J, Department, *,1111, Pyo, &}
AUTy = (BM, U\, J, Account, *, 1111, Py, {CONC,, CONC,})
AUTz = (UR, Uy, J,Course, * 111, Py, {CONC,))
CONC) = (DBA, Name, Balance, Py)
CONC; = (DBA, Balance, Name, Pyy}
CONCs = (DBA,SSN, Account, Pyy)
CONCy = (DBA, Account, SSN, Pag)

19

Suppose at time t user U, submits query @, requesting a list of ssw, Name, Balance, and
Address of all instructors.

@1 = (U1, J, {Employee, Course, Account}, {SSN,Name, Balance, Address)})

Also suppose that at time t the following access conditions are true Py, Py, P;, P;, Py, Py,
Py1, and Py, while all others are false, The query is evaluated as follows:

(1) the franchise of U consists of all 12 authorizations
(2) o= {AUT;, AUTy, AUT,, AUT,)
(8) all projected domains are accessible through authorizations in ¢

(4) AUTy, AUTs, AUT,,, and AUTy, give rights to JOIN Employee, Account, and Course
with any other relation.

(5) The equivalence classes are:

Gl :{AUTq',AUTs}
G2 :{AUTII}
Gs ={AUTy,)

(6) evaluate the effective access condition:
(P7 v Pg) A (Pu) A (Pig)
which is true.
(7) conc = {concg,, CONC,,CONCy,CONC,)
(8) ECON = {CONC,, CONCy)

(9) Name and Balance appear together in the projected domains. This violates
CONC; and CONC,. The query is therefore rejected.

Suppose now that a later time §’ user U; requests a list of Names, Departmentname, and
Courses for all instructors. This is represented by the query:

Qa2 = (U, J, {Courae,Employee,Department}, {Name, Depariment, Course}

Suppose that at t’ the access conditions have the same values as at time t. @, is then
processed as follows:

(1) the franchise of U, is composed of all 12 authorizations.

20

(2) = {AUT-,,AUTS,AUTQ,AUTN,AUTlg}
(8) all projected domains are accessible through authorizations in .

(4) AUT;, AUT;, AUT;, AUTyo authorize JOIN S of Course, Employee, and Department to
be made with any other relation.

(5) the equivalence classes are:

Gl ={AUT7,AUT3}
G,y ={AUT9,AUT10}
Gy ={AUTy,)

(6) evaluate the effective access condition as:
(P7 A" Pg) A (Pg v Pw} A Pu,-

which is true,
(7). conc = {CONC,cOoNC,)
(8} Econe = {CONCy)

(9) Since NAME and BALANCE do not appear together in the projected domains,
CONC, is not violated and the query is accepted.

The result of g, may be stored in the DDB for later use. If U7, then asked the JOIN of this
resulting relation and the relation Account to be made, the constraint would be violated.

Efficient Implementation

It should be noted that step (9), which corresponds to the computational constraints
evaluation, has been purposefully left abstract. This was done to avoid introducing unnec-
essary implementation details to the algorithm presentation and to the example. We will
now study in a little more detail the implementation of step (9) of the algorithm.

To allow for an efficient implementation of the computational constraint evaluation
step, the format of the computational constraints is modified before the constraints are
stored in the system. Whenever 2 computational constraint conc = (A,U,Dy, Dy, 8) is
imposed, a unique integer N is assigned to the constraint by the system. Two internal
constraints are then derived by the system:

CONC: = (4,U,N, 5)

and

21

All authorizations giving access to Dy are then tagged with con C1 and all authorizations
giving access to D, are tagged with con Cz. The system maintains atable of correspondence

| between the integers assigned and the domains defined in the constraints. A constraint

Step (9) of the algorithm can then be replaced by the following three steps:

(9.1) Partition ECON in two disjoint sets, by having two constraints in the same set
if they both have the same sign of tag,

BCONP = {CON|TAG(CON,) > 0)
ECONN = {CONITAG(CON,) < 0}

(9.2} Order ECONP and ECONN.

(9.3) Check for all pairs (CON;,CON;) with cow, in ECONP and cON; in ECONN, if
the absolute values of the tags for both constraints are the same. If it is true for
at least one pair, then reject the query. That is, if there are CON; € ECONP and
CON; € ECONN such that [TAG(CON,)| = [TAG(CON,)| then reject the query.

We can now look at the way the previous example is implemented following the modifieq
constraints enforcement algorithm. The four computational constraints are translated to

the following consiraints:
CONCI = (DBA, 1, Pgl)

CONC, = (DBA, ~1,Py,)
CONC; = (DBA, 2, Pys)
GONC{ = (DBA, "2) P22)

The following table of correspondence is also created:

nieger | Name Name
1 Name™ [Balance
2 SSN Account

22

E)ique F)omain 1 Domain 2

When query @, is submitted step 13 of the preceding algorithm is replaced by the following
steps: -

(9.1) ECONP = {CONC1}andECONN = {CONC2}.
(9.2) Both ECONP and ECONN are already ordered.
(9.3) |TAG(CONCI1)| = |TAG(CONC2)| so the query is rejected.

Query Q. is still accepted since ECONN is empty in this case.

V1. AppKcations

To illustrate how the authorizations-constraints mechanism can be used to efficiently
solve standard protections problems that may arise in a DDBMS we will present several
examples of such problems. These problems are typically difficult to solve with systems
that use either only authorizations or only constraints.

Decsdability of the Safety Problem

The set of tools offered to the authorizer by the hybrid system provides for a limited,
practical solution to the decidability of the safety problem. This problem was introduced
by Harrison in [HARRI76] where it was proven that “it is undecidable whether a given
configuration of a given protection system is safe for a given generic right”. A system is
said to be safe if it enables the authorizers to keep their data “under control” in Harrison’s
words. The safety problem for all protection systems remains an undecidable problem.
However, in the hybrid system it is possible to decide if the system is safe or not. By
the use of authorizations, tagged constraints and the inheritance process, authorizers can
control the dissemination of rights on the data stored in the DDBMS. A user U, cannot
obtain a certain right O, over data R, if the authorizer of R, did not intend U, to obtain the
right either explicitly or implicitly. Users are still allowed to transfer rights to each other
for data obtained from the system. However, through the constraints and the inheritance
mechanism the authorizer controls the types of rights the user will obtain. Lets assume
for example, that authorizer 4, grants a right to a user U, over data R, but does not want
to allow U, to use R; in computations and then transfer some rights over the computed
data to user U;. To do so A has only to write a flow constraint expressing that U, cannot
transfer any right over R, under any form to /,. The inheritance process assures that the
constraint will be transmitted along with any computations performed on R,.

It should be noted that the hybrid system is not the first system where the safety
decidability problem can be solved. This problem has been solved in the case of nondis-
cretionary systems by using the rigid structure of either a multilevel design or a lattice
design [DENNI82|. In this case no right can be transfered from one level of the structure

23

to another one. However, the structure remaijns inflexible in that the rights have to be
defined in a rigid framework.

The fact that the safety problem can be satisfactorily decided in the hybrid system
is of theoretical as well as practical interest. From the theoretical point of view it is an
important result which shows that the safety problem can be easily solved in this specific
cage. From the practical point of view it is of great interest to the authorizers to know that
they can keep a complete control over their data. However, the control over the transfer
of derived data between users being mainly controlled by constraints, the authorizer have
to anticipate the type of transfers they do not want to allow.

Multiple Authorizers

This problem occurs when when a users wishes to obtain a join authorization between
relations which are controlled by two different authorizers. It may not be clear which
authorizer has the authority to give such a right. In the hybrid system we solve this
problem by requiring that both authorizers separately give a partial authorization. A user
is then granted a JOIN right over two relations controlled by two different authorizers if
and only if the two partial authorizations have been granted by the two authorizers. Lets
suppose for example that authorizer Ay controls relation R, and authorizer 4, controls
relation R,. Lets further suppose that U; needs to be granted JoIn right over the two
relations. Al has then to introduce the partial authorization:

PAUT; = (AL U, J, Ry, Ry, A2, 51)

which indicates that 4, authorizes U, to JOIN R, with R, provided U, obtains the same
right from A,. Similarly 4, has to grant U, the following partial authorization:

PAUT; = (A2,U, J, Ry, Ry, A1, 52).

The two partial authorizations are then merged together in the system in the following
form:
AUT = (A1[| A2,U, 7, Ry, Ry, S1 v 52).

The partial authorizations are not treated in the same way as the authorizations by the
hybrid system. Partial authorizations are not effective until they have been merged into a
complete authorization.,

Revocation o f Rights

The process of revocation of authorizations can be considered from two different view-
points: from the authorizer’s point of view and from the user’s point of view. These two

24

aspects of the revocation process may be in conflict. Authorizers require from the sys-
tem the ability to withdraw authorizations from users who are no longer trustworthy. On
the other hand users who invest in computed data want to be protected from a sudden
revocation of their rights.

Because of its integrated nature, the hybrid system can easily handle this situation,
Since authorizations and constraints can be defined on the authorizations and constraints
data bases themselves, conditions can be put on an authorization to restrict the rights of
the authorizer. Three different approaches could be taken to solve this problem.

(1) Condstioned authorization, The authoriger is given the right to create an authorization
but is not allowed to UPDATE or DELETE it. In this case the user is assured that the
rights will never be revoked by the authorizer. However, a problem may arise when
the authorization has to be removed for good reasons, since the authorizer loses all
powers over the authorization once it is granted.

(2) Constraint definition. An access constraint can be put on the authorization so that the
authorizer is not allowed to DELETE or UPDATE the authorization. The authorizer
then has the right to create such a constraint but the rights to UPDATE or DELETE
this constraint are left to the user. By adding the constraint the user is not given any
rights to the authorization but js still able to control its revocation. The authorizer
does not have complete control over the authorization, but by controlling the creation
of the constraint keeps a control over the user’s right to keep the authorization.

(3) Contract server. A variation of the preceding solution is to introduce a third party
called contract server controlling the rights to both authorizations and constraints,
The contract server would create the authorization and the constraint, and give rights
on these to the authorizer and the user. The contract server could have the ability to
revoke rights of any of the two parties in case the contract was violated by one of them.
The presence of a third party insures that neither the authorizer nor the user retain its
powers in face of evident damage. The authorizer cannot possess all powers becauge
the user would be unsatisfied, while giving rights to the user over authorizations and
the creation of constraints may violate the security of the system.

A contract between authoriger and user may be needed in the example previously pre-
sented if user U, is the economics department which obtained a grant from the government
to make a study of spending patterns by zone. Supposing that the relation Account has a
domain Zone in addition to the previously defined domains, U; would need access to Account,
Balance, and Zone. Because of the money involved in the grant, the economics department
needs the assurance that this right will not be revoked at any point during the research.
The department would, therefore, pass a contract with the data base administrator to keep
the access during the whole period of the grant.

25

View Definition

The hybrid system can also be used to define different types of views of the data bage

for various groups of users. This is illustrated by the following possible views which can
be defined:

* An access right may be given to a PROJECTION of the JOIN of two relations without
giving access to either of the two relations. In our example the right to obtain the
list of the names of all employees as well as the name of their departments can be
granted to a user U, without giving U, the right to access either the Employee relation
or the relation Department. An authorization granting U, access to the RESTRICTION
on domains Name and Department of the JOIN of Employee and Department is created,
It should be noted that in this example no access right is given to the joining domain.
This shows that it is possible to allow users access to joins without necessarily having to
give them access to the individua] relations nor to the domain used for the projection.

* Access rights may also be given to the individual relations and not the JOIN,

o Access rights to the relations and to their JOIN may be granted, while by the use of
constraints restricting the set of data that can be derived. This was illustrated in a
previous example where authorizations for the relations and their joins were restricted
by some constraints,

To allow authorizers to define authorizations on views instead of individual relations,
an authorizer interface could be used. The role of the authorizer interface would be the
translation of authorizations and constraints on views to authorizations and constraints
on the relations composing the views.

VIiI. Conelusions

The trend toward distributed processing of the 1980’s has given rise to new important
protection problems. Although security is important in any centralized system, it becomes
crucial when the data is to be shared among a variety of organizations. However, very little
research has been conducted in the area of DDBMS protection. This work was intended as
a contribution to the study and modeling of protection issues, particularly those protection
issues which arise in DDBMS. We identified the main protection issues and requirements
associated with DDBMS and presented a system satisfying these requirements. This system

Possesses a certain number of important characteristics:

» The hybrid system proves to be flexible and of practical value since it can easily ac-
commodate different types of environment represented by the different possible com-
binations of use of the main protection tools, i.e. authorizations and constraints. Fur-

26

[ADIBAs2]

[ASTRA76]

[BRACC79]

[BUSSO80]

[CERIs2

thermore, while satisfying all the requirements for distributed brotection, the hybrid
system can handle protection for centralized systems as well.

By using both authorizations and constraints, an economy of representation is achieved.

gap created by forgetting a constraint in an open system is avoided in the hybrid
system, due to the authorization mechanism incorporated in the system.

By using the different tools provided by the hybrid system, it is possible to give a
practical solution to the safety decidability problem. The safety problem while solved

mechanism.

The hybrid system is constructed around a core mechanjsm of authorizations and
constraints. This mechanism controls accesses to all data bases supported by the
DDBMS, including the authorizations and consiraints data bases themselves, as well
as the flow of information in the system. The hybrid system is therefore an integrated
system which is self regulating since authorizations and constraints can be defined on
the data bages bolding them.

BIBLIOGRAPHY

Adiba, Michel, “Distributed Data Base Research at Grenoble University”, Database
Engineering, IEEE, September 1982, Vol 5, No 4, pp 2-8.

Astrahan, M. M. et. al., “System R: Relation Approach to Data Base Management,”
ACM Transactions on Database Systems, June, 1976,

Bracchi, G., Furtado, A., Pelaggatti, G., “Constraint Specification in Evolutionary
Data Base Design”, in Formal Models and Pactical Tools for Information Systemns
Design, Schneider, H.J, (editor), North Holland, 1979, pages 149-164.

Bussolati, U, G., Martella; “On Designing a Security Management System for Dis-
tributed Data Bases”, Proc. of IEEE Fourth Int. Computer Software and Application
Conference, COMPSAC 80, Chicago, Oct. 1980.

Ceri, S.; G. Paolini; G, Pelagatti; F.A. Schreiber; “Distributed Database Research at
the Politecnico of Milano”, Database Engineering, IEEE, Vol 5, No 4, September 1982,
pp 9-13.

27

[CHANS2] Chan, A; and D. R. Ries;“Distributed Database Management Research at Computer
Corporation of America”, Database Engineering, IEEE, Vol. 5, No 4, September 1982,
pp. 14-19.

[COHENT77] Cohen, David, Design of Event-Driven Protection Mechanisms. Ph.D. Thesis, Com-
puter Science Dept., Ohio State University, 1977.

[DENNI82| Denning, D.E., Cryptography and Data Secursty. Addison Wesley Publishing Co., 1982.

[FERNAS81] Fernandez, E.B.; R.C., Summers; and C. Wood , “Security and Integrity in Distributed
Data Base Systems”, in Data Base Security and Integrity, Addison Wesley, 1981, pp
267-288.

[GRAHA72] Graham, G.S.; and P.J. Denning, “Protection—Principles and Practice”, in Proc.
Spring Joint Computer Conference, Vol. 40, AFIPS Press, Montvale, N.J ., 1979, pages
417-429.

[HAAS82] Haas, L. M. et al., “R* : A Research Project on Distributed Relational DBMS”,
Database Engineering, IEEE, Vol 5, No 4, September 1982, pp 28-32.

[HARRI76] Harrison, M.A., W.L. Ruzzo, and J.D. Ullman, “On Protection in Operating Systems”,
Communications of the ACM, Vol. 19,No. 8, August 1976, pp 461-471.

[HARTS76] Hartson, H.R., and Shiao, D.K., “A Semantic Model for Database Protection Lan-
guages,” Proceedings: International Conference on Very Large Databases, Brussells,
September 1976.

[HARTS84] Hartson, H., Rex; “Implementation of Predicate Based Protection in Multisafe”, Soft-
ware: Practice and Ezperience, Vol. 14, No. 3, March 1984, pp.207-234.

[HOFFMT71] L.J. Hoffman, “The Formulary Model for Flexible Privacy and Access Controls”, Pro-
ceedings of the AFIPS FJCC, 1971, pp. 587-601.

[KERST81] Kersten, M.L; Reind P. van de Riet; and Wiebren de Jonge, “Privacy and Security in
' Distributed Data Base Systems”, Second Seminar on Distributed Data Sharing Sys-
tems, Amsterdam, June 3-5 1981, pp. 229-241.

[LARIB8S5]| Laribi, Atika, A Protection Model for Distributed Data Base Management Systems,
PhD Thesis, Computer Science Department, Virginia Tech, 1985.

[LAMPS71] Lampson, B.W., “Protection”, Proceeding of the Fifth Princeton Symposium on Infor-
mation Science and Systems, Princeton University, March 1971, pp 437-443; reprinted
in ACM SIGOPS Operating Systems Review, Vol. 8,No. 1, January 1974, pp 18-24.

[MINSK85] Minsky, N.H.; and A. Lockman, “Extending Authorization by Adding Obligations
to Permissions”, Technical Report LCSR-TR-67, Laboratory for Computer Science
Research, Rutgers University, January 1985.

28

[RIET80] Van de Riet, Reind P.; Martin, L. Kersten, and Anthony I. Wasserman; “A Module
Definition Facility for Access Control in Distributed Data Base Systems”, Proceedings
of the 1980 Symposium on Security and Privacy, April 14-16 1980, Oakland California,

~ pp. 59-66.

[ROTHNS80] J.B. Rothnie et al. , “Introduction to a System for Distributed Databases (SDD1)”,
ACM Transactions on Database Systems, Vol 5, No 1, March 1980, pp. 1-17.

[SCHMIB3] Relational Database Systems, ed. by J.W. Schmidt, Brodie Michael, 1983.

[TRUEB80] Trueblood, Robert, P.; H., Rex, Hartson, and Johannes, J., Martin; Multisafe — A
Modular Multiprocessor Approach to Secure Data Base Management”, ACM Trans-
actions on Database Systems, Vol. 8, No. 3, September 1983, pp.382—409.

[WILMSSI] Wilms P.F.; and B.G. Lindsay, “A Data Base Authorization Mechanism Supporting
Individual and Group Authorization”, Second Semsinar on Distributed Data Sharing
Systems, Amsterdam, June 3-5 1981, pp. 273-292.

29

